Supplementary Material 1 (SM 1)
Dating techniques employed in the AVF
There are a number of dating techniques that have been used to determine the ages of AVF centres. The key methods include: 
(1) Radiocarbon dating (14C) of organic material, most commonly plant material (wood, peat) preserved immediately above or below eruptive products but sometimes found within the deposits themselves (e.g. Searle, 1961a; Hayward, 2008; Lindsay and Leonard, 2009); 
(2) Isotopic analysis of samples of erupted lava flows, initially using K-Ar (e.g. McDougall et al., 1969) and more recently 40Ar/39Ar techniques (e.g. Cassata et al., 2008; Leonard et al., 2017); 
(3) Tephrochronology, through either the inference of a minimum age based on the presence of a known-age tephra within or overlying volcanic deposits (e.g. Sandiford et al., 2001; Molloy et al., 2009; Zawalna-Geer et al., 2016), through sedimentation rate calculations (e.g. Hopkins et al., 2015), or through geochemical correlation of tephra with the eruptive products at source (e.g. Hopkins et al., 2015, 2017); 
(4) Age equivalence dating, most commonly through paleomagnetic analysis (e.g. Shibuya et al., 1992; Cassidy, 2006; Mochizuki et al., 2007; Cassata et al., 2008; Cassidy and Hill, 2009; Cassidy and Locke, 2010); 
(5) Stratigraphy, producing relative ages based on stratigraphic relationships between erupted products of different centres (e.g. Searle, 1961a; Kermode 1992; Lindsay et al., 2011; Hayward et al., 2016) and relative sea levels (e.g. Hayward et al., 2011a; Agustín-Flores et al., 2015b); and
(6) Statistical modelling and predictions (e.g. Bebbington and Cronin 2011; Green et al., 2014; Kawabata et al., 2016). 
For a full review of the methods and how they have been used in the AVF specifically, see Lindsay and Leonard (2009) and Lindsay et al. (2011). However, since these publications were produced, a number of advances have been made in some of the dating techniques. These advances are reviewed below.

Recent Advances in dating techniques
Historically, isotopic analysis has been used as a dating tool in the AVF. However, original studies by McDougall et al. (1969), using the K-Ar decay system, have been shown to produce erroneously old ages due to excess 40Ar included in the phenocrysts of the whole rock analyses (SM Table 2). This problem was overcome by Mochizuki et al. (2007; K-Ar system) and Cassata et al. (2008; 40Ar/39Ar system) who showed that by removing the phenocrysts and using just groundmass, their analyses produced much more viable results. However, young basaltic rocks, such as those that make up the AVF, are notoriously difficult to date through these methods due to their low radiogenic Ar content coupled with their young age (Leonard et al., 2017). Improvements in the 40Ar/39Ar analytical techniques (e.g. Fleck et al., 2014), coupled with increasing sensitivity in gas mass-spectrometry and incremental heating techniques (e.g. Lanphere, 2000), have made analysis of young basaltic material much more effective. In a recent field-wide study, Leonard et al. (2017) published ages for twenty-three centres using these improved methods of 40Ar/39Ar dating. Their results produced a total of nine entirely new ages (for centres which previous had no ages constraints), and fourteen ages for centres with pre-existing (but often poorly constrained) age determinations. 
In addition, Hopkins et al. (2017) improved the chronology of the AVF eruptions through a multidisciplinary approach, combining tephrochronology, geochemistry, existing ages and spatial analysis of tephra deposits. Prior to this study, the basaltic tephra horizons in the AVF maar sediment cores had been identified and analysed for their major elements, allowing some deposits to be correlated between the deposition centres (e.g. Sandiford et al., 2001; Shane and Hoverd, 2002; Molloy et al., 2009; Shane et al., 2013; Hopkins et al., 2015; Zawalna-Geer et al., 2016). However, the sources of these basaltic tephra horizons remained unknown, and therefore the usefulness of the basaltic tephra for understanding the evolution of the field was limited to eruption frequencies. To further this work, Hopkins et al. (2017) developed a method using trace elements in volcanic glass to correlate tephra deposits within the maar sediment cores, both between the cores themselves and then back to their source centre. Linking the tephra deposits back to their source allowed the relative and, in many cases, numerical ages to be determined from the core stratigraphies, and resulted in the construction of a field-wide chronology.

Currently Ambiguous ages in the AVF
1. Rangitoto
Currently ambiguous ages could not be discussed without starting at the eruption(s) of the AVF’s youngest and most unique volcanic centre, Rangitoto, with studies claiming one (e.g. Nichol, 1992), two (e.g. Horrocks et al., 2005; Needham et al., 2011; McGee et al., 2011), three or more (e.g. Linnell et al., 2016; ) eruption phases for this centre (e.g. Shane et al., 2013; Zawalna-Geer et al., 2016; Lowe et al., 2017). The seminal study of Needham et al. (2011) identified two tephra horizons (correlated by glass-shard major element composition), separated by peat. These tephra horizons were dated through 14C dating, producing mean ages from 10 samples of 553 ± 7 cal. yrs. BP and 504 ± 5 cal. yrs. BP. The evidence for multiple pulses of ashfall, split by a small break in time, is also confirmed by archaeological evidence where footprints from humans and dogs have been found preserved between the tephra layers on adjacent Motutapu Island (Nichol, 1982) (though this proves that Auckland was occupied by humans during the AVF’s youngest eruptions, there are no written records or clear oral histories from this time known to researchers [Smith and Allen, 1993]). Geochemical analysis of the products of the eruption(s) revealed bimodal geochemistries; an alkalic (SiO2 ≤ 47 wt.%) and a sub-alkalic (SiO2≥ 48 wt.%) signature, further supporting the hypothesis of two key eruptions. However, multiple basaltic cryptotephra horizons were identified in two Lake Pupuke/ Pupuke Moana cores which were interpreted as intermittent activity from ca. 1500 to 500 cal. yrs. BP (Shane et al., 2013). More recently (2014), coring of Rangitoto lava flows and the original sea floor underneath revealed a potentially 6 kyr eruption history (Linnell et al., 2016). However, the fidelity of both the cryptotephra research and the interpretation of the drill core stratigraphy was questioned by Hayward and Grenfell (2015) and Hayward (2017) respectively, and the older ages are almost universally not accepted within the AVF research community. Continued research into this conundrum has brought up subsequent evidence refuting the older ages (Cronin et al., 2018). Tephra deposits found on Motutapu Island are proposed to have resulted from surge flow, transported over water, and thus capturing the presumed initial, emergent growth phase of the volcano. The geochemistry of these surge deposits correlate to the geochemistry found at the base of the drill core (Linnell et al., 2016) and with the tephra found on Motutapu Island (Needham et al., 2011) and North Cone, relating to the earliest phase of eruptions, pre-dating the shield-forming phase which has the more evolved geochemistry. This evidence logically suggests that the early phase of eruptions from Rangitoto were phreatomagmatic, and, once seawater was excluded from the active vent site, the secondary phase of the eruption was magmatic linked to the shield building phase. Cronin et al, (2018) proposed that the entire Rangitoto sequence was erupted between ca. 650 – 550 cal. yrs. BP, and as hypothesised here, was actually remarkably similar in its physical evolution to the other large volcanoes in the field, for example, Mt Eden/ Maungawhau, Three Kings/ Te Tātua-a-Riukiuta, and One Tree Hill/ Maungakiekie. A short-lived eruption sequence is supported by the similar, young, radiometric dates of the lower-most lava flows in the Rangitoto drill core, previously thought to have erupted 6 ky apart (McGee, 2020). Paleomagnetic dating of the lava flows in the Rangitoto drill core are ongoing and may be able to further confirm this hypothesis. Our ability to date the different phases of the eruption highlights the complexity of the older eruptions that we cannot resolve through the uncertainties of dating older material.

2. Otuataua, Pukeiti/ Te Puketapapatanga a Hape, Maungataketake/ Ellets Mt and Waitomokia/ Moerangi/ Mt Gabriel
Otuataua, Pukeiti/ Te Puketapapatanga a Hape/ Te Puketapapatanga a Hape, Maungataketake/ Ellets Mt and Waitomokia/ Moerangi/ Mt Gabriel are four volcanic centres that sit in the south-west of the field. Waitomokia/ Moerangi/ Mt Gabriel is located ~1.8 km to the north of Otuataua, Otuataua and Pukeiti/ Te Puketapapatanga a Hape overlap in their spatial footprint (with no observed paleosols between the deposits, suggesting minimal time lapse between their eruptions) and Maungataketake/ Ellets Mt is centred ~1.2 km to the south of Otuataua (Fig. 1b).  Searle (1959a) identified a lava flow from Pukeiti/ Te Puketapapatanga a Hape passing below those of Otuataua, and noted that the Pukeiti/ Te Puketapapatanga a Hape lava flows are ash-covered, whereas the Otuataua flows are not. This led Searle (1959a) to suggest that an eruption must have occurred after Pukeiti/ Te Puketapapatanga a Hape--but before Otuataua--from another nearby volcano, most likely from either Waitomokia/ Moerangi/ Mt Gabriel or Maungataketake/ Ellets Mt. However, this is very unlikely; the currently preferred ages for Waitomokia/ Moerangi/ Mt Gabriel and Maungataketake/ Ellets Mt are 20.3 ± 0.1 ka (Hopkins et al., 2017) and 88.9 ± 2.4 ka (Leonard et al., 2017), respectively. In comparison, the currently preferred age for Otuataua is 24.2 ± 0.9 ka (Hopkins et al., 2017), which provides a minimum age for the Pukeiti/ Te Puketapapatanga a Hape eruption based on morphostratigraphy. This suggests that neither Waitomokia/ Moerangi/ Mt Gabriel nor Maungataketake/ Ellets Mt eruption could have occurred between the two eruptions of Otuataua or Pukeiti/ Te Puketapapatanga a Hape. 
Geochemical and archeological evidence supports the idea of a minimal time break between the Otuataua and Pukeiti/ Te Puketapapatanga a Hape eruptions. Hayward et al (2011a) suggested that Pukeiti/ Te Puketapapatanga a Hape either occurred shortly before or coevally with Otuataua. Geochemical analysis of the products from the two eruptions shows that the Pukeiti/ Te Puketapapatanga a Hape lavas have a more primitive geochemical signature to the Otuataua lavas (Hopkins unpublished data), suggesting the Pukeiti/ Te Puketapapatanga a Hape source evolved into the Otuataua source, as seen within single centres and between other centres in the field. In addition, archaeological excavations of the older flows from Otuataua showed evidence for ash burying the surface before being buried by the younger flows from Otuataua. We therefore think it is mostly likely that Pukeiti/ Te Puketapapatanga a Hape was the source of initial activity, or was produced early on in the eruption history of the pair, followed by ash-producing, phreatomagmatic eruptions from Otuataua that covered the existing lava flows (from potentially both Otuataua and Pukeiti/ Te Puketapapatanga a Hape), followed and buried by further lava flows from Otuataua. It is therefore highly likely that the age of the Pukeiti/ Te Puketapapatanga a Hape centre immediately predates the Otuataua centre. 

3. Te Hopua-a-rangi/ Gloucester Park
At present, Te Hopua-a-rangi/ Gloucester Park has two contrasting ages associated with it: 1) 51.6 ± 3.2 (1sd; 40Ar/39Ar age from Leonard et al., 2017), and 2) 31.0 ka (sedimentation rate calculation from Te Hopua-a-rangi/ Gloucester Park drill core linked to Poihipi tephra towards the base of the core). The morphostratigraphic constraint is that it erupted through One Tree Hill/Maungakiekie lavas (Hayward et al., 2011a; Hopkins et al., 2017), and therefore must be younger, and has a residual magnetic anomaly of c.0 (Cassidy and Locke 2010). The 40Ar/39Ar age from Leonard et al. (2017) also sits within error of the 40Ar/39Ar age obtained for One Tree Hill/Maungakiekie, we therefore hypothesise two options. Either: 1) the Te Hopua-a-rangi/ Gloucester Parkeruption occurred very shortly after the emplacement of the One Tree Hill/Maungakiekie lava flows or 2) the sample taken for 40Ar/39Ar analysis was sourced from One Tree Hill/ Maungakiekie, rather than Te Hopua-a-rangi/ Gloucester Park. At present, the latter is the more highly favoured option, giving a younger numerical age to Te Hopua-a-rangi/ Gloucester Park. However, no basaltic material was recovered at the base of the core drilled and used for sedimentation rate estimations of age, therefore the sedimentation rate estimates give a minimum age for the eruption of Te Hopua-a-rangi/ Gloucester Parkof 31 ka. To help resolve this uncertainty, resampling of the Te Hopua-a-rangi/ Gloucester Parkcrater for 40Ar/39Ar dating could be undertaken, or if appropriate material could be found, 14C dating would likely allow the age to be resolved. 

4. Mt Eden/ Maungawhau and Te Pou Hawaiki 
Mt Eden/ Maungawhau, as one of the larger centres in the AVF with good exposure of its erupted scoria and lava flow products, has been well studied by numerous dating techniques, leading to a confident assignment of an age of 28 ka for its eruption. Conversely, Te Pou Hawaiki has never been numerically dated, and its relative eruption age in relation to Mt Eden/ Maungawhau has been debated (e.g. Affleck et al., 2001; Hayward et al., 2011a; Kenny, 2014; Hopkins et al., 2017). It is identified as an apparent small welded scoria or spatter cone (Hayward, 2019), and is surrounded by lava flows and lava caves that have orientations suggestive of a source from the Te Pou Hawaiki centre (Kenny, 2014). Using gravity data and thorough paleo-topographic mapping, Affleck et al. (2001) suggested that Te Pou Hawaiki may have been a surface manifestation of a much larger centre, infilling a depression in the Waitemata paleosurface. Both these theories are supported by geochemical data (McGee et al., 2013; Hopkins unpublished data) which suggests that the geochemical signature of the erupted products can be linked to a very large amount of partial melting, and thus a large eruption volume (e.g. McGee et al., 2015). It is therefore possible that rather than the suggested satellite cone, or paired eruption with Mt Eden/ Maungawhau, it stands alone as an individual large eruption. However, it remains numerically undated with morphological evidence suggesting that it predates Mt Eden/ Maungawhau at ~28 ka (e.g. Bartrum 1928; Affleck et al., 2001), but postdates Three Kings/ Te Tātua-a-Riukiuta at ~31 ka (Allen and Smith, 1994). 

5. Onepoto/ Te Kopu-o-Matakarepo, Tank Farm/ Tuff Crater/ Te Kopua-o-Matakamokamo and Lake Pupuke/ Pupuke Moana
The age of three centres in the north-east of the field, Onepoto/ Te Kopu-o-Matakarepo, Tank Farm/ Tuff Crater/ Te Kopua-o-Matakamokamo, and Lake Pupuke/ Pupuke Moana (Fig. 1b), are contentious in their relative eruption order. Recent dating through 40Ar/39Ar techniques has resolved part of this by giving an age of 193.2 ± 2.8 ka (Leonard et al., 2017) to the Lake Pupuke/ Pupuke Moana centre, currently believed to be the oldest centre in the field. Morphostratigraphic evidence suggests that Tank Farm/ Tuff Crater/ Te Kopua-o-Matakamokamo and Onepoto/ Te Kopu-o-Matakarepo erupted close in time, or that Tank Farm/ Tuff Crater/ Te Kopua-o-Matakamokamo is slightly older than Onepoto/ Te Kopu-o-Matakarepo; a small terrace identified in the Tank Farm/ Tuff Crater/ Te Kopua-o-Matakamokamo crater shows evidence of draped Onepoto/ Te Kopu-o-Matakarepo tuff (Lindsay et al., 2011). However, material from a sediment core drilled in the crater of Onepoto/ Te Kopu-o-Matakarepo in 2000-2001 contradicts this notion. The base of the 2000-2001 Onepoto core ended in scoria and lapilli, and was presumed to be the Onepoto/ Te Kopu-o-Matakarepo crater base (Shane and Hoverd, 2002). The basal material was analysed by 40Ar/39Ar techniques, however, potentially erroneous results meant that an age range of >150-220 ky was the most reliable estimate given for this material (Lindsay et al., 2011). This basal deposit was also found within a repeat sediment core, “On2” (drilled in 2011). At ~4 m above the basal material in the On2 core, researchers found another basaltic horizon (called AVFc; Hopkins et al., 2015), followed by ~10 m of tephra-barren lacustrine sediment (Hopkins et al., 2015). If Onepoto/ Te Kopu-o-Matakarepo were the oldest of these three eruptions, one would anticipate that two more tephra horizons (sourced from Lake Pupuke/ Pupuke Moana and Tank Farm/ Tuff Crater/ Te Kopua-o-Matakamokamo) would be found within these lower sections of the core. However, only one horizon is found, suggesting that Onepoto/ Te Kopu-o-Matakarepo is the middle eruption (temporally) of these three. Determining which of Lake Pupuke/ Pupuke Moana or Tank Farm/ Tuff Crater/ Te Kopua-o-Matakamokamo is represented above Onepoto/ Te Kopu-o-Matakarepo’s basal material, and is therefore, younger, is challenging. Tank Farm/ Tuff Crater/ Te Kopua-o-Matakamokamo was a moderately small eruption (DRE = 5.87x106 m3; Kereszturi et al., 2013) and Lake Pupuke/ Pupuke Moana a much larger eruption (DRE = 46.7x106 m3 Kereszturi et al., 2013), however, Tank Farm/ Tuff Crater/ Te Kopua-o-Matakamokamo is located just 600 m NNE of Onepoto/ Te Kopu-o-Matakarepo, and Lake Pupuke/ Pupuke Moana is ~ 3 km NNE. Hopkins et al. (2017) suggested that this relatively thin tephra horizon was more likely to be linked to the eruption of Tank Farm/ Tuff Crater/ Te Kopua-o-Matakamokamo rather than Lake Pupuke/ Pupuke Moana due the small scale of the Tank Farm/ Tuff Crater/ Te Kopua-o-Matakamokamo eruption. However, the further distance and/or potential of an unfavourable wind direction could be used to argue that this thin tephra horizon (AVFc) belongs to Lake Pupuke/ Pupuke Moana. The geochemical correlation for these deposits was inconclusive due the lack of material available from Tank Farm/ Tuff Crater/ Te Kopua-o-Matakamokamo (Hopkins et al., 2017). Therefore, the relative age of these eruptions remains proposed in the literature, but in reality is unresolved. 

6. Auckland Domain/Pukekawa and Grafton
Always considered to be some of the older volcanoes in the AVF (Searle, 1961a; Kermode, 1992), Auckland Domain/Pukekawa and Grafton have been challenging to date due to their lack of obvious, datable erupted products. Their proximity to one another has allowed their relative age to be identified due to their physical relationship, showing that Auckland Domain/Pukekawa erupted through the Grafton tuff ring (Hayward et al., 2011b). Numerical ages have been more difficult to obtain, with 14C dating (Grenfell and Kenny, 1995) and tephrochronology (Rotoehu in peat cores from Auckland Domain/Pukekawa crater; Lindsay et al., 2011) giving a minimum age of ~45 ka (Hayward ad Hopkins 2019). More recent advances in tephrochronology with geochemical correlations allowed Hopkins et al. (2017) to propose an age for Auckland Domain/Pukekawa eruption of 106 ± 4.0 ka based on the correlation of basaltic tephra found in Ōrākei Basin, Onepoto/ Te Kopua-o-Matakarepo, and Glover Park/Whakamuhu cores. The similarity of the geochemical products of these two eruptions has also led some authors to hypothesise that these eruptions were coupled, occurring very closely in space and time (e.g. Hayward, 2019; Hayward and Hopkins 2019). 


7.  Influence of the age of Rotoehu Tephra
Rotoehu Tephra is the oldest identifiable rhyolitic tephra in the Auckland maar cores. Its age therefore influenced the calibrated sedimentation rate ages assigned to cored tephra older than the next youngest rhyolitic tephra, Tahuna Tephra (39.3 ± 1.2 ka; Hopkins et al., 2017).  Hopkins et al. (2017) used a conservative age of 52 ± 7 ka for Rotoehu Tephra so as to accommodate the wide range of ages that had been determined by many different methods over the past 50 years. A more rigorous assessment of the various dating techniques used (Hayward and Hopkins, 2019) suggests that an age of 45.5±2 ka is more realistic (e.g. Shane et al., 2006; Allan et al., 2008; Danisik et al, 2012; Flude and Storey 2016). If this younger age for Rotoehu Tephra is used, the ages determined by Hopkins et al. (2017) become 6-9 kyr younger (Table 2; see Hayward and Hopkins, 2019, Table 3).
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Supplementary Material – Table Captions
Supplementary Table 1 (SM Table 1). 
Full reference data set of all recognised ages for the AVF centres including reference and methods for analysis. 4C calibrations were done in 2011 by CalPal.ª The age of 130 ka indicates geomorphological evidence that shows marine erosion during the last sea level high-stand related to the last interglacial at c. 130 – 120 ka (Hayward and Hopkins 2019). ºThe age of 45 ka is related to the eruption of the Rotoehu tephra, which at present has an ambiguous age (see discussion in SM 1).*indicates centres where morphostratigraphy suggests contemporaneous eruptions (for example no organic material between successive volcanic deposits); these are given an arbitrary difference in age of 500 years, based on a minimum time it takes to form soil horizons.

Supplementary Table 2 (SM Table 2).
Definitions and details for the reliability groupings shown on Table 1 expanded from Lindsay et al., 2011.

Supplementary Table 3 (SM Table 3).
Detailed information on the eruption hazards, their consideration and requirements for hazard and risk assessment. These details provide evidence for the bridge between the physical volcanology and the hazard and risk management and policy applications. 
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