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S.1. Fast Projection Algorithm for elementwise `1-norm ball

By carefully examining (3.9), we find that it is a special case of the quadratic Knapsack problem

(Brucker, 1984; Pardalos and Kovoor, 1990). We first define A′ ∈ Rd×d with A′jk = |A|jk/µ. Given

the decreasing order statistics of all elements in A′ as A′(1),A
′
(2), ...,A

′
(d2), (3.9) is equivalent to

find u such that

u−1∑
j=1

(
A′(j) −A′(u)

)
< 1 and

u+1∑
j=1

(
A′(j) −A′(u)

)
≥ 1. (S.1)

Then with u and A′(u), we can calculate γ as follows,

γ =
1

u

 u∑
j=1

A′(j) − 1

 . (S.2)

Similar to the fast median algorithm (Corman et al., 2001), Algorithm 1 identifies u and the pivot

value A′(u) using a divide and conquer procedure (without sorting the data). In each iteration we

either eliminate elements shown to be strictly smaller than A′(u) or update the partial sum leading

to (S.1). This algorithm has an average-case complexity of O(d2). Similar algorithms can be found

in Liu and Ye (2009); Duchi et al. (2008) for the lasso problem.
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Algorithm 1 The elementwise `1 norm projection algorithm.

Input: A′ ∈ Rd×d
Initialize: S0 = {(j, k) | j = 1, ..., d and k = 1, ..., d}, w = 0,u = 0
repeat

1: randomly pick (j′, k′) ∈ S0
2: partition S0:

S1 = {(j, k) ∈ S1 | A′jk ≥ A′j′k′}
S2 = {(j, k) ∈ S2 | A′jk < A′j′k′}

3: Calculate ∆w = |S1| and ∆u =
∑

(j,k)∈S1 A′jk
4: If (u+ ∆u)− (w + ∆w)A′j′k′ ≤ 1

u = u+ ∆u; w = w + ∆w; S0 ← S2
else
S0 ← S1 \ {(j′, k′)}

until S0 = ∅
Output: γ = (w − 1)/u

S.1.1. Proof of Lemma 3.1

Proof. Equation (3.8) can be rewritten as∣∣∣∣∣∣A∣∣∣∣∣∣µ∞ = min∣∣∣∣∣∣U∣∣∣∣∣∣
1
≤1

µ

2
||U−A/µ||2F. (S.3)

By the Lagrangian duality, we know that there exists some constant γ > 0 such that∣∣∣∣∣∣A∣∣∣∣∣∣µ∞ = min
U
||U−A/µ||2F + γ

∣∣∣∣∣∣U∣∣∣∣∣∣
1

(S.4)

holds as a Lagrangian form equivalent to (S.3). (S.4) results in the soft thresholding operation as

follow

Ũjk = sign (Ajk) ·max

{∣∣∣∣Ajk

µ

∣∣∣∣− γ, 0} , (S.5)

which completes the proof.

S.2. Accelerated Proximal Gradient Algorithm

We summarize the accelerated proximal gradient algorithm in Algorithm 2.

S.3. Proof of Lemma 3.2

Proof. The eigenvalue decomposition of A can be rewritten as A = VZVT with

Z = diag(σ1, σ2, ..., σd) and V = (v1,v2, ...,vd). (S.6)
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Algorithm 2 The Accelerated Proximal Gradient Algorithm.

Input: Ŝ, S(0) = M(0) = W(0), µ, θt = 2/(1 + t), ε
Output: S̃ = S(t)

Initialize: t = 1
repeat

1: Compute the auxiliary variables M(t) using (3.13)
2: Compute the gradient of (3.10) at M(t) using (3.14)
3: (Optional) Compute ηt by the backtracking line search using (3.18)
4: Compute the auxiliary variables W(t) using (3.16)
5: Compute the solution S(t) using (3.17)
6: t = t+ 1

until
∣∣∣∣∣∣∣∣∣Ŝ− S(t)

∣∣∣∣∣∣µ
∞ −

∣∣∣∣∣∣Ŝ− S(t−1)∣∣∣∣∣∣µ
∞

∣∣∣ ≤ εµ.

Note is that V is a unitary matrix. Since the Frobenius norm is invariant to V, we have

min
B�0
||B−A||2F = min

B�0
||VT (B−A)V||2F = min

B�0
||VTBVT − Z||2F. (S.7)

Then it is easy to verify that (S.7) is minimized when

VTBV = R = diag(σ̃1, σ̃2, ..., σ̃d), (S.8)

where σ̃j = max{σj , 0}. Therefore we have

B = VRVT , (S.9)

which completes the proof.

S.4. Proof of Lemmas related to Theorem 4.2

S.4.1. Proof of Lemma C.1

Proof.

‖AB‖∞ = max
i

∑
j

∑
k

|AikBkj | = max
i

∑
k

|Aik|
∑
j

|Bkj |

≤

(
max
i

∑
k

|Aik|

)max
`

∑
j

|B`j |

 = ‖A‖∞‖B‖∞. (S.10)
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S.4.2. Proof of Lemma C.2

Proof.

‖B̂−1 −B−1‖∞ = ‖B̂−1(B− B̂)B−1)‖∞ ≤ ‖B̂−1‖∞‖B− B̂‖∞‖B−1‖∞

≤
(
‖B̂−1 −B−1‖∞ + ‖B−1‖∞

)
‖B− B̂‖∞‖B−1‖∞. (S.11)

Therefore we have

‖B̂−1 −B−1‖∞ ≤
‖B−1‖2∞

1− ‖B− B̂‖∞‖B−1‖∞
‖B̂−B‖∞, (S.12)

which completes the proof.

S.4.3. Proof of Lemma C.3

Proof. We have the following decomposition,{
(Â−A)(B̂−1 −B−1)

}
= ÂB̂−1 −AB−1 +

{
(Â−A)B−1

}
+
{

A(B−1 − B̂−1)
}
. (S.13)

Since {
A(B−1 − B̂−1)

}
= AB−1(I−BB̂−1) = AB−1(B̂−B)B̂−1

= AB−1(B̂−B)(B̂−1 −B−1) + AB−1(B̂−B)B−1, (S.14)

then we have

‖ÂB̂−1 −AB−1‖∞ ≤
{
‖Â−A‖∞‖B̂−1 −B−1‖∞

}
+
{
‖Â−A‖∞ψ

}
+
{
α‖B̂−B‖∞‖B̂−1 −B−1‖∞

}
+
{
α‖B̂−B‖∞ψ

}
=
{
‖Â−A‖∞(‖B̂−1 −B−1‖∞ + ψ) + (α‖B̂−B‖∞(‖B̂−1 −B−1‖∞ + ψ)

= (‖Â−A‖∞ + α‖B̂−B‖∞)(ψ + ‖B̂−1 −B−1‖∞). (S.15)

By (S.11) in Lemma C.2

‖B̂−1 −B−1‖∞ ≤
(
‖B̂−1 −B−1‖∞ + ‖B−1‖∞

)
‖B− B̂‖∞‖B−1‖∞

=
1

2
‖B̂−1 −B−1‖∞ +

1

2
ψ, (S.16)

we have

‖B̂−1 −B−1‖∞ ≤ ψ. (S.17)

By combing (S.15) and (S.17), we complete the proof.
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S.4.4. Proof of Lemma C.4

Proof.

‖Âv̂ −Av‖∞ = ‖Âv̂ −Av̂ + Av̂ −Av‖∞

≤ ‖Âv̂ −Av̂‖∞ + ‖Av̂ −Av‖∞

≤ ‖Â−A‖∞(‖v̂ − v‖∞ + ‖v‖∞) + ‖A‖∞‖v̂ − v‖∞, (S.18)

which completes the proof.

S.4.5. Proof of Lemma C.5

Proof. We have

||S̃IjIj −Σ∗IjIj ||∞ = max
k∈Ij

∑
`∈Ij

|S̃k` −Σ∗k`| ≤ κ3s
√

log d

n
,

||S̃JjIj −Σ∗JjIj ||∞ = max
k∈Jj

∑
`∈Ij

|S̃k` −Σ∗k`| ≤ κ3s
√

log d

n
,

||S̃\j,j −Σ∗\j,j ||∞ = max
k 6=j
|S̃kj −Σ∗kj | ≤ κ3

√
log d

n
.

Let sj = |Ij | ≤ s. For arbitrary v ∈ Rsj , we have

vT (S̃IjIj )v = vT (S̃IjIj −Σ∗IjIj + Σ∗IjIj )v

= vTΣ∗IjIjv − vT (Σ∗IjIj − S̃IjIj )v

≥ Λmin(Σ∗IjIj )||v||
2
2 − ||v||21

∣∣∣∣∣∣Σ∗IjIj − S̃IjIj
∣∣∣∣∣∣
∞

≥ δ||vT ||22 − sj ||v||22 · κ3

√
log d

n
,

where the last inequality comes from the fact v ∈ Rsj . Thus for large enough n such that√
log d

n
≤ δ

2sκ3
, (S.19)

we have

vT (S̃IjIj )v ≥
δ

2
||vT ||22. (S.20)

Since v and j are arbitrary, we further have

Λmin(S̃IjIj ) ≥
δ

2
for all j = 1, ..., d. (S.21)
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S.5. Graph and Covariance Matrix Generation

• Neighborhood. For each node, we independently sample a random vector from a uniform

distribution over [0, 1]2 ⊂ R2. Let Vi ∈ R2 denote the random vector for node i, then we set

an edge between node i and node j with probability (2π)−1/2 exp(−||Vi−Vj ||22/φ). We set φ = 100

for the simulations in §5.1, §5.2, and §5.3.

• Clique. The nodes are evenly partitioned into g disjoint groups and each group contains d/g

nodes. The subgraph of each group is fully connected graph. We set g = 20 for the simulations in

§5.1, §5.2, and §5.3.

• Band. Each node is assigned a coordinate j with j = 1, ..., d. Two nodes are connected by an

edge whenever the corresponding points are at distance no more than g. We set g = 2 for the

simulations in §5.1, §5.2, and §5.3.

• Lattice. Each node is assigned a two dimensional coordinate (j, k) with j = 1, ..., g and k =

1, ..., d/g. Two nodes are connected by an edge whenever the corresponding points are at distance

1. We set g = 10 for the simulations in §5.1, §5.2, and §5.3.

• Mixed Scale-free. The nodes are evenly partitioned into 4 groups. The nodes from different

groups are disconnected. The subgraph of each group of nodes is a scale free graph. The degree

distribution of the scale-free graph follows a power law. The graph is generated by the preferential

attachment mechanism. The graph begins with an initial band graph of 10 nodes with g = 1. New

nodes are added to the graph one at a time. Each new node is connected to existing node with

a probability that is proportional to the number of degrees that the existing nodes already have.

Formally, the probability pi that the new node is connected to node i is, pi = ki∑
j kj

, where ki is the

degree of node i.

• Hybrid. The nodes are evenly partitioned in to 5 groups, named S1-S5. The subgraph of S1 is a

neighborhood graph with φ = 25; The subgraph of S2 is a clique graph with g = 4; The subgraph

of S3 is a band graph with g = 2; The subgraph of S4 is a lattice graph with g = 10; The subgraph

of S5 is a scale-free graph. In addition, we set an edge between a node in Sk and a node in Sk+1

with probability 0.01, independently of the other edges for k = 1, ..., 4.

Recall that E∗ denotes the binary adjacency matrix, we calculate

Σ∗ = C2{(E∗ + (0.5− Λmin(E∗)) · I200)−1}, (S.22)
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where C2 is the rescaling operator that converts a covariance matrix to the corresponding correlation

matrix.

S.6. Supporting Figures for Data Analysis

Due to the space limit of the manuscript, we present some supporting figures here.

S.6.1. Topic Modeling Dataset

Figure S.1 shows the histogram and normal qq plot of Topic 4. We see that Topic 4 significantly

violates of the normality assumption.

(a) Histogram (b) Normal qq plot

Fig S.1. Both the histogram and normal qq plot show significant violation of the normality.

The modules of the nonparanormal graph are magnified and presented in Figures S.2-S.5. The

modules of the Gaussian graph are magnified and presented in Figures S.6-S.8

S.6.2. Stock Market Dataset

We plot the data points for the first 100 stocks in Figure S.9. We highlight a data point in red if its

absolute value is greater than 3. We can see that a large number of potential outliers exist. They

may affect the quality of the estimated graph.

S.6.3. Gene Network Dataset

Figure S.10 shows the histogram and normal qq plot of “MECPS”. We see that its distribution is

very likely non-Guassian.
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Fig S.2. The nonparanormal topic graph. Part 1.
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Fig S.3. The nonparanormal topic graph. Part 2.
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Fig S.9. Stock Market Dataset. We can see a large amounted of the outliers (Red dots). Their existence may affect
the quality of the estimated graph.

(a) Histogram (b) Normal qq plot

Fig S.10. Both the histogram and normal qq plot show violation of the normality.
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