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S.1. Fast Projection Algorithm for elementwise £1-norm ball

By carefully examining (3.9), we find that it is a special case of the quadratic Knapsack problem
(Brucker, 1984; Pardalos and Kovoor, 1990). We first define A’ € R4 with A’y = |Aljr/p. Given
the decreasing order statistics of all elements in A’ as Azl),A’(Q), ...,A’( 2y (3.9) is equivalent to

find w such that

u—1 u+1
Zl( ()~ Al) < 1and Zl (AL~ Afy) =1 (S.1)
j= j=

Then with v and A’(u), we can calculate « as follows,

1 u
j=1

Similar to the fast median algorithm (Corman et al., 2001), Algorithm 1 identifies u and the pivot

value A’(u) using a divide and conquer procedure (without sorting the data). In each iteration we

either eliminate elements shown to be strictly smaller than A’(u) or update the partial sum leading
to (S.1). This algorithm has an average-case complexity of O(d?). Similar algorithms can be found

in Liu and Ye (2009); Duchi et al. (2008) for the lasso problem.



Algorithm 1 The elementwise ¢; norm projection algorithm.

Input: A’ € R¥x¢
Initialize: So = {(j,k) | j=1,..,dand k=1,....,d}, w=0,u =0
repeat

1: randomly pick (j', k") € So

2: partition Sp:

Si={(,k) eS| Al > ALy}
So={(j,k) € Sa | Ay, < Alp}
3: Calculate A,, = |S1]| and A, = Z(M)G& A;‘k

u=u-+ Ay w=w+ Ay; Sy + S

else
So + S\ {(",K)}
until Sg =0

Output: v = (w—1)/u

S.1.1. Proof of Lemma 3.1

Proof. Equation (3.8) can be rewritten as

Al = min S0~ A/l
ol <2 2

By the Lagrangian duality, we know that there exists some constant v > 0 such that

[l A2, = min[[U — A/ullz + (U],

(S.4)

U
holds as a Lagrangian form equivalent to (S.3). (S.4) results in the soft thresholding operation as

follow

_ A
U, = sign (Ajp) - max{'/jk

_770}7

which completes the proof.

S.2. Accelerated Proximal Gradient Algorithm

We summarize the accelerated proximal gradient algorithm in Algorithm 2.

S.3. Proof of Lemma 3.2

Proof. The eigenvalue decomposition of A can be rewritten as A = VZVT with

Z = diag(o1, 09, ...,04) and V = (v1,v9, ..., vg).

2

(S.5)
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Algorithm 2 The Accelerated Proximal Gradient Algorithm.

Input: S, SO = MO = WO, 6, =2/(1+1), ¢
Output: S =-8®
Initialize: t =1
repeat

1: Compute the auxiliary variables M(®) using (3.13)
: Compute the gradient of (3.10) at M®) using (3.14)
: (Optional) Compute n; by the backtracking line search using (3.18)
: Compute the auxiliary variables W) using (3.16)
: Compute the solution S using (3.17)

6:t=1+1
until [[|S = SO, — IS = SV | < <p

CU ks W N

Note is that V is a unitary matrix. Since the Frobenius norm is invariant to V, we have
min [[B — Allp = min|[V/(B - A)V|[; = min|[VIBV' - Z[[;.
Then it is easy to verify that (S.7) is minimized when
VIBV = R = diag(cy, 02, ..., 5q),
where ¢; = max{c;,0}. Therefore we have
B = VRV,

which completes the proof.

S.4. Proof of Lemmas related to Theorem 4.2
S.4.1. Proof of Lemma C.1

Proof.

|AB|oc = mgxzz |AirBi;| = mgxz Ak Z Bl
ik k J
S(mz‘@xzk:|Aik’> mgXZIB@\ = [[Alloo Bl
J

(S.7)

(S.8)

(S.9)

(S.10)



S.4.2. Proof of Lemma C.2

Proof.

IB™ =Bl = [B™'(B = B)B™) | < B~ l|B = Blloc/| Bl
< (IB™" =Bl + B ) IB — Blloc|B™||.

(S.11)
Therefore we have
BB s B g g 512
1—|B = Blloc[ B oo

which completes the proof. O

S.4.3. Proof of Lemma C.3

Proof. We have the following decomposition,

{A-a)B'-B )} =AB"-aB' +{A-AB'}+{aB'-B )} (13
Since
{A(B—1 _ ﬁ-l)} — AB{(I-BB~!)= AB~}(B - B)B"!
—AB'B-B)B'-B )+ AB/(B-B)B ', (S.14)

then we have

JAB™" ~ AB7 oo < {IIA — Al B~ = B} + {|A — A’}

+{alB~B|<|B™ =B } + {alB - Blloct)}
= {IA = A< (IB™" = B oo + ) + (@B - Blloc(IB™" = B~ + 1)
= (|1A = Al + B =Blloo) (@ + [B™' = B |0). (S.15)
By (S.11) in Lemma C.2
1B =B oo < (IB™ = B oo + |B'|sc ) B = BlloclB ™"
= %Hﬁ—l ~B e+ %1&, (S.16)
we have

B~ - B!l < v

(S.17)
By combing (S.15) and (S.17), we complete the proof.

O
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S.4.4. Proof of Lemma C.}

Proof.
|AD — Av||os = ||AT — AD + AT — Av|
< |AD — Ao + || AT — Av]|o
< A = Alloo(18 = vlloo + [[V]lo0) + | Alloo|& = v, (S.18)
which completes the proof. O

S.4.5. Proof of Lemma C.5

Proof. We have

~ ~ logd
1S5;1; = Z 1,0 = I,glealxz [Ske = Bl < sy =,
J ZEI]'
~ ~ logd
IS5;1, = 27,1 1loe = Ilgg}]fz [Ske = Bl < rasy/ =,
EGI]'
~ ~ logd
1815 = 34 lleo = max|Sy; — 3y | < r3 :

Let s; = |I;]| < s. For arbitrary v € R%, we have

UT(gijj)” = "’T(gfjfj - 2;713' + E?ﬂj)v
T T Q
=v' X v—v (3, —Sp)v
> Awin(27,1,)1[013 = I} =5, 1, = Sl

logd
> 801 - ssllol3 - s/ 55,

where the last inequality comes from the fact v € R%. Thus for large enough n such that

logd o
i = 25k’ (8-19)
we have
oS > Sl (5.20)
Since v and j are arbitrary, we further have
Amin(gfjlj) > g forall j =1,...,d. (S.21)
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S.5. Graph and Covariance Matrix Generation

e Neighborhood. For each node, we independently sample a random vector from a uniform
distribution over [0,1]2 € R2. Let V; € R? denote the random vector for node i, then we set
an edge between node i and node j with probability (27)~'/2 exp(—||Vi — Vj||3/$). We set ¢ = 100
for the simulations in §5.1, §5.2, and §5.3.

e Clique. The nodes are evenly partitioned into ¢ disjoint groups and each group contains d/g
nodes. The subgraph of each group is fully connected graph. We set g = 20 for the simulations in
§5.1, §5.2, and §5.3.

e Band. Each node is assigned a coordinate j with j = 1,...,d. Two nodes are connected by an
edge whenever the corresponding points are at distance no more than g. We set g = 2 for the

simulations in §5.1, §5.2, and §5.3.

e Lattice. Each node is assigned a two dimensional coordinate (j,k) with j = 1,...,g and k =
1,...,d/g. Two nodes are connected by an edge whenever the corresponding points are at distance

1. We set g = 10 for the simulations in §5.1, §5.2, and §5.3.

e Mixed Scale-free. The nodes are evenly partitioned into 4 groups. The nodes from different
groups are disconnected. The subgraph of each group of nodes is a scale free graph. The degree
distribution of the scale-free graph follows a power law. The graph is generated by the preferential
attachment mechanism. The graph begins with an initial band graph of 10 nodes with g = 1. New
nodes are added to the graph one at a time. Each new node is connected to existing node with

a probability that is proportional to the number of degrees that the existing nodes already have.

Formally, the probability p; that the new node is connected to node i is, p; = Zkik. , where k; is the
G Rj

degree of node i.

e Hybrid. The nodes are evenly partitioned in to 5 groups, named S1-S5. The subgraph of S; is a
neighborhood graph with ¢ = 25; The subgraph of Sy is a clique graph with g = 4; The subgraph
of S3 is a band graph with ¢ = 2; The subgraph of Sy is a lattice graph with g = 10; The subgraph
of S5 is a scale-free graph. In addition, we set an edge between a node in Sy and a node in Si11

with probability 0.01, independently of the other edges for kK =1, ..., 4.

Recall that E* denotes the binary adjacency matrix, we calculate

3 = Co{ (B + (0.5 — Apin(E)) - Ingo) 1}, (S.22)



where Cs is the rescaling operator that converts a covariance matrix to the corresponding correlation

matrix.

S.6. Supporting Figures for Data Analysis

Due to the space limit of the manuscript, we present some supporting figures here.

S.6.1. Topic Modeling Dataset

Figure S.1 shows the histogram and normal qq plot of Topic 4. We see that Topic 4 significantly

violates of the normality assumption.
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Fic S.1. Both the histogram and normal qq plot show significant violation of the normality.

The modules of the nonparanormal graph are magnified and presented in Figures S.2-S.5. The

modules of the Gaussian graph are magnified and presented in Figures S.6-S.8

S.6.2. Stock Market Dataset

We plot the data points for the first 100 stocks in Figure S.9. We highlight a data point in red if its

absolute value is greater than 3. We can see that a large number of potential outliers exist. They

may affect the quality of the estimated graph.

S.6.3. Gene Network Dataset

Figure S.10 shows the histogram and normal qq plot of “MECPS”. We see that its distribution is

very likely non-Guassian.



Fic S.2. The nonparanormal topic graph. Part 1.



Fic S.3. The nonparanormal topic graph. Part 2.

References

BRUCKER, P. (1984). An O(n) Algorithm for Quadratic Knapsack Problems. Operations Research

9



Fic S.4. The nonparanormal topic graph. Part 3.

Letters 3 163-166.

CorMAN, T., LEISERSON, C., R1vEsT, R. and STEIN, C. (2001). Introduction to algorithms. MIT

10



. e

fa 0

-

fros

0

>
i

Fic S.5. The nonparanormal topic graph. Part 4.

Press.
DucHi, J., SHWARTZ, S., SINGER, Y. and CHANDRA, T. (2008). Efficient projections onto the
L1-ball for learning in high dimensions. International Conference on Machine Learning 272-279.
Liu, J. and YE, J. (2009). Efficient Euclidean Projections in Linear Time. International Conference

on Machine Learning.
11



Fic S.6. The Gaussian topic graph. Part 1.

PARDALOS, P. M. and KOVOOR, N. (1990). An algorithm for a singly constrained class of quadratic

programs subject to upper and lower bounds. Mathematical Programming 46 312-328.

12



ian topic graph. Part 2.
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Fic S.8. The Gaussian topic graph. Part 3.
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Fia S.9. Stock Market Dataset. We can see a large amounted of the outliers (Red dots). Their existence may affect
the quality of the estimated graph.
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Fic S.10. Both the histogram and normal qq plot show violation of the normality.
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