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APPENDIX A. IMPLEMENTATION DETAILS
A.1. Lasso Implementation Details.

A.1.1. Lasso implementation given penalty A. In every case, penalty loadings £; are chosen as de-
scribed in [1] with one small modification. The procedure suggested in [1] requires an initial penalty
loadings which are constructed using initial estimates of regression residuals. Their suggestion is

Zinitial

to use ¢;

Zinitial
7 &

= y; followed by an iterative procedure. Here, instead, are taken as the linear
regression residuals after regressing the outcome v on the 5 most marginally correlated g;z,, ie, the

5 which have the highest |corr(v, g;(z)|. Such modification was also used in [3].

A.1.2. Penalty level choice for single outcome. In every case when a single outcome variable is con-
sidered in isolation (this includes the reduced form selection step and the selection step corresponding
to @k 1), Lasso is implemented with penalty A as described in [1]. For ease of reference, note that [1]
suggest A\ given by 2CLassoFl\7(10’1)(1 — QLasso/ L) where cpasso > 1, QLasso — 0 are tuning parameters.
In every instance in this paper, ¢passo = 1.01 and ay 550 = .05 are used.

A.1.3. Penalty level choice for ® g gimple- In this case, K Lasso regressions are run simultaneously.
In this case, for all ¢ € ®g, A is given by QCLassoFl\?(IO,l)(l — QLasso/L) where ¢rasso = 1.01 and
QLasso = -05/K are used.

A.1.4. Penalty level choice and implementation for ® ik span. When the Span option is used, ® k', span
is decomposed P span = Pr1 U Pro U Pr3. Each component has a corresponding penalty level
applied to all ¢ within that component. On the first component, A\¢,, = 2CLassoF1\?(10’1) (1—apasso/L)
where crasso = 1.01 and arasso = -05. On the second component, Ap,., = ZCLaSSOFl\?(lO’l)(1—aLaSSO/L)
where crasso = 1.01 and apasso = 05/K. On the third component, A\, = 2cLaSSOF§(10,1)(1 —
QLasso/ L) where cpasso = 1.01 and ap,ass0 = .05/ K.

The following procedure is used for approximating I3, in the case that a component of ®x
contains a continuum of test functions. For each j < L, a Lasso regression ¢; € ®x3 which is more

likely to select g;(.) than other ¢ € ®f. Specifically, for each j, ¢; is set to the linear combination
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of pik, ..., Pk With highest marginal correlation to g;z,. Then the approximation to the first stage

model selection step proceeds by using f¢K3 = Ung I, (x) in place of Ig,,.

A.1.5. Penalty level choice for @k span-Conservative- When the Conservative Span option is used,
P x| Span-Conservative 15 decomposed @ x| span-Conservative = Px1 U Pro U P k3. Each component again
has a corresponding penalty level applied to all ¢ within that component. On the first component,
Aoy, = 2cLaSSOF1\?(1O71)(1 — QLasso/ L) where ¢as0 = 1.01 and agas50 = .05. On the second compo-
nent, A\gp,, = QCLassoFl\?(IO,l)(]- — QLasso/L) where cpasso = 1.01 and ag,as50 = -05/K. On the third
component, Ag,, = 2cLaSSOF§(1071)(1 — OLasso/L) where ¢passo = 101K Y2 and apasso = .05.

In order to approximate the variables selected on the continuum of Lasso estimates indexed by
P 5, the identical procedure with the Span option above is used. Note that the only difference

between the Conservative Span option and the Span option is in Ag,,.

A.2. pX Implementation Details. In every simulation, p¥ is constructed using a cubic B-spline
expansion. For fixed K, the approximating dictionary is chosen according to the following procedure.

Knots points tq, ..., tx 3 are chosen according to the following rule. Set
tmax = quantiley g5 (|11, -+, |Zn]) and tmin = —tmax-
Let Ay =t —tx_1. For constants ¢y, co > 0 set
A =c1+c|(K —2)/2 -k

fork=2,... K —3.

The constants ¢y, co serve to insert more knot points where the density of = is higher. The choices
for c1,cy are determined uniquely by the condition that ¢; = 2c¢o and that the endpoints satisfy
t7 = tmin and tx_3 = tmax. Next, the B-spline formulation used here is given by the recursive
formulation. Set

By o(z) = Lyycoctys,
Set Bj,o = 0 for k outside of 1, ..., K — 3. In addition, for spline order o > 0,

T — i thtor1 — X

Bk,o(x) Bk,o—l + Bk+1,0—1-

ko — e lotot1 — tit1
Set (p1,x (%), ..., Pr—3.Kk(x)) = (B13(x),...Bx_33(x)). The dictionary is completed by adding the
additional terms pr_s ;¢ (z) =z, pr_1 x(7) = 22, Pr,K(x) = x3.

K is chosen according to the following procedure. First, an initial set of terms ¢Miti2l(z) C
q"(2) is selected. In each case, qinitial(z) contains the terms Igp. That is, the terms selected in a
Lasso regression y on q”(z). Next, an initial value Ky < 2|n'/3] is chosen to minimize BIC using
(p% (z), ¢™%2l(2)). In the simulation study, Ky is constrained to be > 5. Finally, in order to ensure
undersmoothing, K is set to K = |(log,,(n))Ko| in the simulation studies and K = Ky + 1 in the

empirical example.
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In the empirical example, separate components of 90, given by
P (ACT matn ), 9o 8 (ACTeng), 952 (ACT reaa g (ACTyei)) are each approximated with sepa-
rate dictionaries pﬁ:ﬁ{% péfigg, pfg;egﬁ pf,gfc‘. The restriction Kyath = Keng = Kread = Koo i
enforced. Set

K= Kmath + Keng + Kread + Ksci-

Each of the above four dictionaries is a B-spline basis defined exactly as in the simulations. K is

chosen to minimize BIC in the same way as in simulations. Then K is set to
K =4+K,.

The choice K = 4 + K, in the empirical example, instead of K = |(log1o(n))], is made to avoid
K > 4 x 36 which corresponds to the size of the support of the data.

A.3. Targeted Undersmoothing Implementation Details. The following procedure is used to
estimate the Targeted Undersmoothing (TU; specifically TU(1); see [3]) confidence intervals for 6.
For each I C {1,...,p} let CI k.,1(00) be the corresponding confidence interval for 6y using K terms
and the components of ¢” corresponding to I. Then the full TU confidence interval is defined by
the convex hull of Ujgpé\I R.InrU {j}(90)~ In this implementation, a truncated TU confidence interval
is calculated instead: Uj<2s,Clg {j}(90)~ This is done because the simulation run time reduces
to the order of a day (from the order of a month), and therefore helps facilitate easier replicability.
Changing the code to calculate the full TU confidence intervals is trivial. This also highlights that
computing speed is another advantage of the Post-Nonparametric Double procedure relative to TU
in certain settings. In terms of approximation error, the full TU estimator was implemented for the
case n = 100, p = 50 for 1000 replications. The full TU confidence intervals as well as the truncated
TU confidence intervals each made 9 false rejections. In addition, the average interval length for
the full TU intervals was 1.740 while the average interval length for the truncated TU intervals was
1.722. Therefore, the truncated and full TU confidence intervals show very similar performance in

this instance.

APPENDIX B. PROOFS

B.1. Preliminary Setup and Additional Notation. Throughout the course of the proof, as
much reference as possible is made to results in [4], [2]. This is done in order to maximize clarity and
to present a better picture of the overall argument. In many cases, appealing directly to arguments
in [4] is possible because many of the bounds required for deriving asymptotic normality for series
estimators depend only on properties of G, go, p™ and D. Less direct appeal to bounds in the original
Post-Double Selection argument is possible, since those arguments do not track K, and do not have
notions of quantities stemming from ®x like o, . However, the main idea of decomposing pK
into components in the span of, and orthogonal to g%, remains as a theme throughout the proofs.
For any function ¢, let ¢(X) denote the vector [p(z1), ¢(x2), ..., o(z,)]'. Similarly, let ¢, 2 o(Z) =

[marp(21), Tgro(22), ..., Mg @(2n)]'. In addition, define the following quantities.
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Let m be the n x K matrix m = m,.p®(2) = [r,ep1x(Z),

Let W=P—-m

Let Q = n~1P'MP

Let Q = n~'E[W'W]

Let Q = n~'W'W

Let m be partitioned m = [my, ..., mx]

Let W be partitioned m = [W, ..., Wk]

For any ¢ € @k, let R, = Q(By,r — By,L,s0)
Let Ry, = Q(By,L — By,L,50)

For any ¢, let U, = ¢(X) — QB 1.

CLet U, =Y — QB,.1

. Let F=V~1/2

. Let @4(x) be the function such that 7w,z (Z) = FA'm

. Let mgy = FA'm

. Let W, = o (X) — mg.

. For g ¢ @k, let Ry = 7rng(Z) —mQ(Bepy.L — Bpr.L.so) —

...,WquKK(Z)]

e Wng(ﬁwkg,L - Bcpkg,L,SO) for

some (@1, ...¢k, ), (M1, -, Mk, ) Within a fixed constant factor of achieving the infinum in the

density assumption (Assumption 8.)
Let Ry = [Rinys -y By

Assume without loss of generality that Bx = Idg, the identity matrix of order K. The reason

this is without loss of generality is that dictionary p¥ is used only in the post-selection estimation,

while @ is used for first stage model selection. In addition, assume without loss of generality that
Q =1dg.

Throughout the exposition, there is a common naming convention for various regression co-

efficients. Quantities of the form 3,,71 always denotes the sample regression coefficients from

regressing the variable v on the components specified by I.

This implies that the quantities

Bo, I,p = Be,L,Post-Lasso are equivalent, since the specified components being regressed on are the

same. In addition, B¢71¢K+RF = Em = B‘P(X):LI)KJrRF are equivalent. Next, quantities of the form

By, and B, 1 s, without a hat accent are population quantities and are defined in the text above.

B.2. Preliminary Lemmas.

Lemma 1. Under the assumptions of Theorem 1,

Ll

Ji = maxpc i 12 Q Wil|so = Op((log(K L)Y/?))
Jo = 72| QE oo = Op((log(L)V/?))

J3 :=n"Y2||R, &|l2 = O, (KK L™°%))

Jui= 0 PYRY Wa = Op(n/2¢o(K)L %))



ADDITIVELY SEPARABLE SUPPLEMENT 5
5. Js := maxgcx 2| Mmy 2
= 010((n*l/QKO"’Ko“i’/Qsé/2 log(L)l/2 + L’O‘ZK%))

6. Jo = n V2| Mho(2)|2 = op((nfl/ZK%K%/%g/? log(L)Y/2 + L*O‘ZK%))
7. J7 = maxg<k ||Bmk,I¢K+RF = Bprxc,Losoll1

= Op<(n_l/QKa"Kaq’/QSQKaI‘P/Q log(L)'/* + L‘O’ZK%))
8. Js = |1Bno.ta v ne — BhoLso Il

= Op((”‘1/21(%}(%/2301(0‘1@/2 log(L)'/? + L—QZK%))
9. Jg := maxy< i ||,73’\Wk71®K+RF||1 = Op((n_l/Qs(l)/zK%>/2 log(KL)l/Q))

10. 1o 1= 1Betayesnells = Op((n/25/ 2 K702 10g(1)1/2))
11, Jip i=n"Y2Q'Wa|loe = Op((log(KL)Y?))

12. Jip :=n"Y2||R], Ell2 = O, (KK L™o%))
13. Jiz = n= V2| Mma||2 = op((n*ﬂK%K%/?s}/Q log(L)V/2 + L*O‘ZK%))
14. J14 = ||/Bma1I<I>K+RF - ﬂ(pa,L,S()”l

= Op((”‘1/21(%1(%/2301(%/2 log(L)"/? + L‘QZK%))

15. Jy5 = ||§W(“LPK+M||1 — Op((n—l/zs(l)ﬂKm@/? log(KL)l/Z))

16. Jig :=n" Y| R, W5 = O, (KY2(o(K)K L™%).

Proof.

Statement 1. By Lemma 5 of [2], two conditions which together are sufficient for

|Q Wi | E[lq; 31w 3]Y/3
MaXkp< K <L \/E”:lqij(zi)?W,ﬁ = Op((log KL)'/?) are that maxp<x j<r [lgq[;?iz()zl)2lwi2:]‘1}2

O(¢o(K)) and the rate condition log KL = o((o(K) 'n'/3). Note that E[g,r(2)?W2]V/? is
bounded away from zero by assumption. In addition, by Hélder’s inequality, E[|q;L(2)]?|Wix/|?] <
Ellg;1(2)?]¢o(K)3. This implies that the first condition holds. The second condition is given in the

assumptions.

Statement 2. Follows similarly as Statement 1.
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Statement 3. This statement follows directly from the fact that Ele|z, 2] = 0, E[¢2|x, 2] bounded,
along with dim(R,,&) = K and ||Ry,, ||co = O(K* L™%%) by the density assumption, allowing the
use of the K-dimensional Chebyshev Inequality.

Statement 4. ||R), Wil = || >, Rh,.iWill2 < O(L™%%)(o(K) by the facts that || Rp,||cc = O(L™%)
and [Willz < Go(K).

Statement 5.

First note that the following two hold.

1. For any ¢ € ®x, Mmp(Z) = MR, + M(QBy, 1,5, — QE@:I%L)
2. For any g € LinSpan(p), and any corresponding expansion g = 7101 + ... + Ny, + 79
with 91, .0k, € R, @1, .0, € Pk,

[Mrgrg(Z)ll2 < nllx _ max }(HQB%L,SO = QBpr, 2+ [Rell2) + lIrg(Z) ]2

PE{P1, PRy
To show the first of the above two statements, for each ¢ € @k, note that
Mmyo(Z) = MM, o(Z)
— M(ryp(2) — Prgsp(2))
= M(@Bp,. — P(0(X) = Uy))
= M(QByp,L — QB\LP,L?K+RF +PUy)
= MBy +M(QBp,1.00 — QBputa e me) + MPU
= MRy + M(QBp.r.50 ~ QBp.rayene)
= MRy +M(QB.L.s — QBput, 1) + M(QBout, 1 — QBoruyie)

=M(Pr, ,p(X) = Pp(X))
=MP(Pr, L p(X) — o(X))
=0

= M?TqL (p(Z) = MR@ + M(Qﬁg&,L,so - QB\LP,I%L)'

This establishes the first claim. Now turn to the second claim. Note that using the density
assumption, there are @1, ..., ¢, and a vector n = (11, ..., Mk, ) such that g = 911 + ... =19, r, + 74

for some remainder r, sufficiently small. Then

Mg 9(Z) 2 = Mo o1 (X) + o+ 1, Mgr ok, (Z) + Mrgrry (D)
Next, looking at each ¢ in the above expansion (ie each ¢ € {¢1,..., 1, }) and combining the

above expression gives



ADDITIVELY SEPARABLE SUPPLEMENT 7

IMr,g(Z)l|2 = ImMRg, +mMQBer 1,50 — QBrr,, ) + -
ot e, MRy, + 1, M(QBoy, Lso — QB%I% )+ Mrge7g(Z)|2-

Applying Holder’s inequality and the fact that M is a projection (and hence non-expansive) gives
the bound

Sl max - (1QB¢.r.50 = QB 1.l + [ Bell2) + lirg(2)ll2-

PE{P1, 0Ky
These can then be applied directly to n~'/2||Mmy|2. The corresponding 7 and R,,, satisfy
L= |n|ly < O(K~=) and ||Ry,, ||l2 < n*/20(K~%¢). Then we have the bound

M7y g(Z) 2 = Op (K K/ 255/* log(L)Y/? 4 n'/2 K ~2).

Under Assumption 10, note that for each my, taking n =1 and R,,,, = 0 are feasible by assump-

tion. The result follows.

Statement 6.

n= 2 Mho(2) |2 = n 2 [M(QBh, .50 + Bio)l2)

0 V2(|MQBho, 150 ll2 + MR ||2)

0= Y2(IMQ By, 150 + BhosLss — @Bao,rso)ll2 + MR )2
=n"Y2(IM(QBy.1.50 — QBgorLso)l2 + [MBnol2)

n” 2 (IMQBy, L soll2 + MQBgo. .50 |2 + M Ry |2)

= n (| M7 y(2) )12 + M7 g0(2) |12 + MR, [12)

N

N

N

The first two terms above, n V2(|MQm.ry(Z)]2 + n Y3 MrLgo(Z)2), are
OP(K‘%K‘:“‘J"/Qn_l/Qs(lJ/Q1og(L)1/2 + L™*2K%) by the same reasoning as Statement 5. In
addition n=Y2| MRy, |l2 < n™Y2||Rp, |l2 = O(L~%%) by assumption. This gives

nY2 | Mho(Z)||2 = Op (K Ko/ 2012512 log(L)Y/2 4+ L™= K).
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Statement 7.

Hﬁmk,lapKﬂaF - ﬁpkK7L,50 Hl

< |I¢‘K+RF|1/2||/87Ylk»I¢>K+RF - ﬂpkK,LSo”Q

~ - 1/2
= |I¢’K+RF|1/2 ((ﬁmk7[<1>K+RF - ﬁpkaLaSO)l(ﬁmk71¢K+RF - ﬁpkk,h%))

< 20 (1) (Bt e = Brusestasn) Qo e @t e /1) Byt
= o, +rE|20,()n V2| Pmy — QBprre. 150 12

= o, 1rrel20p(1)n 2 lmy, — Mmy, — QB L5 |l2

= I +rr|Y20,(1)n Y2 = My + Ry, |2

< o 1rr20,(1)(J5 + O(L™%))

= Oplsy/*K=12/2)(J5 + O(L %))

= 0, (s0" />0, (K20 Koo /2512 og(L)1/? + nl/2 L0 ko)
= 0, (K% K25 K%e/21og(L)/? 4 n/2L== k).

Statement 8. Proven analogously to Statement 7.

Statement 9.
Ikrlga‘f((H/BWk»Id>K+RF”1
N AN\—1
= W,
o (D) Wil
< g g4rpl? IICTI<&I>(<||(Q’Q)71Q’W1<||2

1/2,.~1/2

< Mo rearr | Php” (To+rr]) max [0 Q' Willso
k<K

= O]g(s(l)/QK"“P/2 1-n"Y2log(KL)'/?).
Statement 10. Proven analogously to Statement 9.
Statements 11-15. Proven analogously to Statements 1,3,5,7,9.

Statement 16.

1/2
L= <Z ||W’Rmk§>
k

n
-1 !
n H > W Runs
=1

1/2
- 5;%1(,1/750))



ADDITIVELY SEPARABLE SUPPLEMENT

1/2
<ot <Z n2€o(K)2lank|loo> :
k

By the density assumption, || Ry, ||cc < K* L~*%. This then implies that

n
n H > W/ Rpi|| < KY2K .
=1

g

Lemma 2.
L 2= n | WPW|g <n~ V2K JoJy
2. Zpi=n"t|mMm|ly < KJ2
3. By ="/ MW |5 < Jig +n" V2K Iy
4. Zy = n" V2 m/Mho(Z)||2 < n*/?KY2J50s
5. Z5 1= n"V2|W'Mho(2)||2 < Js + KYV2 s
6. Zg:=n"2|W'PE ||y < K2 JgJ,
7. Zr =0V |\mIME || < Ju + KY2J75
8. Zg :=n"12m/ Mho(Z)| < n'/2J5Jy3
9. Zg :=n" V2 W!Mho(Z)| < Jia + JiaJ1
10. Z19 := n" Y2 |W.PE| < JoJ1
11. Eqq := n71/2|m:13\/[8| < Jig + J7J1a.
Proof.

Statement 1.

_ 2 _
(W PW(5)" = > (0 WiPW)? =
kk<K

= > 0 Bivta, e nr QWi

k k<K

D7 02 Bta e I 2Q Wi
kE<K

= | D I Bwtaene T | | D I 2QIWEIZ,

k<K k<K

<K -n 'K J}

/A

=0 WPW|g < n” V2K s,
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Statement 2.

_ 2 _ _ _
(n=Hlm'Mm||5)” = (n~ ' mpMmg)? < Y (In T2 Mm 3 2 Mg |3
kk<K k k<K

2

Do InT M3 | < K23

k<K

= n 7 m'Mm|y < KJ2.

Statement 3.

nHm MW |5 = n = |m'W/n — m/PW |5
=n R, W + (QByic 1.5) W — m'PW |5
=0 YR, W+ (QByr 1,60) W — (QBimtay ne) Wl
=0 RLW + By 1.5y — Brnota o are) QW 5
< YR W g + 0By Ly — Bt ) @ W |5

Then the first term in the last line is bounded above as n=!|| R, W||5 = Ji6 while the second term

has
-1 3 1y 2
(n |(Bpr 1,59 — ﬁm,Iq)KJrRF) Q WH:;)
= n_2 Z ((ﬁpk,L,So - BmkaI<I’K+RF)/Q/WE)2

kk<K

< Tl_2 Z ||Bpk;L7SO - Bmk,I@KJrRFH%HQIW/_cHgo
kk<K

= ’nfl Z HBP}@,L@'O - /87nk71(1>K+RF||% Z |‘n71/2Q/WE||iO

k<K k<K

<n'K-J2-K R

Therefore, n=t|m'MW || < Jig +n~ V2K J7J;.

Statement 4.
n 2 (lm/ Mho(2) |2 < n'/? [0V 2 Mo (Z) || K2 g;agn’l/Q\\m’Mllz

< n'2KY2 J5 Js.



ADDITIVELY SEPARABLE SUPPLEMENT 11

Statement 5.
n= W Mho(Z) |2 = 02| W'ho(Z) — W'Pho(Z)] 2
= n Y2 Who(Z) — W’Qgho(z),f(pwm 2
=n"Y2|W' Ry + W QBho 150 — W’QBhO(Z),@KJrRF”?
=02 (IW'Ro(Z) 2 + | Bho 29,10, e = BY QW I2)
<y + K2 hek 1B ()10 e = BrosLuso 110 2Q Wikl

< Ji+ KY2 050,

Statement 6.

(n 2w s ;)" = nt Y (W)’

k<K

=17 Bivete e nr @)

k<K

<Y 1Bwita e TN 2QE1%
k<K

<K-J3-J3
= n V2 |\WPE|| 5 < KY/2 g 5.
Statement 7.
n 2 ME |l = 02 € — ' PE 5
—n V2R &+ (QByrc 1.oy)'W —m/PE| 5
=n"Y2|RE + QB 1,60) W — (QBim 1o, o) €ll2
= n_1/2||R;n8 + (Bpx 1.5y — Bm,LmeF)/Q/g”?
<12 IRE N + 02N (Byr sy = Bt ) Q€2

Then the first term in the last line is bounded above as n~1/?||R! €|l = J;. Turning to the second

term,

1/2 2 7Y 2
(n_ / ”(BpK,L,so - Bm,I¢K+RF) Q E'H?)
=n"! Z ((BpimL-,So - B\mkaIQK+RF)/Q18)2

k<K
< Z ”Bpk,L,so - 5mk,I¢K+RFIl%”n_l/QQ/EHgo
k<K
<K-J2-J3.
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Therefore, n=Y2||m'ME||y < Js + KY2J7J5.
Statements 8-11.

The argument is identical to the argument for Statements 4-7, adjusting appropriately for the

fact that m, is 1-dimensional rather than K-dimensional. O

The following corollaries follow directly from assumed rate conditions and the above bounds.

These are used in the proof of Theorems 1 and 2.

Corollary 1. Under the assumptions of Theorem 1,
L. E1+ 50+ 23 = Op(n V2 (K)K/?)
2. nTY2(E4 + E5 4 Zg + E¢) = Op(n~V2KY2 4 K~%0).

Corollary 2. Under the assumptions of Theorem 2,
L n= Y2 (K)KY2(Z4 + Z5 + 6 + 27) = 0,(1).

2. Eg + Eg + EIO + Ell = Op(l).

Proof. Corollaries 1 and 2 follow from the rate conditions stated in Assumptions 2,9,11. The also
follow from the following more general rate conditions.
Sufficient rate conditions for Corollary 1:
soK e = o(sy)
- log(KL) = o(¢o(K)~'n'/?)
Lemnl 2K =126, (K) = O(1)
4. L7202 K200 (K201 200 (K) ! +n'/2 + K log(L)Y2(o(K) %) = O(1)
5. n~YV2KY 250 log(L)Go(K)~H(K2aetes 4 Kontan/2arg/2) = O(1)
6. n=1/2s5/* log(L) (K20 ton s/ 4 K12 /2) = O(1).

® b=

Additional rate conditions sufficient (along with the above conditions) for Corollary 2:
1. L7202 K20 (Co(K)K + Co(K)*K 2% + K log(L) + n'/?) = o(1)
2. n1solo(K) log(L) (K1 H2ertae 4 glta,tas/24ai, /2) — (1)
3. n71s2log(L)?(K*art2ae 4 [2aptastar,) = (1)
4. soK e (n7V/2((K)KY? + K=%0) = o(1)
5. n?/ ¢ (K)n=2KY2 = o(1).
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B.3. Proof of Theorem 1.

Lemma 3.
L [|Q = Qlly < Op(Co(K)KY2n=12) 4+ 2, + Z5 + Z5 = 0,(1)
2. ||Q_1 — 9_1”2_)2 = OP(CQ(K)Kl/Qn_l/Q) + O(El —+ EQ + Eg)

Proof. The argument in Theorem 1 of [4] gives the bound [|Q — Q|5 = Op({o(K)K'/?n=1/2). Next,
using the decomposition, P = m + W, write Q = (m + W)M(m + W)/n = WW/n — W'(Id,, —
M)W /n+m'Mm/n+2m'MW/n. By triangle inquality, || — Q|5 < |[WPW/n|5 + [|m'Mm/n|| 5+
[[12m'MW /n||5 = Z1+Z2+=Z3. Bounds for each of the three above terms are established above along
with the assumed rate conditions give ||Q — ﬁ|| 5 = 0p(1). The last statement holds by applying an

expansion of the matrix inversion function around Idg.
Q' = (Idg — (Idg — Q)" =Idg + (Idg — Q) + (Idg — )2 + ...

The sum given above is with probability — 1 absolutely convergent relative to the Frobenius norm
F. In addition, by the bound || - |lamz < || - lg, we have |Q7! — Idg|lamse < [|Q — Idglly <
[Tdr — Q|7 + [[Tdx — Q)% + ... = Op(Co(K)KY?n=1/2) + O(Z; + 2 + E3).

O

~

Note that since 2 has minimal eigenvalues bounded from below by assumption, it follows that
and ) are invertible with probability approaching 1. The reference [4] works on the event 1, :=
{)xmin(@) > 1/2} and later uses the fact that this event has probability — 1. This fact is used several

times, however its use is only implicitly in reference to arguments in [4].
Lemma 4. |[Q~'n"P'ME||y = O, (n"Y/2K1/?).
Proof.
197 " PPME |2 < (| |aman M| P'ME|
<@ a2 [WE[l3 +n~Y/?E + 07 /2Er)

[W'E|l2 = Op(n~Y2K'Y? = O,(n~'/?) by arguments in [4]. Bounds for n~'/2Z¢ + n~'/2Z; follows

from the previous Lemmas and from the assumed rate conditions. O
Lemma 5. |0 P'M(go(X) — PByy.x)/nll2 = Op(K~%0).
Proof.

1971 P"M(g0(X) = PBgo, 1) /mll2 = [(90(X) = PBYMPQP'M(go(X) — PB) /n]'/*

= 0y (Dl{g0(X) = PByy,1c) (90(2) = Py ic) /]2
= 0,(K")

by assumption on (go(X) — Py, x) and idempotency of MPQ~1P'M = MP(P’MMP)"'M. O

Lemma 6. ||~ P'Mho(Z)/nl|s = 0,(n~1/2).
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Proof. Q has eigenvalues bounded below and above with probability approaching 1. Then,
1971 P'Mho(Z) /nll2 < Op(1)|| P'Mho(Z) /12
= Op(1)||(m + W)'Mho(Z) /nl|2
= n"120,(1)n= 2| (m 4+ W) Mho(Z) /12
< n7V20,(1) (02 |m/ Mho(Z) |2 +n =2 | W Mho(2)||2)
= n_1/20p(1)(54 +5s)
_ n71/20p(1)op(1).

Lemma 7. [|B, — Byq.icll> = Op(n~ 12KV 4 K—o0).

Proof. Note that ([B\y,(ﬁ,[j)]g — Boo.x) = n~1Q-1P'ME + n_lﬁ_lP’MT(go(X) — Pfgy.x) +
n‘lﬁ_lP’Mho(Z). Triangle inequality in conjuction with the bounds described in the previous

three lemmas give the result. O

The final statement of Theorem 1 follows from the bound on || Bg — Bgo.xi ||2 using the arguments
in[4]. W
B.4. Proof of Theorem 2. Recall that ' = V™12 Let g = p¥(z)'8,, x and decompose the
quantity n'/2F[a(g) — a(go)] by
n'/2Fla(g) — algo)] = n'/*Fla(g) — a(go) + D(g) — D(go)

+D(g) — D(9)

+ D(g0) — D(9)]-
Lemma 8. n'/2F[D(g) — D(go)] = O(n'/2K~%0).

Proof. This follows from arguments given in the proof of Theorem 2 in [4]. Note that the statement

does not contain any reference to random quantities. O
Lemma 9. |n'/?F[a(g) — a(g) — D(9) + D(9)| = 0p(1).

Proof. Bounds on |§ — g4 given by Theorem 1 imply that [n'/2F[a(g) — a(go) — D(g) + D(g0)| <
Cn'/?g — gol2 = O,(n'/2(n~V2(4(K)K'/? + K=%%)?) = 0,(1). This is again identical to the
reasoning given in Theorem 2 in [4], since that references uses only a bound on |g — g|q4 to prove the
analogous result. (I

The last step is to show that n'/2F[D(g) — D(g)] —4 N(0,1).

Lemma 10. n'/2F[D(3) — D(3)] —4 N(0, 1).
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Proof. Note that D(g) can be expanded
D(g) = D" (2)'[By.5.p)ls) = D" ()’ Q0™ P'MY)
= D(p" (2)'Q~ 1n‘lP’M( o(X) + ho(Z) +¢€))
= D(p™ (2))Q 0 (g0(X) + ho(Z) + €)
= AQ ' P M(go(X) + ho(Z) + €)
= AQ ' P Mgo(X) + A'Q ' TP Mho(Z) + A/Q ™ 'n " PIME.

In addition, D(g) = D(p™ () Byo. k) = A'Bye, i gives
n!/2FD(g) = D(g)) = n*/*FA'IQ ™" P"Mgo(X) — fiye.x]
+n'2FAQ ' P M(ho(2) + €)).
The above equation gives a decomposition of the right hand side into two terms, which are
next bounded separately. Before proceeding, note that the following bounds [|[FAl2. = O(1),
IFAQ o = 0,(1), [FAQT2||y = Op(1), [IFAQ o = Oy(1), [ FA'Q7/2||; = O(1) all hold by
arguments in [4]. Consider the first term.
In'2FA'[n = Q7 P Mgo(X) — By x|
— [VRFA'[(P'MP/n) ™ PM(G — PB)/n]
< FAQT PN/ allallgo(X) = Py, cll2
< |FAQTPM/Vallov/imax () — g(:)|
= |FAQY2 o /mmax |g(x:) — ()|
< [FAQY22v/mlg - glo
= 0p(1)0p(VnK™)
= 0,(1).
Next, consider n'/2FA’Q~'n"2P'M(ho(Z) + €). To handle this term, first bound
In~V2FA Q7 — QY)Y P M(ho(Z) + &)
<2 FA@T = Q7Y ol |P'M(Ro(2) + &)
= [[FA/@7" = Q7)o (n 2P Mo (2) + €)]2)
= [[FA/@Q = Q7Y |a(n™ ]| (m + W) M(ho(Z) + €)][2)
<|IFA@ " = Q7Y)|2(E4 + Es + 6 + Er)
Q7 = Q7 a2l | FA'||2(24 + E5 4 E6 + Er)
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Next consider the last remaining term for which a central limit result will be shown.
VAFAQ P M(ho(Z) + &) /n
= VnFAQ Y (W +m)M(ho(Z) + €)/n
= Vn(FA'Q'W 4+ ma)M(ho(Z) + €)/n
= VnFA'Q 'WME + Vnm/ M(ho(Z) + &) /n + VnW.Mho(Z) /n
= VnFAQ'WE — /nFAQ'WPE + /nm,M(ho(Z) + &) /n + V/nW.Mho(Z) /n
= VnFAQ'W'E/n + 0,(1).

Note that the last o,(1) bound in the equation array above holds by the fact that
|[VRFA'Q7IWDPE + /nm, M(ho(Z) + &) /n + VnW.Mho(Z)/n| < Es + Z9 + Z10 + Z11. The term
VRFA'Q YW'E /n satisfies the conditions Lindbergh-Feller Central Limit Theorem, by arguments
given in [4]. O

The previous three lemmas prove that n'/?Fla(g) — a(go)] — N(0,1).

The next set of arguments bound V — V. For v as in the statement of Assumption 14, Define
the event A, = {[g — gola < v/2}. Define u = 1Ag§*1gF and u = 14,92 'AF. In addition, define
Y =3, W;W/e?/n, an infeasible sample analogue of .

K2

Lemma 11.
L ||A—All2 =0p(1)
2. [u —ullz = 0p(1)
3. X = Xflr = 0p(1)

4. [a50 — @S] = op(1).

Proof. Statement 1. In the case that a(g) is linear in g, then a(p'f) = A’ = A=A
Therefore, consider the case that a(g) is not linear in g. Using arguments identical to those in [4],

14, = 1 with probability — 1, and

Ia A=Al < C - Ca(K)[g = gla-
Statement 2. This follows from arguments in [4].
Statement 3. This follows from arguments in [4].

Statement 4. An immediate implication of Statement 3 is that 14, |0'Y0 —u'Ya| = [0/(E - )u| <
G315 = S35 = Op(1)op(1).
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Lemma 12. max;<, |ho(2) — h(z)| = op(1).
Proof. First note that
max |ho(zi) — h(z)| < max \ho(zi) — " (2:) Bho, 1.5 |
t+max|q" (20) By )l — 4" (20) Bho,L.sol.
The first term has the bound max; |ho(z;) — ¢(z;)'n| = Op(L~**) by assumption. Next,
max |¢" (1) [By,p.pln — 4" (1) Buo,.so| = max|a® (z0) (1B, sl = Buo.L.so)|

< max lla™ (20)lloo 1By, 5,011 — BhoL.so lln

Then,
1By, 5.01h — BhosLusollt = 1By—g.1e . one — BhosLsolln
= 11Bgorto,csmr + Bhostayine + Bertosne = Bailosne — BhoiLosol1-
<N Brovta g sr = BrorLosollt + 1B 1wt + 11Bgo—.10  orr 1
= Js + J10 + 1Bgo .10 4 ll1-
Next,

[

< e mr 1 Bgo g1 e 2

= ol 1@y, e Qo e /1) Q1 (90(X) = G(X)) /12

< Mo +re " min (Lo e+re]) T QT e (90(X) = G(X)) /02

< |I<I>K+RF|1/2'fmin(\f<I>K+RF|)71\I<1>K+RF|1/2HQ/1¢K+RF(go(X) —9(X))/n[ls

< o ge+re|Fmin (o c+re ) Q7 e (90(X) = 9(X)) /nlloc
n

= | +rF [ Fmin (Lo c+rp]) ! (mgxnl > qJ'L(Zi)|> 190(X) = 9(X)loo

=1

= 0,(s0K*12)0,(1)op(n~2¢o(K)K/? 4+ K~%0),
Putting these together, it follows from the assumed rate conditions that
max |ho(2i) — iAL(zl)| = 0,(1).
O

Next, let Agy; = go(zi)—g(x;) and Ay = ho(zi)fﬁ(zi). Then above lemma states max;<p Apyi =
0p(1). In addition max;<n |Agil < |7 — glo = 0p(1). Let w? = o'W, W/u and &? = @' W, W/4.

Lemma 13. |FVF — @S| = op(1).
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Proof.

1a,|FVF - @St = |[@'(S - £)u| = Z aW, W/ /n — Z aWiWietu/n

n

Z(w2 —w?)E2/n|.

i=1

ECUE—E

Both terms on the right hand side will be bounded. Consider the first term. Expanding (€2 — €2)

+

gives

2Ai/n PAZ/n| +

Ewe—s

i=1

+2

n
§ 2 § 2

2 Wy AMEZ'/TL Wy Agiai/n .
i=1 i=1

Note that Y1 | w?/n, > " w?|e;| = Op(1) by arguments is in [4]. The five terms above are then

bounded in order of their appearence by

EW?A%/H < max|Ay| ;wf/n = 0p(1)0p(1)
sz?ﬁ%i/n < max [Ag| wal&'l/n = 0p(1)0,(1)

Zw A1 A9 /n < max|A11|maX|A21|Zw /n = 0,(1)0,(1)

i=1 i=1

waﬁli&'/n < max|Ay D wleil/n = 0,(1)0,(1)
i=1 N i=1

n n
Zw?Agiei/n < max |Ag;| wa|51|/n = 0,(1)0,(1).
i=1 isn i=1

The second term is bounded by

Zu (W, W! — WiWHe2a/n <max\62|

=1

Zu (W W/ — W;W/)i/n

=1

n
< max [E ([ @3] Y (WiW] = WiW)/nllaa2 = max |E][|@lI3 ]2 — Qfla—2
N 1N

=1
< (maxe2|+maxe —52|) [ — Qs
= (04(n%/%) + 0,(1)) Op(1)(Oy(Go (K2 K1/2) + 24 + 25 + E)

= 0,(1).
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where the last bounds come from the rate condition in Assumption 9 and max;<, [€7 — 2| = 0,(1)

by maxign |A11| + |A21| = Op(l). |:|
These results give the conclusion that
n' 2V Y2(G — 0) = nV/2FVF) V20— 0) 5 N(0,1).

Calculations which give the rates of convergence in each of the cases of Assumption 17 or of As-
sumption 18, as well as the proof of the second statement of Theorem 2, use the same arguments as
in [4]. This concludes the proof. B
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