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Appendix A. Implementation Details

A.1. Lasso Implementation Details.

A.1.1. Lasso implementation given penalty λ. In every case, penalty loadings `j are chosen as de-

scribed in [1] with one small modification. The procedure suggested in [1] requires an initial penalty

loadings which are constructed using initial estimates of regression residuals. Their suggestion is

to use ε̂initial
i = yi followed by an iterative procedure. Here, instead, ε̂initial

i are taken as the linear

regression residuals after regressing the outcome v on the 5 most marginally correlated qjL, ie, the

5 which have the highest |ĉorr(v, qjL(z)|. Such modification was also used in [3].

A.1.2. Penalty level choice for single outcome. In every case when a single outcome variable is con-

sidered in isolation (this includes the reduced form selection step and the selection step corresponding

to ΦK1), Lasso is implemented with penalty λ as described in [1]. For ease of reference, note that [1]

suggest λ given by 2cLassoF
−1
N(0,1)(1− αLasso/L) where cLasso > 1, αLasso → 0 are tuning parameters.

In every instance in this paper, cLasso = 1.01 and αLasso = .05 are used.

A.1.3. Penalty level choice for ΦK,Simple. In this case, K Lasso regressions are run simultaneously.

In this case, for all ϕ ∈ ΦK , λ is given by 2cLassoF
−1
N(0,1)(1 − αLasso/L) where cLasso = 1.01 and

αLasso = .05/K are used.

A.1.4. Penalty level choice and implementation for ΦK,Span. When the Span option is used, ΦK,Span

is decomposed ΦK, Span = ΦK1 ∪ ΦK2 ∪ ΦK3. Each component has a corresponding penalty level

applied to all ϕ within that component. On the first component, λΦK1
= 2cLassoF

−1
N(0,1)(1−αLasso/L)

where cLasso = 1.01 and αLasso = .05. On the second component, λΦK2
= 2cLassoF

−1
N(0,1)(1−αLasso/L)

where cLasso = 1.01 and αLasso = .05/K. On the third component, λΦK3
= 2cLassoF

−1
N(0,1)(1 −

αLasso/L) where cLasso = 1.01 and αLasso = .05/K.

The following procedure is used for approximating IΦK in the case that a component of ΦK

contains a continuum of test functions. For each j 6 L, a Lasso regression ϕ̌j ∈ ΦK3 which is more

likely to select qjL(z) than other ϕ ∈ ΦK . Specifically, for each j, ϕ̌j is set to the linear combination
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of p1K , ..., pKK with highest marginal correlation to qjL. Then the approximation to the first stage

model selection step proceeds by using ǏΦK3
=
⋃
j6L Iϕ̌j(x) in place of IΦK3

.

A.1.5. Penalty level choice for ΦK,Span-Conservative. When the Conservative Span option is used,

ΦK, Span-Conservative is decomposed ΦK, Span-Conservative = ΦK1 ∪ΦK2 ∪ΦK3. Each component again

has a corresponding penalty level applied to all ϕ within that component. On the first component,

λΦK1
= 2cLassoF

−1
N(0,1)(1 − αLasso/L) where cLasso = 1.01 and αLasso = .05. On the second compo-

nent, λΦK2
= 2cLassoF

−1
N(0,1)(1 − αLasso/L) where cLasso = 1.01 and αLasso = .05/K. On the third

component, λΦK3
= 2cLassoF

−1
N(0,1)(1− αLasso/L) where cLasso = 1.01K1/2 and αLasso = .05.

In order to approximate the variables selected on the continuum of Lasso estimates indexed by

ΦK3, the identical procedure with the Span option above is used. Note that the only difference

between the Conservative Span option and the Span option is in λΦK3
.

A.2. pK Implementation Details. In every simulation, pK is constructed using a cubic B-spline

expansion. For fixed K, the approximating dictionary is chosen according to the following procedure.

Knots points t1, ..., tK−3 are chosen according to the following rule. Set

tmax = quantile0.95(|x1|, ..., |xn|) and tmin = −tmax.

Let ∆k = tk − tk−1. For constants c1, c2 > 0 set

∆k = c1 + c2|(K − 2)/2− k|

for k = 2, ...,K − 3.

The constants c1, c2 serve to insert more knot points where the density of x is higher. The choices

for c1, c2 are determined uniquely by the condition that c1 = 2c2 and that the endpoints satisfy

t1 = tmin and tK−3 = tmax. Next, the B-spline formulation used here is given by the recursive

formulation. Set

Bk,0(x) = 1tk6x<tk+1
.

Set Bk,0 = 0 for k outside of 1, ...,K − 3. In addition, for spline order o > 0,

Bk,o(x) =
x− tk
tk+o − tk

Bk,o−1 +
tk+o+1 − x
tk+o+1 − tk+1

Bk+1,o−1.

Set (p1,K(x), ..., pK−3,K(x)) = (B1,3(x), ...BK−3,3(x)). The dictionary is completed by adding the

additional terms pK−2,K(x) = x, pK−1,K(x) = x2, pK,K(x) = x3.

K̂ is chosen according to the following procedure. First, an initial set of terms qinitial(z) ⊆
qL(z) is selected. In each case, qinitial(z) contains the terms IRF . That is, the terms selected in a

Lasso regression y on qL(z). Next, an initial value K̂0 6 2bn1/3c is chosen to minimize BIC using

(pK(x), qinitial(z)). In the simulation study, K̂0 is constrained to be > 5. Finally, in order to ensure

undersmoothing, K̂ is set to K̂ = b(log10(n))K̂0c in the simulation studies and K̂ = K̂0 + 1 in the

empirical example.
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In the empirical example, separate components of g0, given by

gmath
0 (ACTmath), geng

0 (ACTeng), gread
0 (ACTreadg

sci
0 (ACTsci)) are each approximated with sepa-

rate dictionaries pKmath

math , p
Keng
eng , pKread

read , pKsci

sci . The restriction Kmath = Keng = Kread = Ksci is

enforced. Set

K = Kmath +Keng +Kread +Ksci.

Each of the above four dictionaries is a B-spline basis defined exactly as in the simulations. K̂ is

chosen to minimize BIC in the same way as in simulations. Then K̂ is set to

K̂ = 4 + K̂0.

The choice K̂ = 4 + K̂0 in the empirical example, instead of K̂ = b(log10(n))c, is made to avoid

K̂ > 4× 36 which corresponds to the size of the support of the data.

A.3. Targeted Undersmoothing Implementation Details. The following procedure is used to

estimate the Targeted Undersmoothing (TU; specifically TU(1); see [3]) confidence intervals for θ0.

For each I ⊆ {1, ..., p} let ĈIK,I(θ0) be the corresponding confidence interval for θ0 using K terms

and the components of qL corresponding to I. Then the full TU confidence interval is defined by

the convex hull of ∪j6pĈIK̂,IRF∪{j}(θ0). In this implementation, a truncated TU confidence interval

is calculated instead: ∪j62s0ĈIK̂,IRF∪{j}(θ0). This is done because the simulation run time reduces

to the order of a day (from the order of a month), and therefore helps facilitate easier replicability.

Changing the code to calculate the full TU confidence intervals is trivial. This also highlights that

computing speed is another advantage of the Post-Nonparametric Double procedure relative to TU

in certain settings. In terms of approximation error, the full TU estimator was implemented for the

case n = 100, p = 50 for 1000 replications. The full TU confidence intervals as well as the truncated

TU confidence intervals each made 9 false rejections. In addition, the average interval length for

the full TU intervals was 1.740 while the average interval length for the truncated TU intervals was

1.722. Therefore, the truncated and full TU confidence intervals show very similar performance in

this instance.

Appendix B. Proofs

B.1. Preliminary Setup and Additional Notation. Throughout the course of the proof, as

much reference as possible is made to results in [4], [2]. This is done in order to maximize clarity and

to present a better picture of the overall argument. In many cases, appealing directly to arguments

in [4] is possible because many of the bounds required for deriving asymptotic normality for series

estimators depend only on properties of ĝ, g0, pK and D. Less direct appeal to bounds in the original

Post-Double Selection argument is possible, since those arguments do not track K, and do not have

notions of quantities stemming from ΦK like αρ, αΦ. However, the main idea of decomposing pK

into components in the span of, and orthogonal to qL, remains as a theme throughout the proofs.

For any function ϕ, let ϕ(X) denote the vector [ϕ(x1), ϕ(x2), ..., ϕ(xn)]′. Similarly, let φqLϕ(Z) =

[πqLϕ(z1), πqLϕ(z2), ..., πqLϕ(zn)]′. In addition, define the following quantities.
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1. Let m be the n×K matrix m = πqLp
K(Z) = [πqLp1K(Z), ..., πqLpKK(Z)]

2. Let W = P −m
3. Let Ω̂ = n−1P ′MP

4. Let Ω = n−1E[W ′W ]

5. Let Ω̄ = n−1W ′W

6. Let m be partitioned m = [m1, ...,mK ]

7. Let W be partitioned m = [W1, ...,WK ]

8. For any ϕ ∈ ΦK , let Rϕ = Q(βϕ,L − βϕ,L,s0)

9. Let Ry = Q(βy,L − βy,L,s0)

10. For any ϕ, let Uϕ = ϕ(X)−Qβϕ,L
11. Let Uy = Y −Qβy,L
12. Let F = V −1/2

13. Let ϕa(x) be the function such that πqLϕa(Z) = FA′m

14. Let ma = FA′m

15. Let Wa = ϕa(X)−ma.

16. For g /∈ ΦK , let Rg = πqLg(Z) − η1Q(βϕ1,L − βϕ1,L,s0) − ... − ηkgQ(βϕkg ,L − βϕkg ,L,s0) for

some (ϕ1, ...ϕkg ), (η1, ..., ηkg ) within a fixed constant factor of achieving the infinum in the

density assumption (Assumption 8.)

17. Let Rm = [Rm1 , ..., RmK ].

Assume without loss of generality that BK = IdK , the identity matrix of order K. The reason

this is without loss of generality is that dictionary pK is used only in the post-selection estimation,

while ΦK is used for first stage model selection. In addition, assume without loss of generality that

Ω = IdK .

Throughout the exposition, there is a common naming convention for various regression co-

efficients. Quantities of the form β̂v,I always denotes the sample regression coefficients from

regressing the variable v on the components specified by I. This implies that the quantities

β̂ϕ,Iϕ,L = β̂ϕ,L,Post-Lasso are equivalent, since the specified components being regressed on are the

same. In addition, β̂ϕ,IΦK+RF = β̂ϕ,q̃ = β̂ϕ(X),IΦK+RF
are equivalent. Next, quantities of the form

βv,L and βv,L,s0 without a hat accent are population quantities and are defined in the text above.

B.2. Preliminary Lemmas.

Lemma 1. Under the assumptions of Theorem 1,

1. J1 := maxk6K n
−1/2‖Q′Wk‖∞ = Op(

(
log(KL)1/2

)
)

2. J2 := n−1/2‖Q′E‖∞ = Op(
(
log(L)1/2

)
)

3. J3 := n−1/2‖R′mE‖2 = Op((KK
αρL−αZ))

4. J4 := n−1/2‖R′h0
W‖2 = Op(

(
n1/2ζ0(K)L−αZ

)
)
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5. J5 := maxk6K n
−1/2‖Mmk‖2

= Op(
(
n−1/2KαρKαΦ/2s

1/2
0 log(L)1/2 + L−αZKαρ

)
)

6. J6 := n−1/2‖Mh0(Z)‖2 = Op(
(
n−1/2KαρKαΦ/2s

1/2
0 log(L)1/2 + L−αZKαρ

)
)

7. J7 := maxk6K ‖β̂mk,IΦK+RF
− βpkK ,L,s0‖1

= Op(
(
n−1/2KαρKαΦ/2s0K

αIΦ/2 log(L)1/2 + L−αZKαρ
)

)

8. J8 := ‖β̂h0,IΦK+RF − βh0,L,s0‖1

= Op(
(
n−1/2KαρKαΦ/2s0K

αIΦ/2 log(L)1/2 + L−αZKαρ
)

)

9. J9 := maxk6K ‖β̂Wk,IΦK+RF
‖1 = Op(

(
n−1/2s

1/2
0 KαIΦ/2 log(KL)1/2

)
)

10. J10 := ‖β̂E,IΦK+RF
‖1 = Op(

(
n−1/2s

1/2
0 KαIΦ/2 log(L)1/2

)
)

11. J11 := n−1/2‖Q′Wa‖∞ = Op(
(
log(KL)1/2

)
)

12. J12 := n−1/2‖R′maE‖2 = Op((KK
αρL−αZ))

13. J13 := n−1/2‖Mma‖2 = Op(
(
n−1/2KαρKαΦ/2s

1/2
0 log(L)1/2 + L−αZKαρ

)
)

14. J14 := ‖β̂ma,IΦK+RF
− βϕa,L,s0‖1

= Op(
(
n−1/2KαρKαΦ/2s0K

αIΦ/2 log(L)1/2 + L−αZKαρ
)

)

15. J15 := ‖β̂Wa,IΦK+RF
‖1 = Op(

(
n−1/2s

1/2
0 KαIΦ/2 log(KL)1/2

)
)

16. J16 := n−1‖R′mW‖F = Op(K
1/2ζ0(K)KαρL−αZ).

Proof.

Statement 1. By Lemma 5 of [2], two conditions which together are sufficient for

maxk6Kj6L
|Q′
jWk|√∑n

i=1 qjL(zi)2W 2
ki

= Op((logKL)1/2) are that maxk6K,j6L
E[|qjL(z)|3|Wik|3]1/3

E[qjL(z)2W 2
ik]1/2 =

O(ζ0(K)) and the rate condition logKL = o(ζ0(K)−1n1/3). Note that E[qjL(z)2W 2
ik]1/2 is

bounded away from zero by assumption. In addition, by Hölder’s inequality, E[|qjL(z)|3|Wik|3] 6

E[|qjL(z)|3]ζ0(K)3. This implies that the first condition holds. The second condition is given in the

assumptions.

Statement 2. Follows similarly as Statement 1.
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Statement 3. This statement follows directly from the fact that E[ε|x, z] = 0, E[ε2|x, z] bounded,

along with dim(R′mE) = K and ‖Rmk‖∞ = O(KαρL−αZ) by the density assumption, allowing the

use of the K-dimensional Chebyshev Inequality.

Statement 4. ‖R′h0
W‖2 = ‖

∑
iRh0,iWi‖2 6 O(L−αZ)ζ0(K) by the facts that ‖Rh0

‖∞ = O(L−αZ)

and ‖Wi‖2 6 ζ0(K).

Statement 5.

First note that the following two hold.

1. For any ϕ ∈ ΦK , MπqLϕ(Z) = MRϕ + M(Qβϕ,L,s0 −Qβ̂ϕ,Iϕ,L).

2. For any g ∈ LinSpan(pK), and any corresponding expansion g = η1ϕ1 + ... + ηkgϕkg + rg

with η1, ...ηkg ∈ R, ϕ1, ...ϕkg ∈ ΦK ,

‖MπqLg(Z)‖2 6 ‖η‖1 max
ϕ∈{ϕ1,...,ϕkg}

(‖Qβϕ,L,s0 −Qβ̂ϕ,Iϕ,L‖2 + ‖Rϕ‖2) + ‖rg(Z)‖2.

To show the first of the above two statements, for each ϕ ∈ ΦK , note that

MπqLϕ(Z) = MMπqLϕ(Z)

= M(πqLϕ(Z)− PπqLϕ(Z))

= M(Qβϕ,L − P(ϕ(X)− Uϕ))

= M(Qβϕ,L −Qβ̂ϕ,IΦK+RF + PUϕ)

= MRϕ + M(Qβϕ,L,s0 −Qβ̂ϕ,IΦK+RF
) + MPUϕ

= MRϕ + M(Qβϕ,L,s0 −Qβ̂ϕ,IΦK+RF
)

= MRϕ + M(Qβϕ,L,s0 −Qβ̂ϕ,Iϕ,L) + M(Qβ̂ϕ,Iϕ,L −Qβ̂ϕ,IΦK+RF
)︸ ︷︷ ︸

= M(PIϕ,Lϕ(X)− Pϕ(X))

= MP(PIϕ,Lϕ(X)− ϕ(X))

= 0

⇒MπqLϕ(Z) = MRϕ + M(Qβϕ,L,s0 −Qβ̂ϕ,Iϕ,L).

This establishes the first claim. Now turn to the second claim. Note that using the density

assumption, there are ϕ1, ..., ϕkg and a vector η = (η1, ..., ηkg ) such that g = η1ϕ1 + ...+ ηkgϕkg + rg

for some remainder rg, sufficiently small. Then

‖MπqLg(Z)‖2 = ‖η1MπqLϕ1(X) + ...+ ηkgMπqLϕkg (Z) + MπqLrg(Z)‖2
Next, looking at each ϕ in the above expansion (ie each ϕ ∈ {ϕ1, ..., ϕkg}) and combining the

above expression gives
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‖MπqLg(Z)‖2 = ‖η1MRϕ1
+ η1M(Qβϕ1,L,s0 −Qβ̂ϕ1,Iϕ1

) + ...

...+ ηkgMRϕkg + ηkgM(Qβϕkg ,L,s0 −Qβ̂ϕkg ,Iϕkg ) + MπqLrg(Z)‖2.

Applying Hölder’s inequality and the fact that M is a projection (and hence non-expansive) gives

the bound

6 ‖η‖1 max
ϕ∈{ϕ1,...,ϕkg}

(‖Qβϕ,L,s0 −Qβ̂ϕ,Iϕ,L‖2 + ‖Rϕ‖2) + ‖rg(Z)‖2.

These can then be applied directly to n−1/2‖Mmk‖2. The corresponding η and Rmk satisfy

L−αZ‖η‖1 6 O(K−αρ) and ‖Rmk‖2 6 n1/2O(K−αρ). Then we have the bound

‖MπqLg(Z)‖2 = Op(K
αρKαΦ/2s

1/2
0 log(L)1/2 + n1/2K−αρ).

Under Assumption 10, note that for each mk, taking η = 1 and Rmk = 0 are feasible by assump-

tion. The result follows.

Statement 6.

n−1/2‖Mh0(Z)‖2 = n−1/2‖M(Qβh0,L,s0 +Rh0)‖2)

6 n−1/2(‖MQβh0,L,s0‖2 + ‖MRh0
‖2)

6 n−1/2(‖MQ(βg0,L,s0 + βh0,L,s0 −Qβg0,L,s0)‖2 + ‖MRh0)‖2

= n−1/2(‖M(Qβy,L,s0 −Qβg0,L,s0)‖2 + ‖MRh0
‖2)

6 n−1/2(‖MQβy,L,s0‖2 + ‖MQβg0,L,s0‖2 + ‖MRh0‖2)

= n−1/2(‖MπqLy(Z)‖2 + ‖MπqLg0(Z)‖2 + ‖MRh0
‖2)

The first two terms above, n−1/2(‖MQπqLy(Z)‖2 + n−1/2‖MπqLg0(Z)‖2), are

Op(K
αρKαΦ/2n−1/2s

1/2
0 log(L)1/2 + L−αZKαρ) by the same reasoning as Statement 5. In

addition n−1/2‖MRh0
‖2 6 n−1/2‖Rh0

‖2 = O(L−αZ) by assumption. This gives

n−1/2‖Mh0(Z)‖2 = Op(K
αρKαΦ/2n−1/2s

1/2
0 log(L)1/2 + L−αZKαρ).
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Statement 7.

‖β̂mk,IΦK+RF
− βpkK ,L,s0‖1

6 |IΦK+RF|1/2‖β̂mk,IΦK+RF
− βpkK ,L,s0‖2

= |IΦK+RF|1/2
(

(β̂mk,IΦK+RF − βpkK ,L,s0)′(β̂mk,IΦK+RF − βpkK ,L,s0)
)1/2

6 |IΦK+RF|1/2Op(1)
(

(β̂mk,IΦK+RF
− βpkK ,L,s0)′(Q′IΦK+RF

QIΦK+RF
/n)(β̂g,IΦK+RF

− βpkK ,L,s0)
)1/2

= |IΦK+RF|1/2Op(1)n−1/2‖Pmk −QβpkK ,L,s0‖2

= |IΦK+RF|1/2Op(1)n−1/2‖mk −Mmk −QβpkK ,L,s0‖2

= |IΦK+RF|1/2Op(1)n−1/2‖ −Mmk +Rmk‖2

6 |IΦK+RF|1/2Op(1)(J5 +O(L−αZ))

= Op(s
1/2
0 KαIΦ/2)(J5 +O(L−αZ))

= Op(s
αIΦ/2+1/2

0 )Op(K
αρKαΦ/2s

1/2
0 log(L)1/2 + n1/2L−αZKαρ)

= Op(K
αρKαΦ/2s1

0K
αIΦ/2 log(L)1/2 + n1/2L−αZKαρ).

Statement 8. Proven analogously to Statement 7.

Statement 9.

max
k6K
‖β̂Wk,IΦK+RF‖1

= max
k6K
‖(Q̃′Q̃)−1Q̃′Wk‖1

6 ||IΦK+RF|1/2 max
k6K
‖(Q̃′Q̃)−1Q̃′Wk‖2

6 |IΦK+RF|1/2κ−1/2
min (IΦK+RF|) max

k6K
‖n−1Q′Wk‖∞

= Op(s
1/2
0 KαIΦ/2 · 1 · n−1/2 log(KL)1/2).

Statement 10. Proven analogously to Statement 9.

Statements 11-15. Proven analogously to Statements 1,3,5,7,9.

Statement 16.

n−1
∥∥∥ n∑
i=1

W ′iRm,i

∥∥∥
F

= n−1

(∑
k

‖W ′Rmk‖22

)1/2
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6 n−1

(∑
k

n2ζ0(K)2‖R2
mk
‖∞

)1/2

.

By the density assumption, ‖Rmk‖∞ 6 KαρL−αZ . This then implies that

n−1
∥∥∥ n∑
i=1

W ′iRm,i

∥∥∥
F
6 K1/2K−αρ .

�

Lemma 2.

1. Ξ1 := n−1‖W ′PW‖F 6 n−1/2KJ9J1

2. Ξ2 := n−1‖m′Mm‖F 6 KJ2
5

3. Ξ3 := n−1‖m′MW‖F 6 J16 + n−1/2KJ7J1

4. Ξ4 := n−1/2‖m′Mh0(Z)‖2 6 n1/2K1/2J5J6

5. Ξ5 := n−1/2‖W ′Mh0(Z)‖2 6 J4 +K1/2J8J1

6. Ξ6 := n−1/2‖W ′PE‖2 6 K1/2J9J2

7. Ξ7 := n−1/2‖m′ME‖2 6 J4 +K1/2J7J2

8. Ξ8 := n−1/2|m′aMh0(Z)| 6 n1/2J5J13

9. Ξ9 := n−1/2|W ′aMh0(Z)| 6 J12 + J14J1

10. Ξ10 := n−1/2|W ′aPE| 6 J9J11

11. Ξ11 := n−1/2|m′aME| 6 J12 + J7J11.

Proof.

Statement 1.(
n−1‖W ′PW‖F

)2
=
∑
k,k̄6K

(n−1W ′kPWk̄)2 =

=
∑
k,k̄6K

(n−1β̂′Wk,IΦK+RF
Q′Wk̄)2

6
∑
k,k̄6K

‖n−1/2β̂Wk,IΦK+RF
‖21‖n−1/2Q′Wk̄‖2∞

=

∑
k6K

‖n−1/2β̂Wk,IΦK+RF
‖21

∑
k̄6K

‖n−1/2Q′Wk̄‖2∞


6 K · n−1J2

9 ·K · J2
1

⇒ n−1‖W ′PW‖F 6 n−1/2KJ1J9.
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Statement 2.(
n−1‖m′Mm‖F

)2
=
∑
k,k̄6K

(n−1m′kMmk̄)2 6
∑
k,k̄6K

‖n−1/2Mmk‖22‖n−1/2Mmk̄‖22

=

∑
k6K

‖n−1/2Mmk‖22

2

6 K2J4
5

⇒ n−1‖m′Mm‖F 6 KJ2
5 .

Statement 3.

n−1‖m′MW‖F = n−1‖m′W/n−m′PW‖F

= n−1‖R′mW + (QβpK ,L,s0)′W −m′PW‖F

= n−1‖R′mW + (QβpK ,L,s0)′W − (Qβ̂m,IΦK+RF)′W‖F

= n−1‖R′mW + (βpK ,L,s0 − β̂m,IΦK+RF)′Q′W‖F

6 n−1‖R′mW‖F + n−1‖(βpK ,L,s0 − β̂m,IΦK+RF)′Q′W‖F.

Then the first term in the last line is bounded above as n−1‖R′mW‖F = J16 while the second term

has (
n−1‖(βpK ,L,s0 − β̂m,IΦK+RF

)′Q′W‖F
)2

= n−2
∑
k,k̄6K

((βpk,L,s0 − β̂mk,IΦK+RF
)′Q′Wk̄)2

6 n−2
∑
k,k̄6K

‖βpk,L,s0 − β̂mk,IΦK+RF
‖21‖Q′Wk̄‖2∞

= n−1

∑
k6K

‖βpk,L,s0 − β̂mk,IΦK+RF
‖21

∑
k̄6K

‖n−1/2Q′Wk̄‖2∞


6 n−1K · J2

7 ·K · J2
1 .

Therefore, n−1‖m′MW‖F 6 J16 + n−1/2KJ7J1.

Statement 4.

n−1/2‖m′Mh0(Z)‖2 6 n1/2‖n−1/2Mh0(Z)‖2K1/2 max
k6K

n−1/2‖m′M‖2

6 n1/2K1/2J5J6.
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Statement 5.

n−1/2‖W ′Mh0(Z)‖2 = n−1/2‖W ′h0(Z)−W ′Ph0(Z)‖2

= n−1/2‖W ′h0(Z)−W ′Qβ̂h0(Z),IΦK+RF
‖2

= n−1/2‖W ′Rh0
+W ′Qβh0,L,s0 −W ′Qβ̂h0(Z),IΦK+RF

‖2

= n−1/2
(
‖W ′h0(Z)‖2 + ‖(β̂h0(Z),IΦK+RF

− β)′Q′W‖2
)

6 J4 +K1/2 max
k6K
‖β̂h0(Z),IΦK+RF

− βh0,L,s0‖1‖n−1/2Q′Wk‖∞

6 J4 +K1/2J8J1.

Statement 6. (
n−1/2‖W ′PW‖2

)2

= n−1
∑
k6K

(W ′kPE)2

= n−1
∑
k6K

(β̂′Wk,IΦK+RF
Q′E)2

6
∑
k6K

‖β̂Wk,IΦK+RF
‖21‖n−1/2Q′E‖2∞

6 K · J2
9 · J2

2

⇒ n−1/2‖W ′PE‖F 6 K1/2J9J2.

Statement 7.

n−1/2‖m′ME‖2 = n−1/2‖m′E/n−m′PE‖F

= n−1/2‖R′mE + (QβpK ,L,s0)′W −m′PE‖F

= n−1/2‖R′mE + (QβpK ,L,s0)′W − (Qβ̂m,IΦK+RF)′E‖2

= n−1/2‖R′mE + (βpK ,L,s0 − β̂m,IΦK+RF
)′Q′E‖2

6 n−1/2‖R′mE‖2 + n−1/2‖(βpK ,L,s0 − β̂m,IΦK+RF
)′Q′E‖2.

Then the first term in the last line is bounded above as n−1/2‖R′mE‖2 = J4. Turning to the second

term, (
n−1/2‖(βpK ,L,s0 − β̂m,IΦK+RF

)′Q′E‖2
)2

= n−1
∑
k6K

((βpk,L,s0 − β̂mk,IΦK+RF)′Q′E)2

6
∑
k6K

‖βpk,L,s0 − β̂mk,IΦK+RF‖21‖n−1/2Q′E‖2∞

6 K · J2
7 · J2

2 .
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Therefore, n−1/2‖m′ME‖2 6 J4 +K1/2J7J2.

Statements 8-11.

The argument is identical to the argument for Statements 4-7, adjusting appropriately for the

fact that ma is 1-dimensional rather than K-dimensional. �

The following corollaries follow directly from assumed rate conditions and the above bounds.

These are used in the proof of Theorems 1 and 2.

Corollary 1. Under the assumptions of Theorem 1,

1. Ξ1 + Ξ2 + Ξ3 = Op(n
−1/2ζ0(K)K1/2)

2. n−1/2(Ξ4 + Ξ5 + Ξ6 + Ξ7) = Op(n
−1/2K1/2 +K−αg0 ).

Corollary 2. Under the assumptions of Theorem 2,

1. n−1/2ζ0(K)K1/2(Ξ4 + Ξ5 + Ξ6 + Ξ7) = op(1).

2. Ξ8 + Ξ9 + Ξ10 + Ξ11 = op(1).

Proof. Corollaries 1 and 2 follow from the rate conditions stated in Assumptions 2,9,11. The also

follow from the following more general rate conditions.

Sufficient rate conditions for Corollary 1:

1. s0K
αIΦ = o(sκ)

2. log(KL) = o(ζ0(K)−1n1/3)

3. L−αZn1/2K−1/2ζ0(K) = O(1)

4. L−2αZK2αρ(K1/2n1/2ζ0(K)−1 + n1/2 +K log(L)1/2ζ0(K)−2) = O(1)

5. n−1/2K1/2s0 log(L)ζ0(K)−1(K2αρ+αΦ +Kαρ+αΦ/2+αIΦ/2) = O(1)

6. n−1/2s
1/2
0 log(L)(K2αρ+αΦs

1/2
0 +KαIΦ/2) = O(1).

Additional rate conditions sufficient (along with the above conditions) for Corollary 2:

1. L−2αZK2αρ(ζ0(K)K + ζ0(K)4K1−2αρ +K log(L) + n1/2) = o(1)

2. n−1s0ζ0(K) log(L)(K1+2αρ+αΦ +K1+αρ+αΦ/2+αIΦ/2) = o(1)

3. n−1s2
0 log(L)2(K4αρ+2αΦ +K2αρ+αΦ+αIΦ ) = o(1)

4. s0K
αIΦ

(
n−1/2ζ0(K)K1/2 +K−αg0

)
= o(1)

5. n2/(4+δ)ζ0(K)n−1/2K1/2 = o(1).

�
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B.3. Proof of Theorem 1.

Lemma 3.

1. ‖Ω̂− Ω‖F 6 Op(ζ0(K)K1/2n−1/2) + Ξ1 + Ξ2 + Ξ3 = op(1)

2. ‖Ω̂−1 − Ω−1‖2→2 = Op(ζ0(K)K1/2n−1/2) +O(Ξ1 + Ξ2 + Ξ3).

Proof. The argument in Theorem 1 of [4] gives the bound ‖Ω̄−Ω‖F = OP(ζ0(K)K1/2n−1/2). Next,

using the decomposition, P = m + W , write Ω̂ = (m + W )′M(m + W )/n = W ′W/n −W ′(Idn −
M)W/n+m′Mm/n+2m′MW/n. By triangle inquality, ‖Ω̄− Ω̂‖F 6 ‖W ′PW/n‖F +‖m′Mm/n‖F +

‖2m′MW/n‖F = Ξ1 +Ξ2 +Ξ3. Bounds for each of the three above terms are established above along

with the assumed rate conditions give ‖Ω̄− Ω̂‖F = op(1). The last statement holds by applying an

expansion of the matrix inversion function around IdK .

Ω̂−1 = (IdK − (IdK − Ω̂))−1 = IdK + (IdK − Ω̂) + (IdK − Ω̂)2 + ...

The sum given above is with probability → 1 absolutely convergent relative to the Frobenius norm

F. In addition, by the bound ‖ · ‖2→2 6 ‖ · ‖F, we have ‖Ω̂−1 − IdK‖2→2 6 ‖Ω̂ − IdK‖F 6
‖IdK − Ω̂‖F + ‖IdK − Ω̂‖2F + ... = Op(ζ0(K)K1/2n−1/2) +O(Ξ1 + Ξ2 + Ξ3).

�

Note that since Ω has minimal eigenvalues bounded from below by assumption, it follows that Ω̂

and Ω̄ are invertible with probability approaching 1. The reference [4] works on the event 1n :=

{λmin(Ω̂) > 1/2} and later uses the fact that this event has probability→ 1. This fact is used several

times, however its use is only implicitly in reference to arguments in [4].

Lemma 4. ‖Ω̂−1n−1P ′ME‖2 = Op(n
−1/2K1/2).

Proof.

‖Ω̂−1n−1P ′ME‖2 6 ‖Ω̂−1‖2→2n
−1‖P ′ME‖2

6 ‖Ω̂−1‖2→2(n−1‖W ′E‖2 + n−1/2Ξ6 + n−1/2Ξ7)

‖W ′E‖2 = Op(n
−1/2K1/2 = Op(n

−1/2) by arguments in [4]. Bounds for n−1/2Ξ6 + n−1/2Ξ7 follows

from the previous Lemmas and from the assumed rate conditions. �

Lemma 5. ‖Ω̂−1P ′M(g0(X)− Pβg0,K)/n‖2 = Op(K
−αg0 ).

Proof.

‖Ω̂−1P ′M(g0(X)− Pβg0,K)/n‖2 = [(g0(X)− Pβ)′MP Ω̂−1P ′M(g0(X)− Pβ)/n]1/2

= Op(1)[(g0(X)− Pβg0,K)′(g0(Z)− Pβg0,K)/n]1/2

= Op(K
−αg0 )

by assumption on (g0(X)− Pβg0,K) and idempotency of MP Ω̂−1P ′M = MP (P ′MMP )−1M. �

Lemma 6. ‖Ω̂−1P ′Mh0(Z)/n‖2 = op(n
−1/2).
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Proof. Ω̂ has eigenvalues bounded below and above with probability approaching 1. Then,

‖Ω̂−1P ′Mh0(Z)/n‖2 6 Op(1)‖P ′Mh0(Z)/n‖2

= Op(1)‖(m+W )′Mh0(Z)/n‖2

= n−1/2Op(1)n−1/2‖(m+W )′Mh0(Z)/n‖2

6 n−1/2Op(1)(n−1/2‖m′Mh0(Z)‖2 + n−1/2‖W ′Mh0(Z)‖2)

= n−1/2Op(1)(Ξ4 + Ξ5)

= n−1/2Op(1)op(1).

�

Lemma 7. ‖β̂g − βg0,K‖2 = Op(n
−1/2K1/2 +K−αg0 ).

Proof. Note that ([β̂y,(p̃,q̃)]g − βg0,K) = n−1Ω̂−1P ′ME + n−1Ω̂−1P ′MÎ(g0(X) − Pβg0,K) +

n−1Ω̂−1P ′Mh0(Z). Triangle inequality in conjuction with the bounds described in the previous

three lemmas give the result. �

The final statement of Theorem 1 follows from the bound on ‖β̂g − βg0,K‖2 using the arguments

in [4]. �

B.4. Proof of Theorem 2. Recall that F = V −1/2. Let ḡ = pK(x)′βg0,K and decompose the

quantity n1/2F [a(ĝ)− a(g0)] by

n1/2F [a(ĝ)− a(g0)] = n1/2F [a(ĝ)− a(g0) +D(ĝ)−D(g0)

+D(ḡ)−D(ĝ)

+D(g0)−D(ḡ)].

Lemma 8. n1/2F [D(ḡ)−D(g0)] = O(n1/2K−αg0 ).

Proof. This follows from arguments given in the proof of Theorem 2 in [4]. Note that the statement

does not contain any reference to random quantities. �

Lemma 9. |n1/2F [a(ĝ)− a(g)−D(ĝ) +D(g)| = op(1).

Proof. Bounds on |ĝ − g|d given by Theorem 1 imply that |n1/2F [a(ĝ) − a(g0) − D(ĝ) + D(g0)| 6
Cn1/2|ĝ − g0|2d = Op(n

1/2(n−1/2ζd(K)K1/2 + K−αg0 )2) = op(1). This is again identical to the

reasoning given in Theorem 2 in [4], since that references uses only a bound on |ĝ− g|d to prove the

analogous result. �

The last step is to show that n1/2F [D(ĝ)−D(ḡ)]→d N(0, 1).

Lemma 10. n1/2F [D(ĝ)−D(ḡ)]→d N(0, 1).
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Proof. Note that D(ĝ) can be expanded

D(ĝ) = D(pK(x)′[β̂y,(p̃,q̃)]g) = D(pK(x)′Ω̂−1n−1P ′MY )

= D(pK(x)′Ω̂−1n−1P ′M(g0(X) + h0(Z) + E))

= D(pK(x))′Ω̂−1n−1(g0(X) + h0(Z) + E)

= A′Ω̂−1n−1P ′M(g0(X) + h0(Z) + E)

= A′Ω̂−1n−1P ′Mg0(X) +A′Ω̂−1n−1P ′Mh0(Z) +A′Ω̂−1n−1P ′ME.

In addition, D(ḡ) = D(pK(x)′βg0,K) = A′βg0,K gives

n1/2F [D(ĝ)−D(ḡ)] = n1/2FA′[Ω̂−1n−1P ′Mg0(X)− βg0,K ]

+ n1/2FA′[Ω̂−1n−1P ′M(h0(Z) + E)].

The above equation gives a decomposition of the right hand side into two terms, which are

next bounded separately. Before proceeding, note that the following bounds ‖FA‖2 = O(1),

‖FA′Ω̂−1‖2 = Op(1), ‖FA′Ω̂−1/2‖2 = Op(1), ‖FA′Ω−1‖2 = Op(1), ‖FA′Ω−1/2‖2 = O(1) all hold by

arguments in [4]. Consider the first term.

|n1/2FA′[n−1Ω̂−1P ′Mg0(X)− βg0,K ]|

= |
√
nFA′[(P ′MP/n)−1P ′M(G− Pβ)/n]|

6 ‖FA′Ω̂−1P ′M/
√
n‖2‖g0(X)− Pβg0,K‖2

6 ‖FA′Ω̂−1P ′M/
√
n‖2
√
nmax
i6n
|g(xi)− ḡ(xi)|

= ‖FA′Ω̂−1/2‖2
√
nmax
i6n
|g(xi)− ḡ(xi)|

6 ‖FA′Ω̂−1/2‖2
√
n|g − ḡ|0

= Op(1)Op(
√
nK−α)

= op(1).

Next, consider n1/2FA′Ω̂−1n−1P ′M(h0(Z) + E). To handle this term, first bound

|n−1/2FA′(Ω̂−1 − Ω−1)P ′M(h0(Z) + E)|

6 n−1/2‖FA′(Ω̂−1 − Ω−1)‖2‖P ′M(h0(Z) + E)‖2

= ‖FA′(Ω̂−1 − Ω−1)‖2(n−1/2‖P ′M(h0(Z) + E)‖2)

= ‖FA′(Ω̂−1 − Ω−1)‖2(n−1/2‖(m+W )′M(h0(Z) + E)‖2)

6 ‖FA′(Ω̂−1 − Ω−1)‖2(Ξ4 + Ξ5 + Ξ6 + Ξ7)

6 ‖Ω̂−1 − Ω−1‖2→2‖FA′‖2(Ξ4 + Ξ5 + Ξ6 + Ξ7)

= op(1).
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Next consider the last remaining term for which a central limit result will be shown.

√
nFA′Ω−1P ′M(h0(Z) + E)/n

=
√
nFA′Ω−1(W +m)′M(h0(Z) + E)/n

=
√
n(FA′Ω−1W +ma)′M(h0(Z) + E)/n

=
√
nFA′Ω−1WME +

√
nm′aM(h0(Z) + E)/n+

√
nW ′aMh0(Z)/n

=
√
nFA′Ω−1WE−

√
nFA′Ω−1WPE +

√
nm′aM(h0(Z) + E)/n+

√
nW ′aMh0(Z)/n

=
√
nFA′Ω−1W ′E/n+ op(1).

Note that the last op(1) bound in the equation array above holds by the fact that

|
√
nFA′Ω−1WPE +

√
nm′aM(h0(Z) + E)/n +

√
nW ′aMh0(Z)/n| 6 Ξ8 + Ξ9 + Ξ10 + Ξ11. The term

√
nFA′Ω−1W ′E/n satisfies the conditions Lindbergh-Feller Central Limit Theorem, by arguments

given in [4]. �

The previous three lemmas prove that n1/2F [a(ĝ)− a(g0)]→ N(0, 1).

The next set of arguments bound V̂ − V . For ν as in the statement of Assumption 14, Define

the event Ag = {|ĝ − g0|d < ν/2}. Define û = 1Ag Ω̂−1ÂF and u = 1AgΩ−1AF . In addition, define

Σ̄ =
∑
iWiW

′
iε

2
i /n, an infeasible sample analogue of Σ.

Lemma 11.

1. ‖Â−A‖2 = op(1)

2. ‖û− u‖2 = op(1)

3. ‖Σ̄− Σ‖F = op(1)

4. |ûΣ̄û− û′Σû| = op(1).

Proof. Statement 1. In the case that a(g) is linear in g, then a(p′β) = A′β =⇒ Â = A.

Therefore, consider the case that a(g) is not linear in g. Using arguments identical to those in [4],

1Ag = 1 with probability → 1, and

1Ag‖Â−A‖2 6 C · ζd(K)|ĝ − g|d.

Statement 2. This follows from arguments in [4].

Statement 3. This follows from arguments in [4].

Statement 4. An immediate implication of Statement 3 is that 1Ag |û′Σ̄û− û′Σû| = |û′(Σ̄−Σ)û| 6
‖û‖22‖Σ̄− Σ‖22→2 = Op(1)op(1).

�
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Lemma 12. maxi6n |h0(zi)− ĥ(zi)| = op(1).

Proof. First note that

max
i
|h0(zi)− ĥ(zi)| 6 max

i
|h0(zi)− qL(zi)

′βh0,L,s0 |

+ max
i
|qL(zi)

′[β̂y,(p̃,q̃)]h − qL(zi)
′βh0,L,s0 |.

The first term has the bound maxi |h0(zi)− q(xi)′η| = Op(L
−αZ) by assumption. Next,

max
i
|qL(zi)

′[β̂y,(p̃,q̃)]h − qL(zi)
′βh0,L,s0 | = max

i
|qL(zi)

′([β̂y,(p̃,q̃)]h − βh0,L,s0)|

6 max
i
‖qL(zi)‖∞‖[β̂y,(p̃,q̃)]h − βh0,L,s0‖1

Then,

‖[β̂y,(p̃,q̃)]h − βh0,L,s0‖1 = ‖β̂y−ĝ,IΦK+RF
− βh0,L,s0‖1

= ‖β̂g0,IΦK+RF + β̂h0,IΦK+RF + β̂ε,IΦK+RF − β̂ĝ,IΦK+RF
− βh0,L,s0‖1.

6 ‖β̂h0,IΦK+RF − βh0,L,s0‖1 + ‖β̂ε,IΦK+RF‖1 + ‖β̂g0−ĝ,IΦK+RF
‖1

= J8 + J10 + ‖β̂g0−ĝ,IΦK+RF
‖1.

Next,

‖β̂g0−ĝ,IΦK+RF
‖1

6 |IΦK+RF|1/2‖β̂g0−ĝ,IΦK+RF
‖2

= |IΦK+RF|1/2‖(Q′IΦK+RF
QIΦK+RF

/n)−1Q′IΦK+RF
(g0(X)− ĝ(X))/n‖2

6 |IΦK+RF|1/2κmin(|IΦK+RF|)−1‖Q′IΦK+RF
(g0(X)− ĝ(X))/n‖2

6 |IΦK+RF|1/2κmin(|IΦK+RF|)−1|IΦK+RF|1/2‖Q′IΦK+RF
(g0(X)− ĝ(X))/n‖∞

6 |IΦK+RF|κmin(|IΦK+RF|)−1‖Q′IΦK+RF
(g0(X)− ĝ(X))/n‖∞

= |IΦK+RF|κmin(|IΦK+RF|)−1

(
max
j
n−1

n∑
i=1

|qjL(zi)|

)
‖g0(X)− ĝ(X)‖∞

= Op(s
1
0K

αIΦ )Op(1)op(n
−1/2ζ0(K)K1/2 +K−αg0 ).

Putting these together, it follows from the assumed rate conditions that

max
i
|h0(zi)− ĥ(zi)| = op(1).

�

Next, let ∆g0i = g0(xi)−ĝ(xi) and ∆h0i = h0(zi)−ĥ(zi). Then above lemma states maxi6n ∆h0i =

op(1). In addition maxi6n |∆g0i| 6 |ĝ − g|0 = op(1). Let ω2
i = u′WiW

′
iu and ω̂2

i = û′WiW
′
i û.

Lemma 13. |FV̂ F − û′Σ̄û| = op(1).
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Proof.

1Ag |FV̂ F − û′Σ̄û| = |û′(Σ̂− Σ̄)û| =

∣∣∣∣∣
n∑
i=1

û′ŴiŴ
′
i ε̂

2
i û/n−

n∑
i=1

û′WiW
′
iε

2
i û/n

∣∣∣∣∣
6

∣∣∣∣∣
n∑
i=1

ω2
i (ε̂2

i − ε2
i )/n

∣∣∣∣∣+

∣∣∣∣∣
n∑
i=1

(ω̂2
i − ω2

i )ε̂2
i /n

∣∣∣∣∣ .
Both terms on the right hand side will be bounded. Consider the first term. Expanding (ε̂2

i − ε2
i )

gives ∣∣∣∣∣
n∑
i=1

ω2
i (ε̂2

i − ε2
i )/n

∣∣∣∣∣ 6
∣∣∣∣∣
n∑
i=1

ω2
i∆2

1i/n

∣∣∣∣∣+

∣∣∣∣∣
n∑
i=1

ω2
i∆2

2i/n

∣∣∣∣∣+

∣∣∣∣∣
n∑
i=1

ω2
i∆1i∆2i/n

∣∣∣∣∣
+2

∣∣∣∣∣
n∑
i=1

ω2
i∆1iεi/n

∣∣∣∣∣+ 2

∣∣∣∣∣
n∑
i=1

ω2
i∆2iεi/n

∣∣∣∣∣ .
Note that

∑n
i=1 ω

2
i /n,

∑n
i=1 ω

2
i |εi| = Op(1) by arguments is in [4]. The five terms above are then

bounded in order of their appearence by

n∑
i=1

ω2
i∆2

1i/n 6 max
i6n
|∆1i|

n∑
i=1

ω2
i /n = op(1)Op(1)

n∑
i=1

ω2
i∆2

2i/n 6 max
i6n
|∆2i|

n∑
i=1

ω2
i |εi|/n = op(1)Op(1)

n∑
i=1

ω2
i∆1i∆2i/n 6 max

i6n
|∆1i|max

i6n
|∆2i|

n∑
i=1

ω2
i /n = op(1)Op(1)

n∑
i=1

ω2
i∆1iεi/n 6 max

i6n
|∆1i|

n∑
i=1

ω2
i |εi|/n = op(1)Op(1)

n∑
i=1

ω2
i∆2iεi/n 6 max

i6n
|∆2i|

n∑
i=1

ω2
i |εi|/n = op(1)Op(1).

The second term is bounded by∣∣∣∣∣
n∑
i=1

û′(ŴiŴ
′
i −WiW

′
i )ε̂

2
i û/n

∣∣∣∣∣ 6 max
i6n
|ε2
i |

∣∣∣∣∣
n∑
i=1

û′(ŴiŴ
′
i −WiW

′
i )û/n

∣∣∣∣∣
6 max

i6n
|ε̂2
i |‖û‖22‖

n∑
i=1

(ŴiŴ
′
i −WiW

′
i )/n‖2→2 = max

i6n
|ε̂2
i |‖û‖22‖‖Ω̂− Ω̄‖2→2

6

(
max
i6n
|ε2
i |+ max

i6n
|ε̂2
i − ε2

i |
)
‖û‖22‖‖Ω̂− Ω̄‖2→2

=
(
Op(n

2/δ) + op(1)
)
Op(1)(Op(ζ0(K)n−1/2K1/2) + Ξ1 + Ξ2 + Ξ3)

= op(1).
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where the last bounds come from the rate condition in Assumption 9 and maxi6n |ε̂2
i − ε2

i | = op(1)

by maxi6n |∆1i|+ |∆2i| = op(1). �

These results give the conclusion that

n1/2V̂ −1/2(θ̂ − θ) = n1/2(FV̂ F )−1/2(θ̂ − θ) d→ N(0, 1).

Calculations which give the rates of convergence in each of the cases of Assumption 17 or of As-

sumption 18, as well as the proof of the second statement of Theorem 2, use the same arguments as

in [4]. This concludes the proof. �
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