
SUPPLEMENTARY MATERIAL TO ROBUST Q-LEARNING

Let Z ∼ P for some probability measure P and suppose f(·) is any real-valued, P−measurable

function; then, we define the L2(P ) norm of f(·) as ‖f(Z)‖P,2 = {
∫
f(ω)2dP (ω)}1/2. In addi-

tion, let ‖x‖q denote the usual q− norm of a vector x for q = 1, 2,∞. The following general

lemmas will be helpful in our proofs.

Lemma 1. Let An and Bn be sequences of random vectors, n ≥ 1. Let ε > 0 be arbitrary and,

for any vector norm, suppose that limn→∞ P (‖An‖ > ε|Bn) = 0. Then, limn→∞ P (‖An‖ >

ε) = 0. By Chebyshev’s inequality, a sufficient condition for proving that limn→∞ P (‖An‖ >

ε) = 0 is that limn→∞E(‖An‖q|Bn) = 0 from some q ≥ 1.

The above lemma essentially repeats Lemma 6.1 in Chernozhukov et al. (2018) and will

not be proved here. The following lemma is a direct consequence of a well-known result and

also has an easy proof; see, for example, Stewart (1969).

Lemma 2. Let Mn and M̂n be two sequences of square matrices and let ‖ · ‖ be any proper

matrix norm. Suppose there exists n0 < ∞ such that (i) M−1
n and Mn exist for n ≥ n0,

with 0 < C1 ≤ ‖M−1
n ‖ ≤ C2 <∞; and, (ii) ‖M̂n −Mn‖ ≤ (2‖M−1

n ‖)−1. Then,

‖M̂−1
n −M−1

n ‖ ≤ 2C2
2‖M̂n −Mn‖.

We will also have need of the following lemma.

Lemma 3. Let B1, . . . ,BN be independent, identically distributed vectors from P0, where

Bi ∈ B ⊂ Rd. Let In be a randomly chosen subset of the integers 1, . . . , N of length n = O(N)

and let its complement Icn have N−n = O(N) elements. Let FIn and FIcn be the corresponding

disjoint subsets of B1, . . . ,BN . Let γj : B → R, j = 1, 2 and let γ̂j(·;FIcn) be an estimator of

γj(·) derived from the data FIcn . Finally, define

(1) Gn,N =
1

n

∑
i∈In

{
γ̂1(Bi;FIcn)− γ1(Bi)

}{
γ̂2(Bi;FIcn)− γ2(Bi)

}
h(Bi)

1
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where h(Bi) is any finite dimensional vector- or matrix-valued function of Bi such that

P (‖h(Bi)‖∞ ≤ C) = 1 for some C <∞. Then,

(2) ‖Gn,N‖∞ ≤ C
∥∥γ̂1(B;FIcn)− γ1(B)

∥∥
Pn,2

∥∥γ̂2(B;FIcn)− γ2(B)
∥∥
Pn,2

,

where Pn is the empirical measure on FIn. Moreover, for j = 1, 2 define

(3)
∥∥γ̂j(B;FIcn)− γj(B)

∥∥2
P0,2

= E

{∥∥γ̂j(B;FIcn)− γj(B)
∥∥2
Pn,2

∣∣FIcn}
and suppose (3) is op(N

−aj), where aj ≥ 0. Then, ‖Gn,N‖∞ = op(N
−(a1+a2)/2).

Proof. Let rij(FIcn) = γ̂j(Bi;FIcn)− γj(Bi) for i = 1, . . . , n and j = 1, 2. Under the assump-

tion that P (‖h(Bi)‖∞ ≤ C) = 1, the triangle and Cauchy-Schwarz equalities imply

‖Gn,N‖∞ ≤ 1

n

∑
i∈In

∣∣ri1(FIcn)ri2(FIcn)
∣∣ ‖h(Bi)‖∞

≤ C

[
1

n

∑
i∈In

{
ri1(FIcn)

}2]1/2 [ 1

n

∑
i∈In

{
ri2(FIcn)

}2]1/2
,

the representation (2) now following immediately from the definition of the L2(Q) norm given

earlier using Q = Pn. To establish that ‖Gn,N‖∞ = op(N
−(a1+a2)), we first use Markov’s

inequality: for any ε > 0,

P
(
‖Gn,N‖∞ > ε|FIcn

)
≤ ε−1E

(
‖Gn,N‖∞|FIcn

)
.

Using (2) and the Cauchy-Schwarz inequality again, it follows that

P
(
‖Gn,N‖∞ > ε|FIcn

)
≤ C

ε
E

{
2∏
j=1

∥∥γ̂j(B;FIcn)− γj(B)
∥∥
Pn,2

∣∣FIcn
}

≤ C

ε

2∏
j=1

E

{∥∥γ̂j(B;FIcn)− γj(B)
∥∥2
Pn,2

∣∣FIcn}1/2

=
C

ε

2∏
j=1

∥∥γ̂j(B;FIcn)− γj(B)
∥∥
P0,2

the last result following directly from (3). Under the stated assumptions, the right-hand side

is now seen to be op(N
−(a1+a2)/2), as desired. �
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The statement and proof of Lemma 3 employs a simple form of sample splitting in which

the unknown function γj(·) is estimated by γ̂j(·;FIcn) from a sample FIcn that is independent

of the Bis (i.e., FIn) appearing in the calculation of (1). Importantly, Lemma 3 does not

preclude the possibility that γ1(·) = γ2(·) and γ̂1(·) = γ̂2(·); in this case, (1) reduces to

(4) Ln,m =
1

n

∑
i∈In

{
γ̂(Bi;FIcn)− γ(Bi)

}2
h(Bi)

and ‖Gn,N‖∞ = op(N
−a) for some a ≥ 0 provided that

(5)
∥∥γ̂(B;FIcn)− γ(B)

∥∥2
P0,2

= op(N
−a).

A related lemma now follows.

Lemma 4. Let (R1,B1), . . . , (Rn,BN) be independent, identically distributed vectors from

P0, where Bi ∈ B ⊂ Rd and Ei ∈ R. Suppose E(Ri|Bi) = 0 and var(Ri|Bi) = θ2i ∈ (0, C1]

for i = 1 . . . N and a constant C1 < ∞. Let In be a randomly chosen subset of the integers

1, . . . , N of length n = O(N) and let its complement Icn have N − n elements. Let FIn and

FIcn be the corresponding disjoint subsets of (R1,B1), . . . , (RN ,BN). Let γ : B → R and let

γ̂(·;FIcn) be an estimator of γ(·) derived from the data FIcn . Finally, define

(6) Ln,N =
1

n

∑
i∈In

Ri

{
γ̂(Bi;FIcn)− γ(Bi)

}
h(Bi)

where h(Bi) is any finite dimensional vector-valued function of Bi such that P (‖h(Bi)‖2 ≤

C2) = 1 for C2 <∞. Suppose that

(7)
∥∥γ̂(B;FIcn)− γ(B)

∥∥2
P0,2

= E

{∥∥γ̂(B;FIcn)− γ(B)
∥∥2
Pn,2

∣∣FIcn}
is op(N

−a) where a ≥ 0. Then, ‖Ln,N‖∞ = op(N
−(1+a)/2).

Proof. The proof relies on a variant of Chebyshev’s inequality. Let

Ln,N,j =
1

n

∑
i∈In

Ri

{
γ̂(Bi;FIcn)− γ(Bi)

}
hj(Bi)

be the jth element of Ln,N . Let Bn = {In, (Bk, k ∈ In)}. Then, it is easy to show that

E
(
Ln,N,j

∣∣FIcn) = E
{
E
(
Ln,N,j

∣∣FIcn ,Bn) ∣∣FIcn} = 0;
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this follows from calculating the inner expectation on the right-hand-side and using the

assumption that E(Ri|Bi) = 0 for every i. Using a similar conditioning argument,

var
(
Ln,N,j

∣∣FIcn) = E
{

var
(
Ln,N,j

∣∣FIcn ,Bn) ∣∣FIcn} .
Straightforward calculations now show

var
(
Ln,N,j

∣∣FIcn ,Bn) =
1

n2

∑
i∈In

{
γ̂(Bi;FIcn)− γ(Bi)

}2
h2
j(Bi)var (Ri|Bi) ,

implying that

var
(
Ln,N,j

∣∣FIcn) = E

[
1

n2

∑
i∈In

{
γ̂(Bi;FIcn)− γ(Bi)

}2
h2
j(Bi)θ

2
i

∣∣∣FIcn
]

≤ C1C2

n
E

[
1

n

∑
i∈In

{
γ̂(Bi;FIcn)− γ(Bi)

}2 ∣∣∣FIcn
]

=
C1C2

n

∥∥γ̂(B;FIcn)− γ(B)
∥∥2
P0,2

= op(N
−(1+a)),

the last step following from the assumptions on (7) made in the statement of the lemma and

the fact that n = O(N). Using a vector form of Chebyshev’s inequality, it can then be shown

that ‖Ln,N‖2 = op(N
−(1+a)/2); since ‖Ln,N‖∞ ≤ ‖Ln,N‖2, the stated result follows. �

1. Proof of Theorem 1

To review our main assumptions, we assume that we observe N independently identically

distributed trajectories of (X1, A1,X2, A2, Y ) ∼ P0. The vector X1 ∈ X1 ⊂ R
p1 consists

of baseline covariates measured before treatment at the first decision point A1 ∈ {0, 1}

and the vector X2 ∈ X2 ⊂ R
p2 consists of intermediate covariates measured before treat-

ment at the second decision point A2 ∈ {0, 1}. For notational convenience we define

S0
i = (X>1i, A1i,X

>
2i)
> ∈ S ⊂ R

p1+p2+1 and W 0
i = X1i ∈ X1 ⊂ R

p1 . We will also have

need to define the variables Si and Wi, i = 1, . . . , N ; respectively, each represents some fi-

nite dimensional function of the variables in S0
i and W 0

i . We note that knowledge of S0
i and

W 0
i respectively implies knowledge of Si and Wi; however, the reverse may not hold. The
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observed outcome Y ∈ R (measured after A2) is assumed continuous, with a larger value of

Y indicating a better clinical outcome.

The developments below assume that the original sample, with elements independently

and identically distributed as P0, has been split into two independent samples, say DIn and

DIcn , being respectively of sizes n = O(N) and N − n = O(N). The nuisance parameters

µ̂2Y (·), µ̂2A(·), µ̂1Y (·), and µ̂1A(·) are estimated using the data in DIcn ; the finite dimensional

parameters of interest are then estimated using the data DIn , treating µ̂2Y (·), µ̂2A(·), µ̂1Y (·),

and µ̂1A(·) as if they were known functions. As developed here, our use of sample-splitting

is a simple form of cross-fitting and can be generalized easily to make better use of the full

sample (Chernozhukov et al., 2018); the simpler form used here suffices to establish the main

ideas of the proofs. Lemmas 3 and 4 play an important role in several of the proofs; since

n = O(N), statements of the form op(N
−a) and op(n

−1) are equivalent, we use the latter to

emphasize that the technical arguments rely on sample splitting, where a sample DIn of size

n is used to estimate the finite dimensional parameters of interest.

To simplify notation, where needed all calculations implicitly condition on the set of

selected indices In. Using notation from the main paper, let ∆2i = ∆2(S
0
i ), ∆1i = ∆1(W

0
i ),

µ2Ai = µ2A(S0
i ), µ̂2Ai = µ̂2A(S0

i ), µ1Ai = µ1A(W 0
i ), and µ̂1Ai = µ̂1A(W 0

i ). In addition, as in

the main paper, we define the matrices

V2n =
1

n

∑
i∈In

(A2i − µ2Ai)
2S⊗2i and V̂2n =

1

n

∑
i∈In

(A2i − µ̂2Ai)
2S⊗2i

V1n =
1

n

∑
i∈In

(A1i − µ̂1Ai)
2W⊗2

i and V̂1n =
1

n

∑
i∈In

(A1i − µ̂1Ai)
2W⊗2

i

where x⊗2 = xx> for any vector x.

We make the following assumptions.

Assumption 1. (i) The support of W 0 and the conditional treatment effect ∆1(W
0) are

uniformly bounded; (ii) the support of S0 and the conditional treatment effect ∆2(S
0) are

uniformly bounded; and, the supports of S and W are uniformly bounded.

Assumption 2. (i)
∥∥µ̂1A(W 0;DIcn)− µ1A(W 0)

∥∥2
P0,2

= op(n
−1/2); (ii)

∥∥µ̂2A(S0;DIcn)− µ2A(S0)
∥∥2
P0,2

=

op(n
−1/2).
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Assumption 3. (i)
∥∥µ̂1Y (W 0;DIcn)− µ1Y (W 0)

∥∥2
P0,2

= op(1); (ii)
∥∥µ̂2Y (S0;DIcn)− µ2Y (S0)

∥∥2
P0,2

=

op(1).

Assumption 4. (i)
∥∥µ̂1Y (W 0;DIcn)− µ1Y (W 0)

∥∥
P0,2

∥∥µ̂1A(W 0;DIcn)− µ1A(W 0)
∥∥
P0,2

= op(n
−1/2);

(ii)
∥∥µ̂2Y (S0;DIcn)− µ2Y (S0)

∥∥
P0,2

∥∥µ̂2A(S0;DIcn)− µ2A(S0)
∥∥
P0,2

= op(n
−1/2)

Assumption 5. There exists 1 ≤ n0 < ∞ such that Vjn and V̂jn, j = 1, 2 are positive

definite for n ≥ n0.

Assumption 6. P
(
|S>1 β∗2| = 0

)
= 0.

We prove this Theorem with help from the following lemma.

Lemma 5. Suppose Assumptions 1, 2, and 5 hold. Let d2 = dim(S) and d1 = dim(W ).

Then ‖β̃∗2n − β∗2n‖∞ = op(n
−1/2) and ‖β̃∗1n − β∗1n‖∞ = op(n

−1/2), where

β̃∗2n = argmin
β2∈Rd2

∑
i∈In

{
A2i − µ̂2A(S0

i )
}2 {

∆2(S
0
i )− S>i β2

}2
,

β∗2n = argmin
β2∈Rd2

∑
i∈In

{
A2i − µ2A(S0

i )
}2 {

∆2(S
0
i )− S>i β2

}2
,

β̃∗1n = argmin
β1∈Rd1

∑
i∈In

{A1i − µ̂1A(Wi)}2
{

∆1(W
0
i )−W>

i β1

}2
,

β∗1n = argmin
β1∈Rd1

∑
i∈In

{A1i − µ1A(Wi)}2
{

∆1(W
0
i )−W>

i β1

}2
.

Proof. Below, we will prove that ‖β̃∗2n−β∗2n‖∞ = op(n
−1/2); the result that ‖β̃∗1n−β∗1n‖∞ =

op(n
−1/2) follows from essentially identical arguments. Using the definitions of β̃∗2n and β∗2n

and assuming n is large enough so that Assumption 5 holds, straightforward algebra shows

β̃∗2n − β∗2n =(V̂−12n −V−12n )

{
1

n

∑
i∈In

(A2i − µ2Ai)
2Si∆2i

}

+ V̂−12n

{
1

n

∑
i∈In

(µ2Ai − µ̂2Ai)
2Si∆2i

}
.

Taking norms and using the triangle inequality, it can be shown that

(8)
√
n‖β̃∗2n − β∗2n‖∞ ≤

√
n
∥∥V̂−12n −V−12n

∥∥
∞ (An +Bn) +

√
n
∥∥V−12n

∥∥
∞Bn
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where

An =

∥∥∥∥ 1

n

∑
i∈In

(A2i − µ2Ai)
2Si∆2i

∥∥∥∥
∞

Bn =

∥∥∥∥ 1

n

∑
i∈In

(µ̂2Ai − µ2Ai)
2Si∆2i

∥∥∥∥
∞
.

Suppose that ‖V̂2n − V2n‖∞ = op(n
−1/2). Then, by Lemma 2 and Assumption 5, we have

for n sufficiently large that

(9) ‖V̂−12n −V−12n ‖∞ ≤ K1‖V̂2n −V2n‖∞

for any constant K1 such that 2‖V−12n ‖2∞ ≤ K1. It can be seen that

An
p→
∥∥∥E [{A2 − µ2A(S0)}2S∆2(S

0)
]∥∥∥
∞

=
∥∥∥E [S∆2(S

0)var(A2|S0)
]∥∥∥
∞
<∞.

Since cross-fitting is used to estimate µ̂2A(·), we also see that Bn is an example of (4); hence,

using Lemma 3 and Assumption 2, it follows that Bn = op(n
−1/2). It follows from these

results and (9) that (8) is op(1).

In order to prove that ‖V̂2n −V2n‖∞ = op(n
−1/2), we begin by writing ‖V̂2n −V2n‖∞ ≤

Cn + 2Dn, where

Cn =

∥∥∥∥∥ 1

n

∑
i∈In

(µ2Ai − µ̂2Ai)
2S⊗2i

∥∥∥∥∥
∞

Dn =

∥∥∥∥∥ 1

n

∑
i∈In

(A2i − µ2Ai)(µ̂2Ai − µ2Ai)S
⊗2
i

∥∥∥∥∥
∞

.

Again, because cross-fitting is used to estimate µ̂2A(·), we can see that Cn is also an example

of (4) and it follows by previously stated arguments that Cn = op(n
−1/2). In order to

establish the behavior of Dn, we first note that Dn = maxj=1,...,d2

∑d2
k=1 |Hnjk| where d2 is

finite and

Hnjk =
1

n

∑
i∈In

(A2i − µ2Ai)(µ̂2Ai − µ2Ai)SikSij.

It suffices to establish the behavior of Hnjk. First, using the definition of µ2Ai = µ2A(S0
i ) =

E(A2i|S0
i ) and the fact that µ̂2Ai = µ̂2A(S0

i ) where µ̂2A(·) is estimated from data DIcn that is

independent of S0
i ∈ DIn for each i, it is easy to see that E(Hnjk|S0

1 , . . . ,S
0
n,DIcn) = 0 and
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hence that E(Hnjk|DIcn) = 0. Using these same properties, it is also easily shown that

var(Hnjk|DIcn) =
1

n2

∑
i∈In

E
{

(µ̂2Ai − µ2Ai)
2var(A2i|S0

i )(SikSij)
2|DIcn

}
.

Under Assumption 1, we can find a constant K2 <∞ such that

var(Hnjk|DIcn) ≤ K2

n
E

[
1

n

∑
i∈In

{µ̂2A(S0
i )− µ2A(S0

i )}2
∣∣∣DIcn

]

=
K2

n
E

{
‖µ̂2A(S0;DIcn)− µ2A(S0)‖2Pn,2

∣∣∣DIcn

}
=

K2

n
‖µ̂2A(S0;DIcn)− µ2A(S0)‖2P0,2

,

By Chebyshev’s inequality, for all ε > 0 we then have

P
(
n1/2 |Hnjk| > ε

∣∣DIcn

)
≤ K2

ε2
‖µ̂2A(S0;DIcn)− µ2A(S0)‖2P0,2

,

where the right-hand side is op(n
−1/2) by Assumption 2. Lemma 1 now implies that Hnjk =

op(n
−1/2) and hence that Dn = op(n

−1/2). Therefore, ‖V̂2n−V2n‖∞ ≤ Cn+2Dn = op(n
−1/2),

proving the desired result. A similar argument shows
√
n‖β̃∗1n − β∗1n‖∞ = op(1). �

As in the main paper, we define

β∗2 = argmin
β2∈Rd2

E

[
var
(
A2|S0

) {
∆2(S

0)− S>β2

}2]
,(10)

V2 = E
{

var
(
A2|S0

)
S⊗2

}
(11)

β∗1 = argmin
β1∈Rd1

E

[
var
(
A1|W 0

) {
∆1(W

0)−W>β1

}2]
,(12)

V1 = E
{

var
(
A1|W 0

)
W⊗2} .(13)

As n→∞, it is easy to see that β∗2n converges to

β∗2 = V−12 E
{

var
(
A2|S0

)
S∆2(S

0)
}

;

similarly, β∗1n converges to

β∗1 = V−11 E
{

var
(
A1|W 0

)
W∆1(W

0)
}
.

With these preliminaries in place, we can now prove the main result.
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Proof of Theorem 1, part (a). We desire to show that β̂2n is an asymptotically linear esti-

mator of β∗2 with the claimed influence function, where β∗2 is defined in (10) and

β̂2n = argmin
β2∈Rd2

∑
i∈In

[
Yi − µ̂2Y (S0

i )− {A2i − µ̂2A(S0
i )} · S>i β2

]2
.

In view of Lemma 5, we can proceed by establishing asymptotically linear representations for

both
√
n(β̂2n− β̃∗2n) and

√
n(β∗2n−β∗2); combined, these will lead to that for

√
n(β̂2n−β∗2).

Recalling notation introduced earlier, it is easy to show that

√
n(β̂2n − β̃∗2n) =

V̂−12n

[
1√
n

∑
i∈In

(A2i − µ̂2Ai)Si{Yi − µ̂2Y i − (A2i − µ̂2Ai)∆2i}

]
(14)

By adding and subtracting terms and using the model assumptions on Yi, one can write

(15) Yi − µ̂2Y i − (A2i − µ̂2Ai)∆2i = ε2i + (µ2Y i − µ̂2Y i) + (µ̂2Ai − µ2Ai)∆2i.

The decomposition (15) implies that the term in the square brackets on the right-hand side

of (14) can be decomposed into six terms:

1√
n

∑
i∈In

(A2i − µ̂2Ai)Si{Yi − µ̂2Y i − (A2i − µ2Ai)∆2i}(16)

=
1√
n

∑
i∈In

ε2i(A2i − µ2Ai)Si(17)

− 1√
n

∑
i∈In

(A2i − µ2Ai)(µ̂2Y i − µ2Y i)Si(18)

+
1√
n

∑
i∈In

(A2i − µ2Ai)(µ̂2Ai − µ2Ai)∆2iSi(19)

− 1√
n

∑
i∈In

ε2i(µ̂2Ai − µ2Ai)Si(20)

+
1√
n

∑
i∈In

(µ̂2Ai − µ2Ai)(µ̂2Y i − µ2Y i)Si(21)

− 1√
n

∑
i∈In

(µ̂2Ai − µ̂2Ai)
2∆2iSi.(22)
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Under the assumptions of this theorem, the central limit theorem establishes the asymptotic

normality of (17), which is Op(1). The terms (18)-(20) are each seen to be examples to which

Lemma 4 applies; under Assumptions 1-5, it follows that each term is op(1). The terms (21)

and (22) are both seen to be examples to which Lemma 3 applies; again, under Assumptions

1-5, each term is op(1). Because ‖V̂−12n −V−12n ‖∞ = op(1) it follows that
√
n(β̂2n − β̃∗2n) can

be written

(23)
√
n(β̂2n − β̃∗2n) =

1√
n

∑
i∈In

V−12n ε2i(A2i − µ2Ai)Si + op(1).

Turning to
√
n(β∗2n − β∗2), we can write

√
n(β∗2n − β∗2) =

√
n

[{
n−1

∑
i∈In

V−12n (A2i − µ2Ai)
2∆2iSi

}
− β∗2

]

=
1√
n
V−12n

∑
i∈In

(A2i − µ2Ai)
2Si
(
∆2i − S>i β∗2

)
.(24)

Hence, using (23) and (24) and collecting terms,

√
n(β̂2n − β∗2) =

1√
n
V−12n

∑
i∈In

(A2i − µ2Ai)SiH2i + op(1)

whereH2i = ε2i+(A2i−µ2Ai)
(
∆2i−S>i β∗2

)
. Using the fact that Yi−µ2Y i = ε2i+(A2i−µ2Ai)∆2i,

we may write

H2i = Yi − µ2Y i − (A2i − µ2Ai)∆2i + (A2i − µ2Ai)
(
∆2i − S>i β∗2

)
= Yi − µ2Y i − (A2i − µ2Ai)S

>
i β
∗
2.(25)

Consequently,
√
n(β̂2n − β∗2) =

1√
n

∑
i∈In

Inf2in + op(1)

where

Inf2in = V−12n (A2i − µ2Ai)Si
{
Yi − µ2Y i − (A2i − µ2Ai)S

>
i β
∗
2

}
.

Since ‖V−12n −V−12 ‖∞ = op(1), it now follows that

√
n(β̂2n − β∗2) =

1√
n

∑
i∈In

Inf2i + op(1),



SUPPLEMENTARY MATERIAL TO ROBUST Q-LEARNING 11

where

(26) Inf2i = V−12 (A2i − µ2Ai)Si
{
Yi − µ2Y i − (A2i − µ2Ai)S

>
i β
∗
2

}
has mean zero and variance V−12 Q2V

−1
2 where Q2 = E(J⊗22 ) and

(27) J2 = {A2 − µ2A(S0)}S
[
Y − µ2Y (S0)− {A2 − µ2A(S0)}S>β∗2

]
.

�

Proof of Theorem 1, part (b). As in part (a), we need to show that β̂1n is an asymptotically

linear estimator of β∗1 with a certain influence function, where β∗1 is defined in (12) and

β̂1n = argmin
β1∈Rd1

∑
i∈In

[
ˆ̃Yi − µ̂1Y (W 0

i )− {A1i − µ̂1A(W 0
i )} ·W>

i β1

]2
,

where ˆ̃Yi is calculated as

(28) ˆ̃Yi = Yi + S>i β̂2n

{
I(S>i β̂2n > 0)− A2i

}
.

Proceeding similarly to the proof of part (a), we will establish asymptotically linear rep-

resentations for both
√
n(β̂1n − β̃∗1n) and

√
n(β∗1n − β∗1); combining these will provide the

claimed influence function for
√
n(β̂1n − β∗1).

We begin with
√
n(β̂1n − β̃∗1n). Define ε1i = Ỹi − E(Ỹi |W 0

i , A1i), where Ỹi is given by

(29) Ỹi = Yi + S>i β
∗
2

{
I(S>i β

∗
2 > 0)− A2i

}
;

by construction, ε1i = Ỹi − µ1Ai − (A1i − µ1Ai)∆1i and E(ε1i |W 0
i , A1i) = 0. In addition, let

δ̂i = ˆ̃Yi − Ỹi. Similarly to the proof in part (a), we can decompose
√
n(β̂1n − β̃∗1n) into the

sum of several terms:
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√
n(β̂1n−β̃∗1n) =

V̂−11n

{ 1√
n

∑
i∈In

(A1i − µ1Ai)
(
ε1i + δ̂i

)
Wi

}
(30)

− V̂−11n

{ 1√
n

∑
i∈In

(A1i − µ1Ai)(µ̂1Y i − µ1Y i)Wi

}
(31)

+ V̂−11n

{ 1√
n

∑
i∈In

(A1i − µ1Ai)(µ̂1Ai − µ1Ai)∆1iWi

}
(32)

− V̂−11n

{ 1√
n

∑
i∈In

(µ̂1Ai − µ1Ai)ε1iWi

}
(33)

− V̂−11n

{ 1√
n

∑
i∈In

(µ̂1Ai − µ1Ai)δ̂iWi

}
(34)

− V̂−11n

{ 1√
n

∑
i∈In

(µ̂1Ai − µ1Ai)(µ̂1Y i − µ1Y i)Wi

}
(35)

+ V̂−11n

{ 1√
n

∑
i∈In

(µ̂1Ai − µ1Ai)
2∆1iWi

}
(36)

Assuming that µ̂1A(·) and µ̂1Y (·) are estimated similarly to µ̂2A(·) and µ̂2Y (·) (i.e., meaning,

sample splitting has been used) and in view of the fact that V̂1n is a consistent estimator of

V1, Lemma 4 implies that the terms (31), (32), and (33) are all op(1) under Assumptions 1

– 5; similarly, Lemma 3 implies that the terms (35) and (36) are also op(1) under these same

assumptions. To complete this part of the proof, we must therefore establish the asymptotic

behavior of (30) and (34), both of which depend on the asymptotic behavior of δ̂i = ˆ̃Yi− Ỹi.

The terms (30) and (34) isolate the potential for non-regular behavior; however, as we will

see, Assumption 6 is only needed for controlling such behavior in (30).

To determine the asymptotic behavior of (30), let Di = I(S>i β
∗
2 > 0)− A2i and

R̂ni = I(S>i β̂2n > 0)− I(S>i β
∗
2 > 0)

for i ∈ In.
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Algebra now shows

1√
n

∑
i∈In

(A1i − µ1Ai)Wi

(
ε1i + δ̂i

)
=

1√
n

∑
i∈In

(A1i − µ1Ai)Wi{ε1i + S>i (β̂2n − β∗2)Di}(37)

+
1√
n

∑
i∈In

(A1i − µ1Ai)WiS
>
i β
∗
2R̂ni(38)

+
1√
n

∑
i∈In

(A1i − µ1Ai)WiS
>
i (β̂2n − β∗2)R̂ni.(39)

Although (38) and (39) can be easily combined, treating these two terms separately turns

out to be advantageous. We first consider (38). Note that R̂ni ∈ {−1, 0, 1} and, importantly,

that |R̂ni| ≤ Rni, where Rni = I{0 ≤ |S>i β∗2| ≤ |S>i (β̂2n − β∗2)|}. It follows that

|S>i β∗2|Rni ≤ |S>i (β̂2n − β∗2)|Rni,

an inequality that is trivially true when Rni = 0 and true for Rni = 1 in view of its definition.

Consequently, considering the jth element of the vector Wi, we have∣∣∑
i∈In

(A1i − µ1Ai)WijS
>
i β
∗
2R̂ni

∣∣ ≤ ∑
i∈In

∣∣(A1i − µ1Ai)Wij

∣∣∣∣S>i β∗2∣∣∣∣R̂ni

∣∣
≤

∑
i∈In

∣∣(A1i − µ1Ai)Wij

∣∣∣∣S>i β∗2∣∣Rni

≤
∑
i∈In

∣∣A1i − µ1Ai

∣∣∣∣Wij

∣∣∣∣S>i (β̂2n − β∗2)
∣∣Rni

≤ 4C
∑
i∈In

∣∣S>i (β̂2n − β∗2)
∣∣Rni,

the last step following from the fact that A1i is binary, µ̂1A(·) ∈ [0, 1], and |Wij| is bounded,

say, by a finite constant C. Considering (39), a similar calculation shows that∣∣∑
i∈In

(A1i − µ1Ai)WiS
>
i (β̂2n − β∗2)R̂ni

∣∣ ≤ 4C
∑
i∈In

∣∣S>i (β̂2n − β∗2)
∣∣Rni.
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Therefore,

(38) + (39) ≤ 8C
1√
n

∑
i∈In

∣∣S>i (β̂2n − β∗2)
∣∣Rni

≤ 8C
√
n

[
1

n

∑
i∈In

{
S>i (β̂2n − β∗2)

}2
]1/2 [

1

n

∑
i∈In

R2
ni

]1/2
= 8Cλ1n

√
n‖β̂2n − β∗2‖2 R̄1/2

n ,

where ‖·‖2 is the usual Euclidean vector norm and λ1n > 0 is the square root of the maximum

eigenvalue of n−1
∑

i∈In S
⊗2
i . Because

√
n‖β̂2n − β∗2‖2 = Op(1) and λ1n converges to a finite

constant as n→∞ under our assumptions, it follows that (38) + (39) is op(1) if R̄n = op(1).

However, Markov’s inequality implies that

P (R̄n > α | S0
1 , . . . ,S

0
n) ≤ (nα)−1

∑
i∈In

E(Rni | S0
1 , . . . ,S

0
n)

for any α > 0, where E(Rni | S0
1 , . . . ,S

0
n) = P{Rni = 1 | S0

1 , . . . ,S
0
n}. Letting

I∗i = I
(
|S>i β∗2| = 0

)
,

an easy conditioning argument shows E(Rni | S0
1 , . . . ,S

0
n) = I∗i + (1− I∗i )Pni where

Pni = P{|S>i (β̂2n − β∗2)| ≥ ki | (S0
1 , . . . ,S

0
n), ki > 0}

for ki = |S>i β∗2|. Letting n→∞, the fact that β̂2n
p→ β∗2 as n→∞ implies Pni → 0 for each

i; hence,

lim
n→∞

P (R̄n > α | S0
1 , . . . ,S

0
n) ≤ 1

nα
lim
n→∞

∑
i∈In

I∗i .

However, under our assumptions,

lim
n→∞

1

n

∑
i∈In

I∗i
p→ P

(
|S>1 β∗2| = 0

)
and it follows from Assumption 6 that R̄n

p→ 0.

Because ‖V̂−11n −V−11n ‖∞ = op(1), we have now shown that

(30) = V−11n

[ 1√
n

∑
i∈In

(A1i − µ1Ai)Wi{ε1i + S>i (β̂2n − β∗2)Di}+ op(1)
]

(40)



SUPPLEMENTARY MATERIAL TO ROBUST Q-LEARNING 15

under Assumptions 1 – 6, where we recall the notation Di = I(S>i β
∗
2 > 0)− A2i.

To establish (34), observe that we may similarly decompose it as above, leading to

1√
n

∑
i∈In

(µ̂1Ai − µ1Ai)Wiδ̂i =

1√
n

∑
i∈In

(µ̂1Ai − µ1Ai)Wiε1i(41)

+
1√
n

∑
i∈In

(µ̂1Ai − µ1Ai)WiS
>
i β
∗
2R̂ni(42)

+
1√
n

∑
i∈In

(µ̂1Ai − µ1Ai)WiS
>
i (β̂2n − β∗2)R̂ni(43)

+
1√
n

∑
i∈In

(µ̂1Ai − µ1Ai)WiS
>
i (β̂2n − β∗2)Di.(44)

The term (41) can be handled using Lemma 4. The remaining terms can be handled similarly

to (38) and (39); however, the required decomposition of terms differs some and, importantly,

can make use of Assumption 2. In particular, establishing the behavior of (41)-(44) can be

done under Assumptions 1 – 5, without additionally imposing Assumption 6, showing that

any effect of non-regularity is limited to the behavior of (38) and (39), or equivalently,

1√
n

∑
i∈In

(A1i − µ1Ai)WiS
>
i β̂2nR̂ni.

The above proof establishes an asymptotic linear representation for
√
n(β̂1n−β̃∗1n). Turning

to
√
n(β∗1n − β∗1), we can write

√
n(β∗1n − β∗1) =

1√
n
V−11n

∑
i∈In

(A1i − µ1Ai)
2Wi

(
∆1i −W>

i β
∗
1

)
.(45)

Hence, using (40) and (45) and collecting terms, it follows that

√
n(β̂1n − β∗1) =

1√
n
V−11n

∑
i∈In

(A1i − µ1Ai)WiH1i + op(1)

where H1i = ε1i + (A1i − µ1Ai)
(
∆1i −W>

i β
∗
1

)
+ S>i (β̂2n − β∗2)Di. Because

ε1i = Ỹi − µ1Ai − (A1i − µ1Ai)∆1i
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we have

H1i = Ỹi − µ1Ai − (A1i − µ1Ai)W
>
i β

∗
1 + S>i (β̂2n − β∗2){I(S>i β

∗
2 > 0)− A2i}.

Using the fact that ‖V−11n −V−11 ‖∞ = op(1), it follows that

√
n(β̂1n − β∗1) =

1√
n
V−11

∑
i∈In

(A1i − µ1Ai)WiH1i + op(1).

Defining

Kn =
1

n

∑
i∈In

(A1i − µ1Ai){I(S>i β
∗
2 > 0)− A2i}WiS

>
i

and letting K denote its limit in probability, the results from part (a), in particular (26),

now imply that
√
n(β̂1n − β∗1) =

1√
n

∑
i∈In

Inf1i + op(1).

for

(46) Inf1i = V−11

[
(A1i − µ1Ai)Wi

{
Ỹi − µ1Ai − (A1i − µ1Ai)W

>
i β

∗
1

}
+K Inf2i

]
.

This representation result implies
√
n(β̂1n − β∗1)

d→ N(0,V−11 Q1V
−1
1 ) where we define the

matrix Q1 = E{(J1 +KV−12 J2)
⊗2}, J2 is given in (27),

J1 = {A1 − µ1A(W 0)}W
[
Ỹ − µ1A(W 0)− {A1 − µ1A(W 0)}W>β∗1

]
and

K = E
[
{A1 − µ1A(W 0)}{I(S>β∗2 > 0)− A2}WS>

]
.

�

Proof of Corollary to Theorem 1. As established in the proof of Theorem 1, the regularity

Assumption 6 is imposed only to control the potentially non-regular behavior of the terms

(38) and (39). The origin of this non-regular behavior is the dependence of each term on

R̂ni = I(S>i β̂2n > 0)− I(S>i β
∗
2 > 0), i ∈ In.

In view of the proof of Theorem 1, establishing that each of (38) and (39) is op(1) is sufficient

to prove the corollary as stated.
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To simply the proof of these results, let β̂
(−i)
2n be the least squares estimator based on the

subset of subjects that excludes subject i, and define

ˆ̃Rni = I(S>i β̂
(−i)
2n > 0)− I(S>i β

∗
2 > 0), i ∈ In

and also

R̃ni = I{0 ≤ |S>i β∗2| ≤ |S>i (β̂
(−i)
2n − β∗2)|};

similarly to before, | ˆ̃Rni| ≤ R̃ni.

Then, considering (38) with R̂ni replaced by ˆ̃Rni, we may write

E [(38)] =
1√
n

∑
i∈In

E
(
WiS

>
i β
∗
2

ˆ̃RniE
[
A1i − µ1Ai |Wi,Si, In, β̂

(−i)
2n

]
| In
)
.

In view of the definition of β̂
(−i)
2n , we have

E
[
A1i − µ1Ai |Wi,Si, In, β̂

(−i)
2n

]
= E [A1i − µ1Ai |Wi,Si, In] = 0,

the last equality following by assumption. Therefore, it follows that E [(38) | In] = 0. Argu-

ing similarly and using the conditional variance formula,

var [(38) | In] =
1

n

∑
i∈In

E
(
W⊗2

i

(
S>i β

∗
2

)2
[A1i − µ1Ai]

2 ˆ̃R2
ni | In

)
.

Let Vkj denote the (k, j) element of the matrix on the right-hand side of this last expression.

Then, under Assumptions 1 – 5, it can be shown that

Vkj ≤
C

n

∑
i∈In

E
(

(S>i β
∗
2)2 R̃ni | In

)
for some finite constant C > 0. Similarly to the proof of Theorem 1, the fact that

|S>i β∗2|R̃ni ≤ |S>i (β̂
(−i)
2n − β∗2)|R̃ni

now implies the inequality

Vkj ≤
C

n

∑
i∈In

E

([
S>i (β̂

(−i)
2n − β∗2)

]2
R̃ni | In

)
,
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from which it follows that

Vkj ≤
C

n

∑
i∈In

E
(

(β̂
(−i)
2n − β∗2)>S⊗2i (β̂

(−i)
2n − β∗2)R̃ni | In

)
,

≤ Cλ21nE
(
‖β̂(−i)

2n − β∗2‖22 | In
)
,(47)

where λ21n > 0 is the maximum eigenvalue of n−1
∑

i∈In S
⊗2
i . Because the right-hand side of

(47) goes to zero as n → ∞ for all (k, j), it follows that (38) is op(1). A similar argument

establishes that (39) is op(1).

�

2. Additional simulation studies

2.1. Various sample sizes. In this section, we complement the main simulation study by

examining the performance of our proposed method under various sample sizes. We generate

500 datasets with sample sizes N of 1000, 500, and 250 using the same generative model as

in Section 5.1 in the paper, and except in Section 2.2, use the same methods to estimate

µ1Y (·), µ2Y (·), µ1A(·), and µ2A(·) as in the main simulation study.

Tables S1-S6 in this document respectively summarize the results for sample sizes N of

1000, 500, and 250 sample sizes. Overall, our method outperforms both QN,N and dWOLSN,N

for all sample sizes, particularly when the underlying treatment assignment and the out-

come models are nonlinear. More specifically, when the postulated parametric models for

the nuisance parameters are correctly specified, the bias of the dWOLSN,N estimators are

comparable to the estimators obtained by our proposed method, but the latter usually has a

substantially smaller standard error. However, when the parametric models for the outcome

and the treatment assignment models are both misspecified, the dWOLSN,N estimators ex-

hibit large biases. When N = 250, under the linear treatment assignment model and FGSR

outcome model, the proposed method shows larger bias in estimating β2 than the dWOLSN,N

(Table S5). We conjecture that this occurs because there are only a relatively small number

of units that are rerandomized at stage 2 (i.e., 50%), and that this subsequently affects the

performance of Super Learner.



SUPPLEMENTARY MATERIAL TO ROBUST Q-LEARNING 19

Table S1. Performance of the proposed Q-learning method in estimating the
second stage parameters under different model complexities (N =1000). The
true parameter values for the linear and FGS outcome models are β∗2,1 = 1,
β∗2,2 = 1 and β∗2,1 ≈ 0, β∗2,2 ≈ −2, respectively.

β∗2,1 β∗2,2
QN,N Proposed dWOLSN,N QN,N Proposed dWOLSN,N

Models Bias S.D. Bias S.D. Bias S.D. Bias S.D. Bias S.D. Bias S.D.
Randomized Treatment Assignment Model

LinearR 0.007 0.055 0.041 0.112 0.007 0.113 0.003 0.056 0.008 0.112 0.003 0.114
FGSR 0.002 0.581 0.015 0.787 0.010 1.136 0.055 0.370 0.055 0.424 0.049 0.667

Linear Treatment Assignment Model
LinearR 0.000 0.060 0.005 0.145 0.004 0.147 0.011 0.063 0.026 0.144 0.020 0.149
FGSR 2.235 2.490 0.039 1.010 0.035 2.224 2.478 0.809 0.067 0.529 0.016 0.968

Quadratic Treatment Assignment Model
LinearR 0.004 0.054 0.006 0.117 0.003 0.108 0.002 0.059 0.015 0.116 0.005 0.121
FGSR 0.872 0.630 0.166 0.754 0.873 1.284 0.012 0.332 0.050 0.410 0.021 0.570

InterQuad Treatment Assignment Model
LinearR 0.008 0.056 0.009 0.118 0.007 0.113 0.004 0.057 0.024 0.117 0.005 0.116
FGSR 0.718 0.665 0.077 0.817 0.703 1.253 0.442 0.333 0.068 0.416 0.437 0.560

Table S2. Performance of the proposed Q-learning method in estimating the
first stage parameters under different model complexities (N =1000). The true
parameter values are β∗1,1 = β∗1,2 = 0.

β∗1,1 β∗1,2
QN,N Proposed dWOLSN,N QN,N Proposed dWOLSN,N

Models Bias S.D. Bias S.D. Bias S.D. Bias S.D. Bias S.D. Bias S.D.
Randomized Treatment Assignment Model

LinearR 0.001 0.140 0.004 0.150 0.006 0.150 0.013 0.138 0.008 0.140 0.005 0.149
FGSR 0.024 0.823 0.034 0.858 0.015 1.072 0.035 0.584 0.027 0.638 0.011 0.866

Linear Treatment Assignment Model
LinearR 0.156 0.152 0.003 0.173 0.016 0.177 0.153 0.131 0.011 0.163 0.008 0.172
FGSR 2.206 3.284 0.192 1.132 0.197 4.588 1.859 2.836 0.148 0.855 0.167 4.377

Quadratic Treatment Assignment Model
LinearR 2.395 0.138 0.023 0.171 0.008 0.173 0.679 0.123 0.013 0.162 0.004 0.164
FGSR 7.259 0.889 0.043 0.963 0.286 1.213 1.656 0.827 0.059 0.735 0.041 1.201

InterQuad Treatment Assignment Model
LinearR 2.297 0.143 0.012 0.171 0.012 0.178 0.420 0.128 0.017 0.161 0.010 0.166
FGSR 7.580 0.829 0.098 0.975 0.279 1.203 2.348 0.705 0.057 0.715 0.275 0.908
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Table S3. Performance of the proposed Q-learning method in estimating the
second stage parameters under different model complexities (N =500). The
true parameter values for the linear and FGS outcome models are β∗2,1 = 1,
β∗2,2 = 1 and β∗2,1 ≈ 0, β∗2,2 ≈ −2, respectively.

β∗2,1 β∗2,2
QN,N Proposed dWOLSN,N QN,N Proposed dWOLSN,N

Models Bias S.D. Bias S.D. Bias S.D. Bias S.D. Bias S.D. Bias S.D.
Randomized Treatment Assignment Model

LinearR 0.004 0.083 0.013 0.168 0.004 0.169 0.009 0.079 0.023 0.166 0.010 0.161
FGSR 0.111 0.972 0.113 1.143 0.097 1.906 0.029 0.464 0.015 0.582 0.006 0.815

Linear Treatment Assignment Model
LinearR 0.014 0.087 0.021 0.207 0.007 0.214 0.017 0.087 0.006 0.205 0.019 0.211
FGSR 2.409 0.909 0.117 1.311 0.136 2.250 2.448 0.575 0.185 0.761 0.061 2.111

Quadratic Treatment Assignment Model
LinearR 0.003 0.083 0.027 0.171 0.007 0.169 0.004 0.079 0.007 0.169 0.004 0.163
FGSR 0.738 0.805 0.005 1.101 0.695 1.533 0.008 0.523 0.049 0.658 0.002 0.932

InterQuad Treatment Assignment Model
LinearR 0.005 0.086 0.014 0.171 0.010 0.172 0.003 0.083 0.007 0.169 0.005 0.170
FGSR 0.653 1.085 0.008 1.229 0.627 2.162 0.468 0.551 0.046 0.668 0.436 0.977

Table S4. Performance of the proposed Q-learning method in estimating the
first stage parameters under different model complexities (N =500). The true
parameter values are β∗1,1 = β∗1,2 = 0.

β∗1,1 β∗1,2
QN,N Proposed dWOLSN,N QN,N Proposed dWOLSN,N

Models Bias S.D. Bias S.D. Bias S.D. Bias S.D. Bias S.D. Bias S.D.
Randomized Treatment Assignment Model

LinearR 0.007 0.208 0.017 0.217 0.020 0.205 0.007 0.189 0.008 0.204 0.011 0.206
FGSR 0.107 1.286 0.061 1.181 0.036 1.556 0.006 0.871 0.024 0.870 0.004 1.078

Linear Treatment Assignment Model
LinearR 0.147 0.227 0.015 0.241 0.016 0.238 0.167 0.183 0.025 0.228 0.009 0.225
FGSR 1.882 1.131 0.038 1.242 0.003 1.475 1.615 0.801 0.016 0.925 0.035 1.117

Quadratic Treatment Assignment Model
LinearR 2.392 0.187 0.003 0.243 0.006 0.242 0.676 0.180 0.004 0.230 0.007 0.241
FGSR 7.441 1.172 0.028 1.292 0.406 1.580 1.457 0.786 0.018 0.962 0.032 1.183

InterQuad Treatment Assignment Model
LinearR 2.325 0.199 0.009 0.245 0.001 0.250 0.414 0.170 0.006 0.231 0.009 0.236
FGSR 7.412 1.249 0.199 1.394 0.176 1.998 2.368 0.938 0.015 1.026 0.136 1.353
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Table S5. Performance of the proposed Q-learning method in estimating the
second stage parameters under different model complexities (N =250). The
true parameter values for the linear and FGS outcome models are β∗2,1 = 1,
β∗2,2 = 1 and β∗2,1 ≈ 0, β∗2,2 ≈ −2, respectively.

β∗2,1 β∗2,2
QN,N Proposed dWOLSN,N QN,N Proposed dWOLSN,N

Models Bias S.D. Bias S.D. Bias S.D. Bias S.D. Bias S.D. Bias S.D.
Randomized Treatment Assignment Model

LinearR 0.035 0.120 0.038 0.261 0.031 0.250 0.008 0.116 0.012 0.252 0.008 0.244
FGSR 0.032 1.138 0.053 1.541 0.070 2.229 0.058 0.694 0.089 0.959 0.045 1.340

Linear Treatment Assignment Model
LinearR 0.008 0.132 0.027 0.302 0.007 0.336 0.009 0.127 0.004 0.291 0.007 0.315
FGSR 2.315 1.237 0.488 1.755 0.286 2.616 2.519 0.717 0.682 1.111 0.274 1.545

Quadratic Treatment Assignment Model
LinearR 0.014 0.120 0.023 0.265 0.020 0.257 0.034 0.127 0.032 0.257 0.028 0.268
FGSR 0.738 2.374 0.061 1.937 0.522 5.242 0.051 0.736 0.004 1.167 0.078 1.400

InterQuad Treatment Assignment Model
LinearR 0.010 0.127 0.042 0.256 0.007 0.262 0.009 0.120 0.018 0.250 0.012 0.247
FGSR 0.794 1.066 0.265 1.655 0.804 2.139 0.428 0.691 0.000 1.093 0.457 1.244

Table S6. Performance of the proposed Q-learning method in estimating the
first stage parameters under different model complexities (N =250). The true
parameter values are β∗1,1 = β∗1,2 = 0.

β∗1,1 β∗1,2
QN,N Proposed dWOLSN,N QN,N Proposed dWOLSN,N

Models Bias S.D. Bias S.D. Bias S.D. Bias S.D. Bias S.D. Bias S.D.
Randomized Treatment Assignment Model

LinearR 0.020 0.284 0.005 0.308 0.008 0.303 0.031 0.244 0.008 0.291 0.014 0.299
FGSR 0.166 1.389 0.019 1.661 0.092 2.477 0.159 1.200 0.019 1.274 0.041 1.698

Linear Treatment Assignment Model
LinearR 0.194 0.284 0.050 0.338 0.012 0.330 0.174 0.262 0.016 0.320 0.002 0.349
FGSR 1.960 1.575 0.153 1.704 0.089 1.919 1.641 1.261 0.055 1.286 0.126 1.540

Quadratic Treatment Assignment Model
LinearR 2.413 0.289 0.016 0.351 0.001 0.339 0.664 0.257 0.016 0.336 0.026 0.367
FGSR 7.840 2.066 0.106 1.855 0.398 2.460 1.373 1.273 0.093 1.457 0.096 2.040

InterQuad Treatment Assignment Model
LinearR 2.329 0.294 0.052 0.349 0.007 0.358 0.451 0.251 0.006 0.334 0.024 0.369
FGSR 7.423 1.469 0.212 1.837 0.107 2.335 2.288 1.188 0.079 1.461 0.238 1.721
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2.2. Performance under alternative nonparametric estimation methods. In this

section, we assess the performance of the proposed method when the nuisance parameters

are instead estimated using either random forests or generalized additive models, recalling

that both were included as part of the library used by Super Learner. As in the main

simulation study, we generated 500 datasets of size N =2000 using the same generative

model as in Section 2.1. In Table S7 and S8, columns RF-RF and GAM-GAM respectively

represent cases where a random forest and a generalized additive model are used for both

the treatment assignment (i.e., µ1A(·) and µ2A(·)) and the outcome models (i.e., µ1Y (·)

and µ2Y (·)). The column RF-GAM represents a case where a random forest is used for

the outcome model and a generalized additive model is used for the treatment assignment

model. Overall, as the complexity of the outcome or treatment assignment model increases,

modeling the nuisance parameters using a random forest results in estimators that are less

biased compared with those obtained by the generalized additive model. However, comparing

these results with those presented in Tables 1 and 2, we observe that Super Learner typically

performs better than these other data adaptive methods.

Table S7. Performance of the proposed Q-learning method in estimating
the second stage parameters using machine learning methods under different
model complexities (N =2000). The true parameter values for the linear and
FGS outcome models are β∗2,1 = 1, β∗2,2 = 1 and β∗2,1 ≈ 0, β∗2,2 ≈ −2, respec-
tively.

β∗2,1 β∗2,2
RF-RF GAM-GAM RF-GAM RF-RF GAM-GAM RF-GAM

Models Bias S.D. Bias S.D. Bias S.D. Bias S.D. Bias S.D. Bias S.D.
Randomized Treatment Assignment Model

LinearR 0.021 0.088 0.051 0.078 0.001 0.086 0.021 0.084 0.048 0.078 0.021 0.084
FGSR 0.096 0.521 0.236 0.684 0.049 0.499 0.047 0.282 0.091 0.436 0.091 0.275

Linear Treatment Assignment Model
LinearR 0.005 0.107 0.009 0.103 0.006 0.110 0.002 0.103 0.012 0.103 0.011 0.107
FGSR 0.447 0.687 0.023 0.823 0.037 0.712 0.522 0.405 0.074 0.553 0.064 0.419

Quadratic Treatment Assignment Model
LinearR 0.013 0.091 0.033 0.080 0.065 0.085 0.014 0.088 0.042 0.080 0.002 0.083
FGSR 0.194 0.628 0.764 0.737 0.301 0.616 0.039 0.337 0.091 0.501 0.022 0.352

InterQuad Treatment Assignment Model
LinearR 0.035 0.091 0.076 0.081 0.044 0.085 0.038 0.087 0.076 0.081 0.010 0.083
FGSR 0.192 0.651 0.654 0.761 0.219 0.648 0.071 0.329 0.304 0.499 0.065 0.344
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Table S8. Performance of the proposed Q-learning method in estimating the
first stage parameters using machine learning methods under different model
complexities (N =2000). The true parameter values are β∗1,1 = β∗1,2 = 0.

β∗1,1 β∗1,2
RF-RF GAM-GAM RF-GAM RF-RF GAM-GAM RF-GAM

Models Bias S.D. Bias S.D. Bias S.D. Bias S.D. Bias S.D. Bias S.D.
Randomized Treatment Assignment Model

LinearR 0.016 0.104 0.017 0.108 0.003 0.107 0.029 0.099 0.004 0.100 0.003 0.102
FGSR 0.029 0.537 0.200 0.725 0.014 0.612 0.020 0.413 0.063 0.514 0.012 0.444

Linear Treatment Assignment Model
LinearR 0.008 0.116 0.000 0.127 0.003 0.122 0.008 0.110 0.005 0.119 0.008 0.116
FGSR 0.020 0.677 0.039 0.775 0.081 0.700 0.086 0.491 0.021 0.575 0.009 0.508

Quadratic Treatment Assignment Model
LinearR 0.033 0.118 0.002 0.121 0.027 0.122 0.008 0.113 0.002 0.113 0.006 0.116
FGSR 0.035 0.691 0.296 0.794 0.101 0.707 0.007 0.508 0.035 0.600 0.037 0.519

InterQuad Treatment Assignment Model
LinearR 0.020 0.119 0.015 0.122 0.045 0.122 0.009 0.114 0.003 0.114 0.031 0.116
FGSR 0.083 0.681 0.344 0.786 0.145 0.704 0.031 0.509 0.164 0.610 0.032 0.527

2.3. Additional simulation results for the non-regular setting. In Section 5.2 of the

main paper, we showed that the proposed method can provide valid inferences in non-regular

settings when the assumptions of Corollary 1 are satisfied. Table S9 supplements the results

of Table 3 for the main simulation study by providing additional comparisons with QN,N

and dWOLSN,N .

Below, we also consider a simulation that corresponds to a non-regular setting when the

assumptions of Corollary 1 and Assumption 6 are both violated. We consider the same

general set-up as in Section 5.2, but modify the outcome models as described below:

• LinearNR,$: Y = X>1 α1 + X̆>2 α2 + A1X
>
1 θ1 + A2R(θ21A1 + θ22X̆21) + ε where α1 =

(1, 0.1, 0.1, 0.1, 0.1)>, α2 = (1, 0.1, 0.1, 0.1)>, θ1 = (0, 0, 0, 0, 0)>, and θ2 = 2($,$)>;

• Non-linearNR,$: Y = f(X1) + A1X
>
1 θ1 + A2R(θ21A1 + θ22X̆21) + ε where θ1 =

(0, 0, 0, 0, 0)>, θ2 = 2($,$)>, and for x = (x1, x2, x3, x4, x5)
>, we set

f(x) = sin(πx1x2) + 2(x3 − 0.5)2 + x4 + 1.5
x1

|x2|+ |x3|
+ 2x1(x2 + x3).

Here, X̆2 = (X̆21, X̆22, X23, X24)
> where X̆21 is generated from a Bernoulli distribution with

success probability [1 + exp{−(2X11− 2A1− 1)}]−1, X22 = U11, X23 = U12, X24 = 0.35X15 +

U13, and X25 = U14, where U1l, l = 1, . . . , 3 are independent and uniformly distributed on

[0,1]; the noise variable ε is again generated from N(0, σ = 0.5).
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Table S9. Performance of the proposed Q-learning method under different
degrees of non-regularity.

β∗1,1 β∗1,2
Models QN,N Proposed dWOLSN,N QN,N Proposed dWOLSN,N

Randomized Treatment Assignment Model
LinearNR,0 0.939(0.26) 0.956(0.42) 0.940(0.41) 0.932(0.26)† 0.959(0.40) 0.933(0.41)†

Non-linearNR,0 0.949(0.95) 0.965(1.40)† 0.933(1.40)† 0.949(0.44) 0.952(0.56) 0.946(0.55)
LinearNR,1 0.937(0.45) 0.962(0.46) 0.938(0.70) 0.936(0.45) 0.966(0.45)† 0.933(0.70)†

Non-linearNR,1 0.953(0.99) 0.966(1.41) 0.924(1.46)† 0.936(0.51)† 0.946(0.60) 0.929(0.69)†

Linear Treatment Assignment Model
LinearNR,0 0.913(0.26)† 0.965(0.45)† 0.940(0.45) 0.898(0.26)† 0.948(0.44) 0.940(0.45)
Non-linearNR,0 0.396(0.96)† 0.949(1.58) 0.921(1.56)† 0.102(0.48)† 0.955(0.65) 0.936(0.65)
LinearNR,1 0.856(0.45)† 0.953(0.51) 0.939(0.76) 0.845(0.45)† 0.955(0.50) 0.924(0.76)†

Non-linearNR,1 0.343(1.10)† 0.952(1.61) 0.923(1.63)† 0.101(0.55)† 0.948(0.70) 0.942(0.79)
InterQuad Treatment Assignment Model

LinearNR,0 0.949(0.29) 0.966(0.46)† 0.956(0.45) 0.939(0.29) 0.957(0.45) 0.934(0.45)†

Non-linearNR,0 0.858(1.10)† 0.959(1.45) 0.786(1.45)† 0.897(0.50)† 0.962(0.63) 0.789(0.62)†

LinearNR,1 0.951(0.49) 0.964(0.52) 0.948(0.77) 0.937(0.50)† 0.950(0.51) 0.939(0.77)
Non-linearNR,1 0.861(1.05)† 0.964(1.47) 0.804(1.53)† 0.910(0.58)† 0.967(0.68) 0.850(0.78)†

Numbers in parentheses correspond to average confidence interval length.

In the above generative models, S0 = (X>1 , A1, X̆
>
2 )> and W 0 = X1; the vectors S =

R(1, A1, X̆21, X̆22)
> and W = (1, X11, X12)

> are respectively used to model the second and

first stage Q-functions. The second stage blip functions are linear and correctly specified in

both models, leading to β∗2 = (0,θ>2 , 0)>. In both scenarios, for each subject i, we define the

first-stage pseudo outcome as

Ỹi = Yi +$RS>i β
∗
2{I(S>i β

∗
2 > 0)− A2i},

its estimate ˆ̃Yi being calculated by substituting β̂2n in for β∗2. The construction of the pseudo-

outcome, specifically the projection S>β∗2, results in the violation of Assumption 6 for both

generative models. In particular, $ = 0 corresponds to no second-stage effect modifier

because β∗2 = 0; hence, we have P (|S>β∗2| = 0) = 1. Setting $ = 1 instead implies that

there is no second-stage treatment effect when R(A1 + X̆21) = 0 and a reasonably strong

effect when R(A1 + X̆21) = 1; in this case, we have ‖β∗2‖ > 0 and 0 < P (|S>β∗2| = 0) < 1. In

addition to violating Assumption 6, both generative models also violate the key assumption

of Corollary 1 (i.e., E (A1i − µ1Ai |Wi,Si, In) = 0, i ∈ In) because the Stage 2 decision rule

depends on A1.
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Table S10. Performance of proposed Q-learning method under different de-
grees of non-regularity when Corollary 1 and Assumption 6 both fail.

β∗1,1 β∗1,2 β∗1,3
Models Proposed dWOLSκ=0.05

m,N Proposed dWOLSκ=0.05
m,N Proposed dWOLSκ=0.05

m,N

Randomized Treatment Assignment Model
LinearNR,0 0.938(0.12) 0.981(0.14)† 0.949(0.40) 0.968(0.46)† 0.965(0.40)† 0.984(0.46)†

Non-linearNR,0 0.940(0.29) 0.967(0.43)† 0.965(1.29)† 0.977(1.69)† 0.949(0.39) 0.973(0.68)†

LinearNR,1 0.951(0.22) 0.976(0.26)† 0.948(0.77) 0.973(0.89)† 0.950(0.77) 0.983(0.89)†

Non-linearNR,1 0.928(0.34)† 0.957(0.48) 0.967(1.43)† 0.980(1.82)† 0.941(0.69) 0.980(0.93)†

Linear Treatment Assignment Model
LinearNR,0 0.908(0.12)† 0.980(0.17)† 0.954(0.43) 0.968(0.50)† 0.939(0.43) 0.976(0.50)†

Non-linearNR,0 0.909(0.29)† 0.984(0.47)† 0.975(1.32)† 0.972(1.77)† 0.942(0.46) 0.981(0.78)†

LinearNR,1 0.951(0.24) 0.972(0.28)† 0.943(0.85) 0.970(0.97)† 0.949(0.86) 0.969(0.98)
Non-linearNR,1 0.955(0.35) 0.962(0.47) 0.971(1.50)† 0.976(1.93)† 0.942(0.80) 0.978(1.06)†

InterQuad Treatment Assignment Model
LinearNR,0 0.934(0.12)† 0.983(0.15)† 0.952(0.41) 0.975(0.48)† 0.948(0.41) 0.975(0.48)†

Non-linearNR,0 0.939(0.30) 0.914(0.45)† 0.944(1.29) 0.884(1.75)† 0.958(0.45) 0.885(0.76)†

LinearNR,1 0.950(0.26) 0.972(0.31)† 0.962(0.89) 0.983(1.02)† 0.941(0.90) 0.963(1.03)
Non-linearNR,1 0.907(0.38)† 0.971(0.55)† 0.968(1.51)† 0.923(1.95)† 0.962(0.87) 0.945(1.12)

Numbers in parentheses correspond to average confidence interval length.

We compare the coverages of our estimators with those obtained for dWOLS using the

m-out-of-n bootstrap (i.e., dWOLSκ=0.05
m,N ). Table S10 presents the results based on 1000

datasets of size 2000. In the table, β∗1,1, β
∗
1,2 and β∗1,3 respectively the true parameter values

corresponding to variables A1 (i.e., we assume W has an intercept), A1X11 and A1X12.

When $ = 1, (β∗1,1, β
∗
1,2, β

∗
1,3) ≈ (0.55, 0.00,−0.57) and (β∗1,1, β

∗
1,2, β

∗
1,3) ≈ (0.77, 0.00,−0.29)

for the linear and non-linear outcome models, respectively (note: these are approximated by

simulation). Also, when $ = 0, (β∗1,1, β
∗
1,2, β

∗
1,3) ≈ (−0.23, 0.00,−0.29) and (β∗1,1, β

∗
1,2, β

∗
1,3) =

(0, 0, 0) for the linear and non-linear outcome models, respectively. Despite violation of the

regularity assumption, the proposed method continues to provide valid confidence intervals

for the parameters β1,2, and β1,3. However, the confidence intervals for β1,1 exhibit less-

than-nominal coverage in a majority of cases. As expected, when either of the outcome or

the treatment assignment models are correctly specified the dWOLSκ=0.05
m,N provides valid, if

typically conservative, confidence intervals for all parameters. However, when both of these

models are misspecified, the coverage rates are more substantially compromised.

2.4. Value Function Estimates for Regular Case. In this section we plot the value

functions corresponding to the estimated decision rules obtained in the regular setting (see

Section 5.1 of the main paper). All methods perform essentially identically as far as the
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Figure S1. Value functions for estimated decision rules for regular case and different
sample sizes.

underlying value function when the outcome model is linear, even for N = 250; these results

are not included. In the case where the outcome model is not linear, we see that the

proposed method typically results in a value function that is closest to the true optimal

value, followed by dWOLS and then standard Q-learning. However, the overall degree of

discrepancy is generally small, particularly between dWOLS and the proposed approach.
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