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A Proof for Lemma 1

Proof. Fix any realization of demand represented as a sequence D = {(id, td), D} (d = 1, 2, ..., D)

where id and td are the customer type and arrival time of the d-th arrival, respectively, and

D is a random variable representing the total number of arrivals. Let pidjk(td) ∈ [0, 1] be

the assignment probability of resource (j, k) to the d-th arrival. Note that the optimal offline

decisions must satisfy

D∑
d=1

pidjk(td) ≤ cj j = 1, 2, ..., J ; k = 1, 2, ...,K,

J∑
j=1

K∑
k=1

pijk(td) ≤ 1id=i, d = 1, 2, ..., D, i = 1, 2, ..., I

pidjk(td) = 0, ∀td = [0, sjk −W ) ∪ (sjk, T ].

Since the inequalities hold for any realization {(id, td)} (d = 1, 2, ..., D), then it is obvious that

the constraints will also be true after taking expectations on both sides. Therefore, the expected

optimal offline solution is feasible in problem (1), so that V OFF ≥ V ∗.
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B Proofs for Section 4

B.1 Proof for Lemma 2

Proof. For the first part, because rτ = Zτβ + ε, we have

β̂ = (ZT
τ Zτ )−1ZT

τ rτ

= (Z>τ Zτ )−1Z>τ (Zτβ + ε)

= β + (Z>τ Zτ )−1Z>τ ε.

Hence E[β̂] = β, and

V ar(β̂) = E[(β̂ − β)(β̂ − β)>]

= E[((Z>τ Zτ )−1Z>τ ε)((Z>τ Zτ )−1Z>τ ε)>]

= (Z>τ Zτ )−1Z>τ E[εε>]Zτ (Z>τ Zτ )−1

= σ2(Z>τ Zτ )−1.

The second part follows immediately from the first part.

B.2 Proof for Lemma 3

Proof. According to Lemma 2, zβ̂ follows the normal distribution, and the variance is known.

So we can construct a confidence interval around zβ̂

zβ̂ ± zα
2

σ
√

z>(Z>τ Zτ )−1z)√
τ

(1)

with confidence level 1− α, where zα
2

is the standard normal distribution coefficient.

Next we show how the width of confidence interval changes with the scaling parameter. As

a property of eigenvalues, we have

z>(Z>τ Zτ )−1z ≤ λmaxz>z ≤ tr((Z>τ Zτ )−1)z>z, (2)

where λmax is the maximum eigenvalue of (Z>τ Zτ )−1. By the Sherman-Morrison formula, after
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adding one more sample z′ into Zτ , the trace of the inverse matrix (Z>Z)−1
τ becomes

tr((Z>τ+1Zτ+1)−1) =tr((Z>τ Zτ )−1)− tr((Z>τ Zτ )−1z′z′>(Z>τ Zτ )−1)

1 + z′>(Z>τ Zτ )−1z′

≤tr((Z>τ Zτ )−1)− tr((Z>τ Zτ )−1z′z′>(Z>τ Zτ )−1)

1 + tr((Z>τ Zτ )−1)z′>z′

≤tr((Z>τ Zτ )−1)− tr(z′z′>)

tr2(Z>τ Zτ )(1 + tr((Z>τ Zτ )−1)z′>z′)
, (3)

where the first inequality follows (2), and the second inequality follows from tr(AB) ≤ tr(A)tr(B)

so that tr(z′z′>) = tr((Z>τ Zτ )(Z>τ Zτ )−1z′z′>(Z>τ Zτ )−1(Z>τ Zτ )) ≤ tr(Z>τ Zτ )tr((Z>τ Zτ )−1z′z′>(Z>τ Zτ )−1)

tr(Z>τ Zτ ). Suppose a ≤ z′>z′ ≤ b for all possible z′, then it is obvious that τa ≤ tr((Z>τ Zτ )) ≤

τb. Let xτ = tr((Z>τ Zτ )−1), then (3) becomes

xτ ≤ xτ−1 −
a

(τ − 1)2b2(1 + bxτ−1)
. (4)

We suppose that τ ∈ [τ0,∞) where τ = τ0 is the first time that the sample matrix Z becomes

a full rank matrix. It is obvious that sequence [xτ ] is decreasing, so that xτ ≤ xτ0 for all

τ ∈ [τ0,∞). Then zα
2

σ
√

z>(Z>Z)−1z)√
τ

≤ η1√
τ

where η1 = zα
2
σ
√
xτ0b, so that

P{||r − r̃||∞ ≤
η1√
τ
} ≥ 1− α. (5)

B.3 Proof for Lemma 4

Proof. From Chebyshev’s inequality, we have

P

(
|τ − E[τ ]| ≥

√
V ar[τ ]

δτ

)
≤ δτ .

So

P (τ ≤ E[τ ]−

√
V ar[τ ]

δτ
) ≤ P (|τ − E[τ ]| ≥

√
V ar[τ ]

δτ
) ≤ δτ .

Let τjk be the number of all customer types admitted to the kth resource of type j under

the exploration subroutine. Then E[τ ] = K0
∑N

j=1E[τjk ] considering recurrent arrivals. τjk is a

truncated Poisson random variable with rate λj =
∑M

i=1Dij , and it cannot exceed the resource
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capacity cj . Therefore,

E[τjk] =

cj∑
l=1

l
λlje
−λj

l!
+

∞∑
l=cj+1

cj
λlje
−λj

l!

=λj

cj∑
l=1

λl−1
j e−λj

(l − 1)!
+

∞∑
l=cj+1

cj
λlje
−λj

l!

≥λj
cj−1∑
l=0

λlje
−λj

l!

=λjP (Poisson(λj) < cj)

=λj(1− P (Poisson(λj) ≥ cj))

≥λj(1−
λj
cj

),

where we have used the Markov inequality in the last step. Hence, E[τ ] ≥ K0
∑N

j=1 λj(1−
λj
cj

).

Since τ is the sum of those truncated Poisson random variables, its variance is smaller than

that of the sum of those un-truncated Poisson random variables. So V ar[τ ] ≤ K0
∑N

j=1 λj . Let

µ = K0
∑N

j=1

∑M
i=1Dij(1−

∑M
i=1Dij
cj

)−
√

K0
∑N
j=1

∑M
i=1Dij

δτ
≤ E[τ ]−

√
V ar[τ ]
δτ

. Then P (τ ≤ µ) ≤

P (τ ≤ E[τ ]−
√

V ar[τ ]
δτ

) ≤ δτ .

B.4 Proof for Theorem 1

Proof. Let FMN+1 denote the event that the observation matrix Z has full rank M × N + 1.

Then by Lemma 3 and Lemma 4 we have

P{||r − r̃||∞ ≥
η1√
µ
|τ, FMN+1} = P{||r − r̃||∞ ≥

η1√
µ
|τ ≥ µ, FMN+1}P (τ ≥ µ)

+ P{||r − r̃||∞ ≥
η1√
µ
|τ ≤ µ, FMN+1}P (τ ≤ µ)

≤ P{||r − r̃||∞ ≥
η1√
µ
|τ ≥ µ, FMN+1}+ P (τ ≤ µ)

≤ α+ δτ .
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B.5 Proof for Lemma 5

Proof. Note that 1− x ≤ e−x for 0 ≤ x ≤ 1, therefore

1−
d∗ij
cje
≤ e−

d∗ij
cje . (6)

Thus (1− d∗ij
cje

)K
′
0cj ≤ e−

d∗ijK
′
0

e , and

P (FMN+1) ≥ ΠN
j=1(1−

M∑
i=1

[(1−
d∗ij
cje

)K
′
0cj ])pdelay (7)

≥ ΠN
j=1(1−

M∑
i=1

e−
d∗ijK

′
0

e )pdelay (8)

For an exploration phase of length K0 ≥ − e
mini,j d∗ij

ln
1−(

pf
pdelay

)
1
N

M − log(1−pdelay)
DL

, we have

P (FMN+1) ≥ ΠN
j=1(1−

M∑
i=1

e

d∗ij
mini,j d

∗
ij

ln
1−(

pf
pdelay

)
1
N

M
)pdelay

≥ ΠN
j=1(1−

M∑
i=1

1− (
pf

pdelay
)

1
N

M
)pdelay

= pf .

B.6 Proof for Theorem 2

Proof. From Theorem 1, we get:
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P{||r − r̃||∞ ≥
η1√
µ
} = P{||r − r̃||∞ ≥

η1√
µ
|FMN+1}P (FMN+1)+

P{||r − r̃||∞ ≥
η1√
µ
|F̄MN+1}P (F̄MN+1)

≤ P{||r − r̃||∞ ≥
η1√
µ
|FMN+1}P (FMN+1) + P (F̄MN+1)

= P{||r − r̃||∞ ≥
η1√
µ
|FMN+1}P (FMN+1) + 1− P (FMN+1)

= (P{||r − r̃||∞ ≥
η1√
µ
|FMN+1} − 1)P (FMN+1) + 1

≤ (P{||r − r̃||∞ ≥
η1√
µ
|FMN+1} − 1)pf + 1

≤ (α+ δτ − 1)pf + 1

C Proofs for Section 6

C.1 Proof for lemma 6

Proof. We obtain the total regret by summing up the regret in the exploration phase and that

in the exploitation phase as follows

RegTP =RegTP (0, T0) +RegTP (T0, T ). (9)

The first term is the regret incurred in the exploration phase, and it is smaller than K0||c||1

since each single resource can only incur regret at most 1. Along with regret of exploitation

phase, we have

RegTP (0, T ) ≤ K0||c||1 +
3

2
(K −K0)‖c‖1η1(η2K0 − η3

√
K0)−0.5

≤ K0||c||1 +
3

2
(K −K0)‖c‖1η1(η2 − η3)−0.5K−0.5

0
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C.2 Proof for Lemma 7

Proof. According to the expression Reg(K0) = K0||c||1 + η4‖c‖1(K −K0)K−0.5
0 , we have

∂Reg(K0)

∂K0
= a1 − a2K

−1.5
0 + a3K

−0.5
0 , (10)

where a1 = ||c||1, a2 = 0.5||c||1η4K, and a3 = −0.5||c||1η4. Therefore, to find the root of the

above equation, we have to solve a cubic polynomial

a1x
3 + a3x

2 − a2 = 0, (11)

where x = K0.5
0 . Since the discriminant of the equation ∆ = −4a3

3(−a2) − 27a2
1a

2
2 < 0, the

equation has only one real root and two conjugate non-real roots.

To solve the cubic polynomial, we transform the equation into another standard form

x3 + px+ q = 0, (12)

where p =
−a23
3a21

and q =
−27a21a2+2a33

27a31
. Note that ∂(a1x3+a3x2−a2)

∂x = 3a1x
2 + 2a3x > 0 for x ≥ 0,

because when K is a large number there are a1 > 0 > a3 and |a1| � |a3|. So there is only one

solution for (11) when x > 0, which is

x =
3

√
−q

2
+

√
q2

4
+
p3

27
+

3

√
−q

2
−
√
q2

4
+
p3

27
. (13)

Since p = O(1) and q = O(K), when K is a large number we have |q| � |p|. Hence, we have an

approximate form of the solution, namely x = 3
√
−q = 3

√
27a21a2−2a33

27a31
. Furthermore, we have

K∗0 = x2 ≈ (
a2

a1
)
2
3 = (0.5η4K)

2
3 . (14)
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D Proof for Theorem 4

Proof. According to Theorem 2, with the current available data µω−1
0 , if an exploration phase

Kω
0 is selected, the estimation error will be

||r− r̃||∞ ≤
η1√

µω + µω−1
0

= η1(η2K
ω
0 −η3

√
Kω

0 +µω−1
0 )−0.5 ≤ η1((η2−η3)Kω

0 +µω−1
0 )−0.5, (15)

where µω = η2K
ω
0 − η3

√
Kω

0 . So we can again proceed as before and now we have

Regω(Kω
0 ) = Kω

0 ||c||1 + ||c||1η4(K −Kω
0 )(Kω

0 +
µω−1

0

η2 − η3
)−0.5,

where η4 = 3
2η1(η2 − η3)−0.5. In the following let Xω−1

0 =
µω−1
0

η2−η3 . So Xω−1
0 is the total number

of previous data in terms of the number of cycles.

According to the expression of Regω(Kω
0 ), we have

∂Regω(Kω
0 )

∂Kω
0

= a1 − a2(Kω
0 +Xω−1

0 )−1.5 + a3(Kω
0 +Xω−1

0 )−0.5, (16)

where a1 = ||c||1, a2 = 0.5||c||1η4(K+Xω−1
0 ), and a3 = −0.5||c||1η4. Therefore, to find the root

of the above equation, we have to solve a cubic polynomial

a1x
3 + a3x

2 − a2 = 0, (17)

where x = (Kω
0 +Xω−1

0 )0.5. Since the discriminant of the equation ∆ = −4a3
3(−a2)−27a2

1a
2
2 < 0,

the equation has only one real roots.

To solve the cubic polynomial, we transform the equation into another standard form

x3 + px+ q = 0, (18)

where p =
−a23
3a21

and q =
−27a21a2+2a33

27a31
. The solution is

x =
3

√
−q

2
+

√
q2

4
+
p3

27
+

3

√
−q

2
−
√
q2

4
+
p3

27
. (19)

Since p = O(1) and q = −O(Xω−1
0 ), when Xω−1

0 → ∞ we have |q| � |p|. Hence, we have

an approximate form of the solution, namely x ≈ 3
√
−q = 3

√
27a21a2−2a33

27a31
. Furthermore, since
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a1 = O(1), a2 = O(Xω−1
0 ) and a3 = O(1), when Xω−1

0 →∞, we have

Kω
0 = x2 −Xω−1

0 ≈ (
a2

a1
)
2
3 −Xω−1

0 = (
η4(K +Xω−1

0 )

2
)
2
3 −Xω−1

0 . (20)

Inserting Kω
0 into the regret bound and considering K →∞, we have

Regω = O(
[
η4(K +Xω−1

0 )
] 2
3 ||c||1 −Xω−1

0 ||c||1). (21)

It is clear that within each epoch, the regret Regω has the same order as the exploration length

Kω
0 , i.e., Regω = O(Kω

0 ). Let RegMP =
∑Ω

ω=1Reg
ω. Then RegMP = O(XΩ

0 ), for XΩ
0 =∑Ω

ω=1K
ω
0 . Note that Xω−1

0 is increasing with ω according to the definition, and when Xω−1
0 is

large enough, Kω
0 goes to 0. This implies that Xω−1

0 will converge. Note that X1
0 = O(K

2
3 ),

and it also implies that Xω−1
0 = O(K

2
3 ) for all ω = 3, ...,Ω + 1 since if Xω−1

0 exceeds O(K
2
3 ),

Kω
0 would become negative when K → ∞. Therefore, when K → ∞, we have RegMP =

O(XΩ
0 ) = O(K

2
3 ). Let Ktotal = ΩK be the total number of cycles for all horizons, then we have

RegMP = O(K
2
3
total).

E Table of average regret of t-test
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Table 1: Summary of average regret and results of t-test.

Mean of average regret Std of average regret Confidence interval width T-test result

K TP
Greedy

exp.
ε Greedy TP

Greedy

exp.
ε Greedy TP

Greedy

exp.
ε Greedy

Greedy

exp.
ε Greedy

5 68.2 83.0 73.2 33.4 18.1 11.4 12.0 6.5 4.1 0.72 0.78

10 64.0 88.0 75.0 32.5 24.6 7.8 11.6 8.8 2.8 1.48 1.80

15 63.3 84.0 79.3 6.4 14.1 5.2 2.3 5.0 1.9 5.67 10.65

20 61.5 84.5 76.0 7.1 13.0 5.4 2.5 4.7 1.9 5.37 8.94

25 62.4 82.4 73.6 6.7 7.0 5.2 2.4 2.5 1.9 6.34 7.23

30 62.7 80.3 74.7 5.5 6.3 6.1 2.0 2.3 2.2 7.84 7.98

35 63.1 80.6 74.6 6.1 6.1 5.3 2.2 2.2 1.9 7.27 7.79

40 62.8 79.0 73.3 6.5 5.3 5.2 2.3 1.9 1.9 6.84 6.90

45 63.8 79.8 73.8 5.6 6.4 4.3 2.0 2.3 1.5 6.48 7.80

50 62.0 79.0 72.8 6.1 6.3 5.0 2.2 2.3 1.8 6.77 7.52

55 61.8 77.5 72.9 6.2 5.6 4.7 2.2 2.0 1.7 7.27 7.84

60 63.0 78.3 73.7 6.0 5.1 4.3 2.1 1.8 1.5 7.41 7.93

65 61.5 77.7 72.5 5.4 5.8 4.4 1.9 2.1 1.6 7.55 8.53

70 61.4 78.6 72.9 6.0 4.6 3.8 2.1 1.6 1.4 8.32 8.84

75 61.3 77.3 72.0 6.0 3.0 4.0 2.2 1.1 1.4 8.71 8.11

80 62.5 77.5 72.5 5.5 3.5 4.7 2.0 1.2 1.7 8.46 7.63

85 62.4 77.6 71.8 5.7 4.4 4.9 2.0 1.6 1.8 7.13 6.82

90 61.1 76.7 72.2 5.4 4.4 4.2 1.9 1.6 1.5 8.78 8.88

95 62.1 77.9 72.6 6.0 5.3 4.2 2.1 1.9 1.5 7.20 7.86

100 61.0 77.0 72.0 6.2 2.8 3.7 2.2 1.0 1.3 8.86 8.38

105 61.0 77.1 72.4 6.0 3.4 4.4 2.1 1.2 1.6 9.07 8.44

110 61.8 78.2 72.7 5.4 4.8 4.1 1.9 1.7 1.5 8.29 8.84

115 60.9 77.4 72.2 5.9 5.6 3.0 2.1 2.0 1.1 7.64 9.42

120 61.7 77.5 71.7 5.9 4.6 3.3 2.1 1.6 1.2 7.30 8.06

125 60.8 76.8 71.2 5.5 2.2 3.3 2.0 0.8 1.2 9.68 8.95

130 61.5 77.7 72.3 5.7 3.7 2.8 2.1 1.3 1.0 8.62 9.23

135 61.5 77.0 71.9 5.6 3.9 2.5 2.0 1.4 0.9 8.31 9.19

140 61.4 77.1 72.1 5.8 4.8 4.2 2.1 1.7 1.5 7.83 8.19

145 61.4 77.2 72.4 5.5 4.0 2.2 2.0 1.4 0.8 8.85 10.14

150 61.3 77.3 72.0 5.7 4.1 3.3 2.0 1.5 1.2 8.39 8.92

155 61.3 76.8 71.6 5.7 3.5 4.0 2.0 1.3 1.4 8.40 8.11

160 61.9 77.5 72.5 5.7 2.7 2.8 2.1 1.0 1.0 9.17 9.09

165 61.2 77.0 72.1 5.8 3.6 3.0 2.1 1.3 1.1 8.73 9.17

170 61.2 77.1 71.8 5.9 2.9 3.4 2.1 1.0 1.2 8.89 8.53

175 60.6 76.6 71.4 5.9 2.7 3.8 2.1 1.0 1.3 9.11 8.46

180 61.1 77.2 72.2 5.9 3.6 2.4 2.1 1.3 0.9 8.73 9.49

185 61.1 76.8 71.9 6.3 3.7 2.2 2.3 1.3 0.8 8.09 8.84

190 60.5 76.8 71.6 5.7 2.3 2.1 2.0 0.8 0.8 9.85 9.98

195 61.5 77.4 72.3 5.4 3.4 2.0 1.9 1.2 0.7 9.25 10.28

200 61.5 77.0 72.0 5.5 3.5 2.5 2.0 1.3 0.9 8.79 9.52

205 61.0 77.1 71.7 5.7 3.3 2.3 2.0 1.2 0.8 8.98 9.61

210 61.4 77.1 72.4 5.3 3.5 1.9 1.9 1.3 0.7 9.46 10.70

215 61.4 77.2 72.1 5.4 4.4 2.1 1.9 1.6 0.7 8.37 10.06

220 60.9 76.8 71.8 5.8 2.3 1.1 2.1 0.8 0.4 9.54 10.08

225 60.9 76.9 71.6 5.8 4.0 2.1 2.1 1.4 0.8 8.33 9.48

230 61.3 77.4 72.2 5.7 3.7 1.6 2.0 1.3 0.6 8.83 10.13

235 61.3 77.0 71.9 5.3 3.0 1.7 1.9 1.1 0.6 9.60 10.53

240 61.3 77.1 71.7 5.5 0.8 1.1 2.0 0.3 0.4 10.19 10.12

245 61.2 77.1 72.2 5.4 2.8 1.6 1.9 1.0 0.6 9.89 10.66

250 61.2 77.2 72.0 5.4 3.3 1.9 1.9 1.2 0.7 9.37 10.35
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