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random forest under various censoring mechanisms

1 Choice of the parameters minleaf and maxdepth

The values taken by the parameters minlea f and maxdepth in the numerical applications of the

article are optimized so that the different random forest algorithms achieve good performances.

In this section, we first provide a sensitivity analysis performed on the simulated data presented

in Section 3.1.1 which shows that the parameters minlea f = 50 and maxdepth = 4 are optimal

for the majority of the random forest algorithms considered. We then discuss these optimal

parameter values. Finally, we give the results of the sensitivity analysis performed on real data,

along with some comments.

1.1 Study of the model’s sensitivity to the parameters minleaf and maxdepth

on simulated data

1.1.1 Setting and results

This study is based on the simulated datasets used in Section 3 which corresponds to a Weibull

distribution (Case 1), a function φ(t) = log(t + 1), and a censoring rate q ∈ {0.1, 0.3, 0.5}. The

same models as those represented on Fig. 1 are used, except the Cox model (Cr) which is not

relevant in this analysis, and swRF22 that we added to the compared models. Each model is

evaluated under the chosen parameters maxdepth = 4 & minlea f = 50 and the other settings

given in Tab. 4. The means of the MSE over the 100 i.i.d. replicates of the simulation process are

given in Fig. 5. For the sake of clarity, the models are divided in two subsets, each represented

on the left side and right side of the figure.
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maxdepth minlea f
4 50
10 10
10 20
10 50
10 100
10 200

Tab. 4: Parameters used for the sensitivity analysis performed on simulated data.
In bold, the parameter values used for the applications in the article

For the cases q = 0.1 and q = 0.3, we can observe that every model, except RRTr

(when q = 0.1) and swRF11 (when q = 0.3), achieves its best performance with the setting

maxdepth ∈ {4, 10} & minlea f = 50. The results are more contrasted when the rate of censor-

ing is higher (q = 0.5): while some models still achieve their best MSE with maxdepth ∈ {4, 10}

& minlea f = 50 (swRF32, RS Fr, RRRr, swRF34), other models such as swRF11, swRF13

and swRF22 reach their best performances for minlea f ∈ {100, 200}. Thus, there is here a

clear distinction between the models which use the Kaplan-Meier estimator in each terminal

leaf and the models which employ in terminal leaves the IPCW used to grow the trees, these

latter requiring more observations in each leaf to give good results.

1.1.2 Comments about the choice of minleaf= 50

The value minlea f = 50 is bigger than the minlea f values usually reported in the literature. As

an example, Zhu & Kosorok (2012) limit the number of observed failures in terminal nodes to

six when measuring the performances of RSF and recursively imputed survival trees (RIST).

Moreover, a common assertion found in the literature is that random forest algorithms perform

well if the individual trees are grown to full size or nearly full size, which corresponds to small

minlea f values (e.g. minlea f ≤ 5). For example, we refer to Sun (2010) or Biau & Scornet

(2016). We would like to challenge this common belief in view of the results of our sensitivity

analysis. Our results clearly demonstrate that, no matter which random forest model is used, a

minlea f of 10 is not big enough to reach the optimal range of MSE for our application. In fact,

as supported by Segal (2004), the choice of the parameters which control the size of the trees

involves a bias-variance trade-off. Scornet (2017) endorses this point of view, arguing that a

high signal/noise ratio in the data, for a given classification of regression problem, causes large

trees to perform well, while a lower signal/noise ratio leads to small trees performing better. The

article analyzes the optimization of the parameters in the random forest algorithm and finds no
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theoretical reason to use the default values proposed by Breiman (minsplit = 5 for regression),

concluding that optimizing the parameters which control the size of the terminal leafs and the

size of the bootstrap samples improve the performance. From a practical point of view, many

recent works insist on the importance of the tree size optimization for random forests : e.g.

Boulesteix et al. (2012), Huang & Boutros (2016), or Probst et al. (2018).

1.2 Sensitivity analysis on real data

The results of the sensitivity analysis performed on real data are given on Fig. 6. The chosen

parameters maxdepth = 5 & minlea f = 100 are compared with the settings given in Tab. 5.

The results justify our parameter choices and are coherent with the analysis made for simulated

data (with q = 0.5). Indeed, our real data application is an example of a situation where the

signal/noise ratio is low. The C-index values given in Fig. 3 are around 0.56, which is low

compared to the results obtained with the various datasets (except the transplant dataset) in

Ishwaran et al. (2008). The percentage of explained variance R2 is about 0.03, and thus quite

low. Therefore, it is necessary to use small trees, with maxdepth = 5 & minlea f = 100 for

a training set composed of 5000 observations, to achieve optimal performances with random

forest algorithms.

maxdepth minlea f
5 100
10 50
10 100
10 200
10 500

Tab. 5: Parameters used for the sensitivity analysis performed on real data. In bold, the param-
eter values used for the applications in the article

2 Other results on simulated data

The Fig. 7 shows the complete results obtained for the sixteen models considered in the simu-

lated data experiment of Section 3, completing the information presented in Fig. 1. Of course,

the results presented on Fig. 7 are consistent with the analysis made in Section 3.2.1.
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3 Other results on real data and further comments

The Fig. 8 & 9 complete the results obtained on real data presented in Section 4.3. It is worth-

while noting that the model RLTr performs slightly better than the model nRLTr. It is not

surprising to have such a small difference between the two models since the data is not high-

dimensional, with only six covariates. The fact that swRF32 is the best model in our real data

application suggests that conditional IPCW are effective at selecting the optimal splits in the

early steps of the tree growing (with a split criteria being unbiased under the conditional inde-

pendence assumption), but less reliable to estimate individual tree predictions in terminal leaves

especially when the censoring rate is high and the leaves contain few non-censored observations.

Even if the explained variance of our model is only about three percent, it is still very useful

to optimize a model for churn prediction, because at the aggregated level of an insurance portfo-

lio made of 200 000 policies, small improvements in the prediction of individual risks result in

large impacts on the cash flows of the company. In fact, this situation of low signal/noise ratio

is common in the domain of survival analysis. Sometimes, even when a model manages to rank

the relative risks of the observations with a good accuracy, it can not predict the target duration

with a low uncertainty. For instance in reliability analysis, it is usually hard to predict precisely

the failure time of a component. This is illustrated in the work of Hong et al. (2009), who found

in their study that the prediction intervals for the remaining lifetimes of power transformers are

very large.
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Fig. 5: Results of the sensitivity analysis on simulated data.

The mean of the MSE over the 100 i.i.d. replicates of the simulation process, for each random forest model and
each pair of parameters maxdepth (md) & minlea f (ms). For RLTr, embed.ntrees is set to 10. For each random
forest, ntree = 100 and mtry = p = 6.
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Fig. 6: Results of the sensitivity study on real data.

The mean of the MSE (estimated with RSF weights) and C-index over the 100 i.i.d. replicates of the simulation
process, for each random forest model and each pair of parameters maxdepth (md) & minlea f (ms). For RLTr,
embed.ntrees is set to 10. For each random forest, ntree = 100 and mtry = p = 6.

7



Fig. 7: Results on simulated data - all models

For each setting, the mean of the MSE values over 100 i.i.d. replicates of the simulation process is shown. The
censoring rate q is equal to 0.1, 0.3, or 0.5, while the percentage of explained variance of C given X: R2C , is set to
0.05 or 0.1.
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Fig. 8: Results on real data - all models

Left : the mean of the MSE values over 100 i.i.d. replicates of the simulation process, computed with KM, Cox
and RSF weights. Right : the mean of the C-index over 100 i.i.d. replicates.
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Fig. 9: Boxplot of the performances (MSE) of
the models; φ = φch, with RSF weights.

model mean rank
swRF11 9.0
swRF12 9.5
swRF13 4.8
swRF21 9.6
swRF22 9.6
swRF31 4.7
swRF32 2.8
RS Fr 5.9
Cr 6.9
RRTr 6.9
RLTr 3.7
nRLTr 4.4

Tab. 6: Mean ranks of the models; φ = φch,
with RSF weights.
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