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Introduction to sword

What is sword ?

sword is an experimental package which provides a tool to generalise the use of the Random Forest algorithm
and the Generalised Additive Model (GAM) model to the modeling of right censored data. Such models can
be built very easily thanks to sword, and their performances can be compared with benchmark models.

Technically, sword is a wrapper for statistical algorithms provided in the R packages randomForestSRC
(random forest : rfsrc), rpart, survival and mgcv (gam).

As sword is experimental, it is designed such that somebody interested in the method could test it and get
results very fast on new data. However, sword is not numerically optimised and can not handle massive
amount of data.

We point out that sword has more a research focus and one should be careful before making a professional
use of it.

Survival regression setting

To describe the general problem we study, let T a time variable. It is well known that in some applications
where the time of interest is a long duration, the time T may not be fully observed due to the fact that T
may not have occured before the end of the study, or that the follow up of an individual may have stoped
prematurely, before T occured. We meet such situations in the study of lifetime, long term care insurance,
predictive maintenance or contract churn. Indeed, in the case of lifetime for instance, part of the population
is still alive at the time the study is made and the lifetimes of the living individuals are unknown : we know
that their lifetimes (T ) are bigger than their current ages but we don’t know what will be their lifetimes (we
know a partial information).

In this context, we then define C the time of the end of the observation, caused by any reason (end of follow
up, end of the study, . . . ) except death, and we say that T is right censored by C. Instead of observing T ,
we observe Y = min(T,C) and ∆ = 1T≤C .

We note X a vector of characteristics of an observation (e.g. for the study of lifetime : sex, education,..). Then
our observations consists in n independant and identically distributed replications of the vector (Y,∆, X).
We note (Yi,∆i, Xi)i=1,..,n the random variables, and (yi, δi, xi)i=1,..,n the corresponding observations.

In some situations, one may be interested in predicting φ(T ) (for a given function φ) rather than predicting
T . We give an example of this situation in the article [??] where T corresponds to the termination time of
an insurance contract and φ(T ) denotes the amount of commission received by the broker which sold the
contract. In the following, we study another example where φ(T ) = 1T>365 and we focus on predicting the
probability that the waiting time before a patient benefit from a liver transplantation exceed one year.

The packages sword answers the problem of the prediction of φ(T ), providing functions to build models that
aims to estimate E[φ(T )|X].
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Weighted method for the regression of a right censored variable

Inverse Probability of Censoring Weighting (IPCW)

The main function of sword is the function weighted_regression_survival : this function allows to fit
random forest and GAM (Generalised additive model) models to a right censored variable, using Inverse
Probability of Censoring Weighting (IPCW). The idea behind the IPCW method is that the non censored
observations of T : (yi)i∈{i=1,..n/δi=1}, are biased downwards since they are realisations of the variable
T |T ≤ C. But it is possible to compensate the bias induced by the censoring thanks to a correct weighting.

If we assume (H) that T and C are independent conditinally on X, then we can show that we have the
following equality :

E [W · ψ(Y,X)] = E [ψ(T,X)] , with W = ∆
SC(Y |X)

with SC(t |X = x) denoting the survival function of C given that X = x, and ψ a given function.

This equality shows that it is possible to estimate the distribution of (T,X) from the available censored
observations (yi, δi, xi)i=1,..,n. To do so, each observation (yi, xi) is weighted as follow :

• wi = 0 if δi = 0 (Ti is censored)
• wi = 1 / SC(yi|X = xi) if δi = 0 (yi = ti and Ti is not censored)

Remark: we have SC(ti|X = xi) = P (C > ti|X = xi)
(H)= P (C > T |X = xi, T = ti). Then we observe that

the quantity SC(ti|X = xi) corresponds to a probability of being non censored. Hence the name IPCW.

By attributing weights wi to the observations, weighted_regression_survival generalises classical regres-
sion algorithms to the right censored case.

Practical algorithms

In practice, the function SC(·|X = x) is unknown and so are the weights wi. Then we should estimate SC(·|X =
x) in order to use the IPCW principle. There are 3 methods implemented in weighted_regression_survival
to estimate SC(·|X = x) (type_weights argument) :

• "KM" : Kaplan Meier estimator (it makes the stonger assumption that (T,X) and C are independent),
• "Cox" : Cox model,
• "RSF" : Random Survival Forest.

Once we have built an estimator ŜC(·|X = x) of SC(·|X = x), we can compute the IPC weights ŵi =
δi / ŜC(yi|X = xi).

Then the method consists in using the regression algorithm to predict the targets φ(yi), with explanatory
variables xi, and with each observation i getting a weight ŵi in the model training.

Depending on the algorithm, there might be different ways to take the weights into account. For instance, if
we consider a linear gaussian model (with parameter β) as regression algorithm, the weights ŵi are introduced
in the quadratic error of the model and β̂ is estimated with :

β̂ = argmin
β∈Rd

n∑
i=1

ŵi · (φ(yi)− β · xi)
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Example data : Liver transplant waiting time

We now illustrate through an example how the package sword can be used to model right censored data. We
use the dataset called transplant which records, from 1990 to 1999, information about the patients which
were on a waiting list for receiving a transplant.

Load and preprocess the data

library(sword)
library(ggplot2)
library(reshape2)

data("transplant")
head(transplant)
#> age sex abo year futime event
#> 1 47 m B 1994 1197 death
#> 2 55 m A 1991 28 ltx
#> 3 52 m B 1996 85 ltx
#> 4 40 f O 1995 231 ltx
#> 5 70 m O 1996 1271 censored
#> 6 66 f O 1996 58 ltx

In this dataset, the variable futime corresponds to the Y variable defined in the previous paragraph (time
from entry in the list to the exit of the list fo rany reason) and event corrresponds to ∆. A small difference
is that in the transplant dataset there are 4 outcomes for the event taking place at the end of the futime
period (censored, death, ltx : liver transplant, or withdraw) whereas in our setting there are only two
possible outcomes : ocurrence of T or censoring (end the observation : C). For the purpose of the example, we
reduce the problem studied here in a problem with a binary outcome by condidering the event delta : did the
person receive a transplant ? yes : 1 (ltx modality) or no : 0 (censored, death, withdraw modalities). As a
result, we study the distribution of the variable “waiting time from the entry in the list until transplantation”.
transplant$delta = 1 * (transplant$event == "ltx") # create binary variable which indicate censoring/non censoring

Four covariates (vector X) are provided :

• age : age at entry in the waiting list
• sex
• abo : blood type : A, B, AB or O
• year : year of entrance in the waiting list

# compute the number of missing values for each column
apply(transplant, MARGIN = 2, FUN = function(x){sum(is.na(x))})
#> age sex abo year futime event delta
#> 18 0 0 0 0 0 0

# keep only rows with no missing value
transplant_bis = transplant[complete.cases(transplant),]

Statistics about the data (Survival function of the outcome)

# plot the survival curve of the waiting time until transplant
KM = survfit(formula = Surv(time = futime, event = delta) ~ 1,

data = transplant_bis)
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plot(KM,
main = "Survival Curve of the waiting time before liver transplant",
ylab = "survival prob.", xlab = "time (days)")
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Predict the probability that a transplantation occurs after more
than one year of waiting

In this application we take φ(t) = 1t>365 so that our goal is to estimate P (T > 365 | X).

We split the dataset into train and test sets so that we can validate our model :
nrow(transplant_bis) # number of observations
#> [1] 797

set.seed(17)
train_lines = sample(1:nrow(transplant_bis), 600)
train = transplant_bis[train_lines,] # train set
test = transplant_bis[-train_lines,] # test set

In this special case the value of φ(T ) is known as soon as T reaches 366 days : we can set T ′ = min(T, 366)
and we have φ(T ′) = φ(T ). Then we can replace φ(T ) by φ(T ′) ; the advantage is that T ′ ≤ T , then T ′ is less
censored than T and we get more non censored observations, resulting in a more accurate estimation. This
is the purpose of the max_time argument of the function weighted_regression_survival which allows to
replace T by T ′ = min(T, max_time).

4



Weighted Regression Survival

Train a weighted random forest model

By default, the type_regression argument of weighted_regression_survival takes the values "RF",
which means the regression algorithm used by the function is the random forest. The other possible value is
"gam". Then, the following command train a weighted random forest model on the transplant data :
res1 = weighted_regression_survival(y_var = "futime",

delta_var = "delta",
x_vars = c("age", "sex", "abo", "year"),
data_train = train,
data_test = test,
type_weights = "KM",
phi = function(x){(x > 365) * 1},
max_time = 366,
types_weights_eval = c("KM", "Cox", "RSF", "unif"))

The type_weights argument specifies the type of weights to use in the model training, among "KM", "Cox"
and "RSF" (see part. ??, default = "KM"). The other possible value is "unif" which corresponds to every
non censored observations getting the same weight (and censored obs. getting weights 0) : this value is not
recommended since it generally leads to highly biased results, but it can be tested.

Due to the max_time argument, the rate of censoring in the training data is different from the rate of censoring
in the initial data :
print(sum(train$delta == 0) / nrow(train)) # rate of censoring on the initial data
#> [1] 0.2283333
print(head(res1$censoring_rate_with_threshold)) # rate of censoring after thresholding with `max_time`
#> [1] 0.1254705

The training weights, which are in the above example computed with the "KM" method, are returned by the
function :
print(res1$v_weights_model_train[1:30])
#> [1] 0.002185784 0.002185784 0.001802074 0.001807359 0.001731829
#> [6] 0.002036441 0.001876524 0.000000000 0.002185784 0.001738812
#> [11] 0.001788555 0.001721746 0.002185784 0.001731829 0.000000000
#> [16] 0.000000000 0.002185784 0.001696026 0.000000000 0.001921689
#> [21] 0.002185784 0.001802074 0.002112170 0.001883605 0.000000000
#> [26] 0.001686853 0.001890934 0.002036441 0.002185784 0.001792949

The parameter max_ratio_weights_model may also be specified in the model training (default
value = 20). The purpose of this parameter is to limit the ratio max(ŵi)/min(ŵi) to the value
max_ratio_weights_model. When needed, the weights ŵi that exceed max_ratio_weights_model∗min(ŵi)
are set to the value : max_ratio_weights_model∗min(ŵi). Afterwards, the weights (ŵi) are normalised
such that they sum to 1.
print(res1$max_ratio_weights_model) # value passed to the weighted_regression_survival function (default value = 20)
#> [1] 20
print(max(res1$v_weights_model_train) / min(res1$v_weights_model_train[res1$v_weights_model_train > 0])) # maximum ratio among the train weights
#> [1] 1.307099
print(res1$n_weights_model_modif_train) # number of weights modified due to `max_ratio_weights_model`
#> [1] 0

In our example, as the rate of censoring is low and the values of T are thresholded by 366, the weights don’t
take big values and the parameter max_ratio_weights_model has no effect. But in some cases where the
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rate of censoring is high and/or max_time isn’t specified, the weighs ŵi can take very big values. When it
happens, il should be corrected because the importance of a single observation in the final model must be
limited : otherwise this results in very high variance in the final model.

Predictions of the model

The predictions given by the model on the train and the test sets are available in the returned object :
print(head(res1$predicted_train))
#> [1] 0.571513783 0.507620524 0.002034131 0.011968027 0.024799850 0.526557553
print(head(res1$predicted_test))
#> [1] 0.273462102 0.005632639 0.001075059 0.076765117 0.038575076 0.021048235

It is often needed to compute the predictions of the model on new data and the function predict_weighted_regression_survival
allows to do so :
pred_test = predict_weighted_regression_survival(object = res1, newdata = test)
print(pred_test$predicted[1:30])
#> [1] 2.734621e-01 5.632639e-03 1.075059e-03 7.676512e-02 3.857508e-02
#> [6] 2.104823e-02 3.295637e-03 3.454207e-02 3.157306e-02 1.832189e-02
#> [11] 6.184659e-03 4.410611e-01 5.420728e-02 1.449400e-01 4.101022e-01
#> [16] 1.035051e-02 4.794045e-01 1.223946e-03 8.550815e-02 3.440471e-03
#> [21] 1.223946e-03 9.170184e-03 7.762210e-02 6.351726e-01 1.342741e-02
#> [26] 3.297248e-02 1.633171e-02 4.174354e-01 4.759153e-01 6.849315e-05

Assess the quality of fit of the model

The type_weights_eval argument has the same set of possible values as type_weights, but multiple choices
are possible. This argument gives the names of the weights that should be considered for the calculation of
the mean squared error (MSE) estimator. Indeed, we have that, likewise for the model training, the right
censoring should be compensate in the test sample. We then use the same IPCW technique as for the training
and the MSE is evaluated with :

MSE = 1
ntest

ntest∑
i=1

ŵi · (φ(yi)− predi)2

where predi is the prediction made by the model.

Goodness of fit statistics on the test set are accessible through the list_criteria_test element of the
returned object :
print(res1$list_criteria_test$criteria_weighted) # test mse and R2
#> KM_mse KM_R2 Cox_mse Cox_R2 RSF_mse RSF_R2 unif_mse
#> 0.1238537 0.2229525 0.1232588 0.2277090 0.1257881 0.2062063 0.1127530
#> unif_R2
#> 0.2097894

We observe that we get one MSE for each type of weights specified in the types_weights_eval argument.

We also get the R2 criteria which are normalisations of the MSE. Let :

ˆMean = 1
ntest

ntest∑
i=1

ŵi · φ(yi)
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and

ˆV ar = 1
ntest

ntest∑
i=1

ŵi · (φ(yi)− ˆMean)2

Then R2 = 1−MSE / ˆV ar.

The classical concordance index (or C-index) is provided :
print(res1$list_criteria_test$concordance)
#> concordant
#> 0.7441038

These performance criteria are also computed on the train set :
print(res1$list_criteria_train)
#> $concordance
#> concordant
#> 0.8340606
#>
#> $criteria_weighted
#> KM_mse KM_R2 Cox_mse Cox_R2 RSF_mse RSF_R2
#> 0.08453915 0.53418672 0.08445106 0.53211002 0.08325215 0.53437152
#> unif_mse unif_R2
#> 0.07906565 0.52074750

The weights used to evaluate the model are accessible through :
# weights used for evaluation
print(head(res1$mat_weights_train))
#> KM Cox RSF unif
#> [1,] 0.002185784 0.002287308 0.002063324 0.001912046
#> [2,] 0.002185784 0.002119006 0.001995112 0.001912046
#> [3,] 0.001802074 0.001845550 0.001832967 0.001912046
#> [4,] 0.001807359 0.001872151 0.001775351 0.001912046
#> [5,] 0.001731829 0.001789211 0.001709707 0.001912046
#> [6,] 0.002036441 0.001946162 0.001965594 0.001912046
print(head(res1$mat_weights_test))
#> KM Cox RSF unif
#> [1,] 0.006632843 0.006253090 0.006174551 0.005747126
#> [2,] 0.005129246 0.005113647 0.005051521 0.005747126
#> [3,] 0.005129246 0.005113067 0.005017589 0.005747126
#> [4,] 0.005089125 0.005087231 0.005013520 0.005747126
#> [5,] 0.000000000 0.000000000 0.000000000 0.000000000
#> [6,] 0.005979022 0.005500810 0.005683825 0.005747126

Likewise for the weights used for training, the ratio between the evaluation weights may be limited to a certain
value (common for all the types of weights). This is specified by the argument max_ratio_weights_eval.
print(res1$max_ratio_weights_eval) # value passed to the weighted_regression_survival function (default value = 1000)
#> [1] 1000
print(res1$n_weights_eval_modif_test) # number of test weights modified because of the threshold
#> KM Cox RSF unif
#> 0 0 0 0
print(res1$n_weights_eval_modif_train) # number of train weights modified because of the threshold
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#> KM Cox RSF unif
#> 0 0 0 0

The outputs sum_weights_train and sum_weights_test returns the sum of the weights ŵi before any
thresholding is done on the weights. This value is normally closed from 1. A value far from 1 may indicate a
bad fit for the model which estimates SC(·|X).
print(res1$sum_weights_train) # sum of the train weights before reprocessing
#> KM Cox RSF unif
#> 1.000000 1.000195 1.006768 1.000000
print(res1$sum_weights_test) # sum fo the test weighs before reprocessing
#> KM Cox RSF unif
#> 0.999987 1.000778 1.012947 1.000000

other mode for weighted random forest

res2 = weighted_regression_survival(y_var = "futime",
delta_var = "delta",
x_vars = c("age", "sex", "abo", "year"),
data_train = train,
data_test = test,
type_weights = "KM",
phi = function(x){(x > 365) * 1},
max_time = 366,
types_weights_eval = c("KM", "Cox", "RSF", "unif"),
mode_w_RF = 2)

#> tree1.. tree2.. tree5.. tree10.. tree20.. tree30.. tree40.. tree50.. tree60.. tree70.. tree80.. tree90.. tree100..

print(res2$list_criteria_test)
#> $concordance
#> concordant
#> 0.7062369
#>
#> $criteria_weighted
#> KM_mse KM_R2 Cox_mse Cox_R2 RSF_mse RSF_R2 unif_mse
#> 0.1272653 0.2015484 0.1267140 0.2060598 0.1286473 0.1876447 0.1161002
#> unif_R2
#> 0.1863313
print(res2$list_criteria_test_KMloc)
#> $concordance
#> concordant
#> 0.7342767
#>
#> $criteria_weighted
#> KM_mse KM_R2 Cox_mse Cox_R2 RSF_mse RSF_R2 unif_mse
#> 0.1259114 0.2100428 0.1254294 0.2141084 0.1272064 0.1967431 0.1145549
#> unif_R2
#> 0.1971609
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weighted GAM model

The weighted_regression_survival may also be used to fit Generalized Additive Model (GAM) on survival
data by specifying type_regression = "gam" in the function call. Here, we train a GLM model with
binomial distribution and link logit on the data :
res2 = weighted_regression_survival(y_var = "futime",

delta_var = "delta",
x_vars = c("age", "sex", "abo", "year"),
data_train = train,
data_test = test,
type_regression = "gam",
type_weights = "Cox",
phi = function(x){(x > 365) * 1},
max_time = 366,
types_weights_eval = c("KM", "Cox", "RSF", "unif"),
family = binomial(link = "logit"))

#> Warning in eval(family$initialize): non-integer #successes in a binomial
#> glm!

#> Warning in eval(family$initialize): non-integer #successes in a binomial
#> glm!

IPC weights are computed using the Cox model (type_weights = "Cox"). The gam object is returned by
the function :
summary(res2$weighted_gam_object)
#>
#> Family: binomial
#> Link function: logit
#>
#> Formula:
#> phi ~ age + sex + abo + year
#>
#> Parametric coefficients:
#> Estimate Std. Error z value Pr(>|z|)
#> (Intercept) -1.762e+03 4.469e+03 -0.394 0.693
#> age 1.196e-02 3.194e-01 0.037 0.970
#> sexf -2.520e-02 6.021e+00 -0.004 0.997
#> aboB 9.230e-02 1.001e+01 0.009 0.993
#> aboAB -1.879e-01 1.488e+01 -0.013 0.990
#> aboO 1.508e+00 6.913e+00 0.218 0.827
#> year 8.811e-01 2.237e+00 0.394 0.694
#>
#>
#> R-sq.(adj) = 0.346 Deviance explained = 34.6%
#> UBRE = -0.97186 Scale est. = 1 n = 523

The fit appears to be poor because the p-values of the coefficients are high. The following scores confirm the
fit of the GLM (binomial) model is not good.
print(res2$predicted_test[1:20])
#> 7 9 11 19 20
#> 0.3237898409 0.0004748132 0.0005224648 0.0112900705 0.0378299939
#> 26 31 33 40 43
#> 0.0399378897 0.0178189523 0.1576255233 0.0361711032 0.0348577552
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#> 44 46 47 54 55
#> 0.0005040597 0.7473148696 0.0027466010 0.2012872892 0.5606590893
#> 56 59 60 62 69
#> 0.0014132901 0.3016860921 0.0005217981 0.0348148005 0.0004856820
print(res2$list_criteria_test)
#> $concordance
#> concordant
#> 0.7041405
#>
#> $criteria_weighted
#> Cox_mse Cox_R2 KM_mse KM_R2 RSF_mse RSF_R2
#> 0.15062742 0.05622762 0.15073683 0.05429012 0.15015030 0.04216128
#> unif_mse unif_R2
#> 0.13818333 0.03156517

Modify the arguments of the internal regression algorithm used

Both the random forest algorithm and the GAM model can benefit from the adjustment of different parameters.
For the random forest, the most common parameters are :

• ntree : number of tree grown in the forest,
• maxdepth : maximum aurotised depth in single trees. The depth of a tree is the lenght of the longuest

path from the original node of the tree to the terminal leafs,
• minleaf : minimum number of observations that should be present in a terminal leaf,
• mtry : number of variables drawn uniformly at each node, to look for the best split.

Those four parameters are available as parameters of the weighted_regression_survival function. But
many other parameters can be pass to the randomForestSRC::rfsrc function of the package , or the
rpart::rpart function. In fact, any parameter of the wrapped function can be specified through a call
to weighted_regression_survival, thanks to the argument .... For instance, one can add proximity
= TRUE when calling to weighted_regression_survival (type_regression = "rf", mode_w_RF = 1) and
the argument will be pass to the function randomForestSRC::rfsrc :
res11 = weighted_regression_survival(y_var = "futime",

delta_var = "delta",
x_vars = c("age", "sex", "abo", "year"),
data_train = train,
data_test = test,
type_weights = "KM",
phi = function(x){(x > 365) * 1},
max_time = 366,
types_weights_eval = c("KM", "Cox", "RSF", "unif"),
proximity = T)

print(res11$weighted_RF_object$proximity[1:5,1:5]) # matrix of the proximities between the first 5 obs. of the train set
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 1.00000000 0.225 0.02380952 0.0000000 0.0000000
#> [2,] 0.22500000 1.000 0.00000000 0.0000000 0.0000000
#> [3,] 0.02380952 0.000 1.00000000 0.4444444 0.4242424
#> [4,] 0.00000000 0.000 0.44444444 1.0000000 0.2307692
#> [5,] 0.00000000 0.000 0.42424242 0.2307692 1.0000000
print(dim(res11$weighted_RF_object$proximity)) # dimension of the proximity matrix
#> [1] 523 523

For the mgcv::gam function, no additionnal parameter figure in the list of the arguments of
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weighted_regression_survival. Every parameter should be pass thanks to "...". We did in the
previous paragraph to specify family = binomial(link = "logit") in the gam model.

Comparison with benchmark models

The two benchmark models we use are derived from 2 classical algorithms to study survival data : the Cox
model and the random survival forest algorithm. In both cases, the survival model is used to build a model
to estimate the conditionnal survival functions ST (·, X = x) : let ŜT (·, X = x) the estimates. Then, the
prediction for E[φ(T )|X = x] is estimated with the formula

φ̂ = −
∫ max_time

s=0
φ(s)dŜT (·, X = x)

Random Survival Forest

res2 = RSF_regression(y_var = "futime",
delta_var = "delta",
x_vars = c("age", "sex", "abo", "year"),
data_train = transplant_bis[train_lines,],
data_test = transplant_bis[-train_lines,],
phi = function(x){(x > 365) * 1},
max_time = 366,
types_weights_eval = c("KM", "Cox", "RSF", "unif"))

For the first 10 observations of the test set, we draw the predicted survival curves :

dpi=300

data_surv_test = cbind(melt(t(res2$survival_test[1:10,])), time = res2$time_points)
ggplot(data = data_surv_test,

aes(x = time, y = value, group = factor(Var2), color = factor(Var2))) +
geom_line() +
theme(legend.position = "bottom") +
ggtitle("Prédiction des courbes de survie des 10 premiers individus test (RSF)")
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Observe that we don’t estimate the survival curves beyond max_time, since these estimates would be useless.

These survival curves correspond to the following predictions in terms of φ (φ(t) = 1t>365):
res2$predicted_test[1:10]
#> [1] 0.34776355 0.07026781 0.08123179 0.05848006 0.04959919 0.07497374
#> [7] 0.02730424 0.04859462 0.04462842 0.04919866

We have the same quality of fit criteria as for the function weighted_regression_survival :
print(res2$list_criteria_test)
#> $concordance
#> concordant
#> 0.7267427
#>
#> $criteria_weighted
#> KM_mse KM_R2 Cox_mse Cox_R2 RSF_mse RSF_R2 unif_mse
#> 0.1292318 0.1892108 0.1290453 0.1914526 0.1310161 0.1742837 0.1177548
#> unif_R2
#> 0.1747349

Cox model

res3 = Cox_regression(y_var = "futime",
delta_var = "delta",
x_vars = c("age", "sex", "abo", "year"),
data_train = transplant_bis[train_lines,],
data_test = transplant_bis[-train_lines,],
phi = function(x){(x > 365) * 1},
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max_time = 366,
types_weights_eval = c("KM", "Cox", "RSF", "unif"))

data_surv_test2 = cbind(melt(t(res3$survival_test[1:10,])), time = res3$time_points)
ggplot(data = data_surv_test2,

aes(x = time, y = value, group = factor(Var2), color = factor(Var2))) +
geom_line() +
theme(legend.position = "bottom") +
ggtitle("Prédiction des courbes de survie des 10 premiers individus test (Cox)")
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print(res3$list_criteria_test)
#> $concordance
#> concordant
#> 0.7033543
#>
#> $criteria_weighted
#> KM_mse KM_R2 Cox_mse Cox_R2 RSF_mse RSF_R2 unif_mse
#> 0.1381558 0.1332224 0.1379455 0.1356879 0.1386536 0.1226918 0.1260125
#> unif_R2
#> 0.1168624

Comparison of the results

In this example where the goal is to predict the probabily that the waiting time until leaver transplant
exceeeds 1 year, we have seen that the weighted random forest approach achieve the best accuracy among
the different model, followed closely by the Random Survival Forest benchmark.

The advantage of the weighted random forest compared to the other models is that it focus on optimising the
criteria that we want to minimise, which is the quadratic error measured on the test set. On the other hand,
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the information processed by weighted_regression_survival is different from the information processed
by a benchmark (RSF_regression for example). Indeed, weighted_regression_survival processes the
information (φ(yi), xi, ŵi)i=1,..,n whereas RSF_regression processes the data (yi, δi, xi)i=1,..n. Since, φ is
an indicator function, weighted_regression_survival doesn’t see the difference between the uncensored
observations (yi = 370, δi = 1, xi = ..) and (yi = 900, δi = 1, xi = ..) whereas RSF_regression does make the
difference.

We have compared weighted_regression_survival and the benchmarks on many datasets, and though
there is no general rule that would identify the best model, there are some facts that we can highlight from
the experiments. First, weighted_regression_survival appears to perform well when the censoring rate
is low (less than 30%), and not very well when the rate of censoring increases. We think that this can be
explained by the fact that weighted_regression_survival is really a generalisation of the classical random
forest algorithm (for regression) to the right censored case. Hence, as the censoring rate gets low, we get closer
from the case where there is no censoring, and weighted_regression_survival behaves similarly as the
random forest in the uncensored case. Second, the φ function that is considered seems to have a big influence
on the results. Finally, the weighted apprach of the function weighted_regression_survival seems to work
better with conditionnal weights computed with Cox or RSF, than with Kaplan-Meier weights. But the latter
observation does not appear in the experiments with the transplant data because the censoring rate of this
dataset is too low (then the difference is very small between weights KM and the conditionnal weights).

We have also observed that the predictions obtained with weighted_regression_survival and the pre-
dictions made with benchmarks are not correlated a lot, and that combining them usually leads to better
accuracy
# là j'ai calculé le R2 du modele qui est la moyenne entre weighted rf et RSF, mai visiblement pas ouf (trop de variance dans les résultats de tte façon)
mean = sum( res1$mat_weights_test[,"KM"] * res1$data_test$phi)
R2 = 1 - sum( res1$mat_weights_test[,"KM"] * ((res1$predicted_test + res2$predicted_test)/2 - res1$data_test$phi )^2) /

sum( res1$mat_weights_test[,"KM"] * (res1$data_test$phi - mean )^2)

print(mean)
#> [1] 0.1989853
print(R2)
#> [1] 0.2130927

Conclusion

In this document, we have presented the package sword which aims to provide an implementation of the
weighted regression algorihtm for survival data, that we have studied in the article [??]. To illustrate the
fonctionalities of the package, we have explored the transplant data and we have applied the methods
provided in sword to answer the problem of the estimation of the probabilty that a patient remain in the
waiting list for liver transplant one year after entering the list.
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