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Abstract All proofs are given in the Supplementary Materials.

Appendix: Proofs

Proof of Theorem 1. We have

MSE
(
f̂(x0)

)
= E

(
f̂(x0)− f(x0)

)2
= E

(
m∑
j=1

bj(x0)γ̂j − f(x0)

)2

6 E

(
m∑
j=1

[γ̂j − f(aj)] bj(x0)

)2

/2 +

(
m∑
j=1

bj(x0)f(aj)− f(x0)

)2

/2

6 E sup
j=1,...,m

|γ̂j − f(aj)|2
(

m∑
j=1

|bj(x0)|

)2

/2 + δ2m/2 = O
(
δ2m + εn

)
,

which completes the proof. �

Proof of (11). Let bj(x) =
∏

16k6m, k 6=j(x− ak)/(aj − ak). We have

Ef̂(x0)− f(x0) =
m∑
j=1

bj(x0)Eγ̂j − f(x0) =
m∑
j=1

bj(x0)f(aj)− f(x0);

V ar
(
f̂(x0)

)
=

m∑
j=1

b2j(x0)V ar(γ̂j) = σ2‖b(x0)‖2/l.

By the theoretical results on the Chebyshev nodes-based polynomial interpolation (Stewart
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1996), the convergence rate δm = maxt∈[0,1] |f (m)(t)|/22m−1m! and ‖b(x0)‖ 6 1. Therefore,

MSE
(
f̂(x0)

)
6 δ2m +mσ2/n =

[
1

22m−1m!
max
t∈[0,1]

|f (m)(t)|
]2

+mσ2/n.

(i) Assume that maxt∈[0,1] |f (m)(t)| = O(m!). Take m = C log
(
n/ log(n)

)
with constant

C ∈ (0, 1/2]. We have

1

22m−1m!
max
t∈[0,1]

|f (m)(t)| = O

(
1

4m

)
= o

(
1

em

)
= o

(√
log(n)

n

)
,

which implies

MSE
(
f̂(x0)

)
= o

(√
log(n)

n

)
+mσ2/n = O

(
log(n)

n

)
.

(ii) Assume that maxt∈[0,1] |f (m)(t)| = O ((4/e)mm) and m
√

log(m) = C log(n) with constant

C > 0. By Stirling’s formula, we have

1

22m−1m!
max
t∈[0,1]

|f (m)(t)| ·
√

n

log(n)
= O

(
m
√
n

√
mmm

√
log(n)

)

= O

(
exp(m

√
log(m)/C)

exp(m log(m))(log(m))1/4

)
= o(1),

which implies

MSE
(
f̂(x0)

)
= o

(√
log(n)

n

)
+mσ2/n = o

(
log(n)

n

)
. �

Proof of (13). Assume f ∈ C4([0, 1]). Since the convergence rate of the cubic spline inter-

polator is 1/m4 (Stewart 1996), similar to the proof of (11), we have

MSE
(
f̂(x0)

)
6 (m−4)2 +O(m/n).
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With m ∼ n1/9,

MSE
(
f̂(x0)

)
= O

(
n−8/9

)
. �

Let f̃ denote the solution to the general KRR problem (26) in Section 4.2. Recall that f̂

is defined in (25). We now prove f̃ = f̂ .

Proof. For simplicity, let R, G, and r(x) denote RX , GX , and rX (x), respectively.

By (25),

f̂(x) = y′(In + nλVRV′)−1b(x) = y′(In + nλVRV′)−1 {Ug(x) + Vr(x)} .

By (26) and the representer theorem (Schölkopf, Herbrich, and Smola 2001),

f̃(x) = y′(R G)

 R2 + nλR RG

G′R G′G

−1 r(x)

g(x)

 .

It suffices to prove

(R G)

 R2 + nλR RG

G′R G′G

−1 = (In + nλVRV′)−1(V U),

which is implied by

(V U)

 R2 + nλR RG

G′R G′G

 = (In + nλVRV′)(R G). (0.1)

Recall U = R−1G(G′R−1G)−1 and V = [In −R−1G(G′R−1G)−1G′]R−1. We have

VRV′R =
[
In −R−1G(G′R−1G)−1G′

]
R−1

[
R−G(G′R−1G)−1G′

]
= In −R−1G(G′R−1G)−1G′ = VR.
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Therefore,

[
V(R2 + nλR) + UG′R

]
− [R + nλVRV′R] = VR2 + UG′R−R + nλ(VR−VRV′R)

= R−R−1G(G′R−1G)−1G′R + R−1G(G′R−1G)−1G′R−R = 0. (0.2)

On the other hand, we have

V′G = R−1
[
I−G(G′R−1G)−1G′R−1

]
G = 0.

Therefore,

[VRG + UG′G]− [G + nλVRV′G] = VRG + UG′G−G

=
[
In −R−1G(G′R−1G)−1G′

]
G + R−1G(G′R−1G)−1G′G−G = 0. (0.3)

Obviously (0.1) follows from (0.2) and (0.3). �

References

Stewart, G. W. (1996). Afternotes on Numerical Analysis, Society for Industrial and Ap-

plied Mathematics.

Schölkopf, B., Herbrich, R., and Smola, A. J. (2001). A generalized representer theorem.

In International Conference on Computational Learning Theory, 416–426, Springer.

4


