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Abstract All proofs are given in the Supplementary Materials.

Appendix: Proofs

Proof of Theorem 1. We have

< E <Z [ — f(a)] bj(Xo)> /2+ (Z bj(x0)f(a;) — f(Xo)> /2

J=1
2

< E sup |55 — flay)l? <Z|bj(xo)|> [2+05,/2=0 (0, +en),
j=1

which completes the proof. [J
Proof of (11). Let bj(x) = [],cpcpm, rei(® — ax)/(a; — ax). We have

Ef(xo) — f(x0) = Z bj(wo)EY; — f(wo) = Z bj(wo) f(a;) — f(xo);
Var (f(zo)) = " B wa)Var(3,) = o [b(ao) [*/1

By the theoretical results on the Chebyshev nodes-based polynomial interpolation (Stewart



1996), the convergence rate d,, = maxep,1 | f™ ()|/2*"'m! and ||b(zo)|| < 1. Therefore,

2
MSE <f(x0)> <02 +mo?/n = {; max |f(m)(t)|] +ma? /n.

22m=1Im| tefo,1]

(i) Assume that maxep 1) [f™(¢)] = O(m!). Take m = C'log (n/log(n)) with constant
C € (0,1/2]. We have

1 1 1 log(n)
- Fm @) = —J=0ol—=) =
22m=1lm| tem[(?}f]| ) O<4m) O(em> 0( n ) ’

which implies

MSE (f( )> :0< @) +m02/n20(@>.

(ii) Assume that maxe1) |f™ (¢)] = O ((4/e)™m) and m+/log(m) = C'log(n) with constant

C > 0. By Stirling’s formula, we have

1 . n my/n
sz max [f O] - [=ms = O
2 m! tefo,1] log(n) vmm™4/log(n)

=0 ( exXp(m 1Og(m)/0)>1/4> =o(1),

exp(mlog(m))(log(m)

which implies

MSE (f(x0)> = 0( 1og7§n)> +mo?/n=o (@) . g

Proof of (13). Assume f € C*(]0,1]). Since the convergence rate of the cubic spline inter-
polator is 1/m?* (Stewart 1996), similar to the proof of (11), we have

MSE ( f(z0)) < (m™*)? + O(m/n).



With m ~ n'/?,
MSE (f(z0)) =0 (n*). O

Let f denote the solution to the general KRR problem (26) in Section 4.2. Recall that f

A~

is defined in (25). We now prove f = f.
Proof. For simplicity, let R, G, and r(x) denote Ry, Gy, and ry(x), respectively.
By (25),

f(x) =y (L, + nAVRV') 'b(x) = y'(I, + nAVRV') "' {Ug(x) + Vr(x)} .

By (26) and the representer theorem (Scholkopf, Herbrich, and Smola 2001),

) R?+mR RG \ [ r(x)
fx) =y R G) ( ) ( ) .
G'R G'G g(x)

It suffices to prove

R?+n R RG

(R G) = (I, + nAVRV')"}(V U),
G'R G'G
which is implied by
R?2+n) R RG
(V U) = (I, + nAVRV')(R G). (0.1)
G'R G'G

Recall U=RI!'G(G'R!G) ' and V= [I, - R'G(G'R'G)!G'|R™!. We have

VRVR =[I,-R'G(GR'G) 'G]R'[R-G(G'R'G)'G]
=1, -R'G(G'R'G)"'G' = VR.



Therefore,

[V(R* + nAR) + UG'R] — R + nAVRV'R] = VR* + UG'R — R + nA(VR — VRV'R)
=R-R'G(GR'G)'GR+R'G(GR'G)'GR-R=0. (0.2)

On the other hand, we have
VG=R'[I-G(GR'G)'GR'|G=
Therefore,

[VRG + UG'G] - [G + nAVRV'G| = VRG + UG'G — G
— [I,-R'G(G'R'G)'G|G+R'G(GR'G)'GG-G=0. (03)

Obviously (0.1) follows from (0.2) and (0.3). O
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