SUPPLEMENTARY MATERIAL TO “SPECTRAL INFERENCE UNDER
COMPLEX TEMPORAL DYNAMICS”

JUN YANG AND ZHOU ZHOU

ABSTRACT. This file contains additional lemmas and detailed proofs to the remarks, lemmas,

and theorems of the paper.

Remark A.1. Denote X, ; := G(i/N, F,;) where F; = (..., €[un], €[uN|+1;- - - » €|uN]|+i)- Let

€, be anii.d. copy of ¢ and X ; := G(i/N, F ;) where F ; = (... €4, -, €,n s €E[uN]+15 - - - » E[uN]+i)
is a coupled version of F, ;. Then under GMC(p), p > 0, there exist C' > 0 and 0 < p =

p(p) < 1 that do not depend on w, such that for any v and i, we have

(1) sup E(|X,,; — Xual") < Op'.

This is because, when GMC(p) holds, we have sup, E(|X]; — Xy ") < Y277, 0,(k) <
O P*) = O0(p).

Furthermore, it can be easily shown that if GMC(2) holds, then sup,, |r(u, k)| = O(p*) for
some p € (0,1). Also, if sup, || X;||, < co and GMC(«) holds with any given a > 0, then X;
is GMC(«a) with any a € (0,p). In particular, if GMC(«) holds with some a > 2, then we
must have sup, > o |r(u, k)| < oo since sup,, |r(u, k)| = O(p*) = o(k~2). Also, if GMC(2)
holds as well as sup; E(] X;]|**°) < oo for some § > 0, then GMC(4) holds. <

Lemma A.2. (Berry-Esseen) If {X;,1 > 1} are independent random variables with E(X;) = 0,
s2 =571 E(X?) >0, Y0 E|Xi* < oo, for some 6 € (0,1] and S, = >.i, X;, there
exists a universal constant Cs such that

( > it ELXG 2T
(2) s [P(Sh < @) — R()] < Cs ( 15%-1—5 :
Proof. See [CT88, pp. 304]. O
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A.1. Proof of Lemma 8.1. Define d, ,(h) = %ZZ:H,L P o fbu -, for 0 < h < n —1 and
dyn(h) =01if h > n. Since

n

_ n
(3) > cos(kt,) cos((k + h)6,) = 5 cos(hb;,) 1=},
k=1
using
n+h n+h
Z Moy Jo oy | — h—— Z Moy, ke s k—h
k 1+h k n+1
@) h8 1 &L
2 COS Je ot
k=n-+1

we get that uniformly over J, ¢ and u, there exists Ky such that

7 5 COS h@n . [h
5 < K, — 1,
o - St < o

Next, we can write ||T,,,||*/n as

+o(1).

Furthermore, defining

™) zigruhcoshﬁ [%;T(k—tujv>7<w>],
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we have that

Z{EZT (k_#NJ)T <k+h; LuNJ)] r(u,h)ié%}

(=1

Ho=y #50) > {r(u, ) cos(ha,) [% % <%) ; (M)] }

By the assumptions that 7 € C'([-1/2,1/2]), [ 7%(x)dx = 1, together with sup, |r(u, h)| =
o(h™?), and > ;7 |r(u, h)| < oo, we have f,(u,0) = f(u,8) + o(1), uniformly over u and 6.
This implies that

w(u,0;,)
(9) 2f - ]’ ch—l—o ) =14o0(1).
—" f(u,
Therefore, uniformly over J and ¢, we have that
(10)
| T ”
— —1]—o(1
R of1)
00 p
cos(hb;,) 1 k— [uN | k+h— |uN|
2 d (h) — 2PN TPIe R | = S S § M S
<2 fout - Stz e [1 0 () o (24

k

§2§Kgmin{%,1}r(u,h) [%ZT(k—TLluNJ)T(kJrh; LuNJ)

Finally, since sup,, >, [r(u, h)| < oo, we have sup, >, |7(u, h)| = 0. Also, as n — oo,

suth/n (u,h) <supz (h/n)r(u, h) + sup Z (h/n)r(u,h)

h<n N Y /m<h<n
(11) Ssueru,h)/ﬁ%—sueru,h)
“ h<y/n v h>\/n
— 0.

Therefore,

1—‘“.”2
Manl? 1] 0.
n
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A.2. Proof of Lemma 8.2. Throughout the proof, we write f(,[f] as X}, for short. Note
that [ 7(z)7(z + h)dz < § [ [7(z)* + 7(z + h)?|dz = 1. For simplicity of the proof, we can

assume that there exists some finite 7, such that
. 1 — |uN| k+h—|uN| )
12 - _— _— ) < 7
- S () () =
Then we have that

(13)

1/2
~ |[uN+n/2]
||Tun - Tu n” 1 e 2
e i S
n |uN+n/2] N 1/2
< [Ty - Z Z 1P (X (u )b (ny2) — X | heny2))]]?
k=1 j=—
|[uN+n/2|
< e Imax > P X un k- tng2) = Xk ng2) |
€1,..., n j=—00
|[uN+n/2|
< HaTe I{I;‘&X } Z min {QHPJ'(XLuNHk_Ln/zJ)H, | X | un )4k n/2] — X|uN|+k—{n/2] H}
cil,..., n j=—00
k+n ~
< 4T, SUP Z min{2||P;(Xi)|, | Xe — Xk} = 0, as € — oo.
ko
j=—00

Since the upper bound does not depend on u, the convergence holds uniformly over w.

A.3. Proof of Lemma 8.3. In this proof, we omit subscript « for simplicity and write X ,[f]

as X}, for short. Since sup, E(X?) < oo, we have that

(14) lim sup E[XZ1(|X}| > t)] = 0.

t—oo k

By the property of conditional expectation, we have E(X?) < E(X?). Therefore, defining
(15) gn(r) =1? Sl;pE[XﬁlﬂXk! > v/n/r)],

we can get lim,, , _ ¢g,(r) = 0 for all given > 0. Also g, is non-decreasing with r. Then there

exists a sequence {r,} such that r,Too and g¢,(r,) — 0. Note that r,, does not depend on wu.
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For simplicity, we use Xuk to denote XLUNJ_A'_]{;_LTL/QJ. Let Yo, = Xuk1(|)~(uk| <+/n/r,) and
Tuny = Sop_y ttupYur- Since E[X21(|Xx| > v/n/r)] = o(1/r2) by the definition of r,, we
have [|Y,x — XukH = o(1/r,). Now since Y, — Xu,k is /-dependent, we divide each of {Y,, x}
and {X,x} into ¢ sub-sequences that each sub-sequences has |n/¢| independent elements.
Then by the triangle inequality we can get

n

Z Hu,b Yu,b - Xu,b)

b=a,a+/,..

L
(16) ||Tu,n,Y - Tu,n” S Z == 0(\/5/7”71).

Next, divide the sequence of {Y, } into pieces of length p, + ¢ where p, = [ v/ 4J.

<lT) Uu,t = Z /fLu,aYu,a

a€ By

where Bi={a e N:1+(t—1)(p,+¢) <a<p,+ (t—1)(p, +{)}. Note that for given u,
{Uy,+} are independent (but not identically distributed) for different ¢.
Define V,; = ?;1 U.t, then the difference between V,,; and T, ,y is the sum of those

dropped /¢ terms in each piece. Since ¢ is fixed and there are t,, blocks, we have || Ty ny — Vil =
O(Vtn).
Furthermore, since
(18) (Vn/ra)P(1Xe| > Vn/r)) > E[XP1(I Xy > v/n/r)] = o(1/r})
we have P(|Xy| > v/n/r)) = o(1/n). Then, using
EOOP = (%) — B0 = EXA(1% > vi/r)P
< E(XPL(I XK > va/r)P(IXy| > v/n/r)) = o(1/r})o(1/n)

we have E(Y}) = o(f ), which implies |E(V,)| = O(n)|E(Y:)| = o(v/n/1y).
Next, defining W = (V,, — E(V,,))/y/n and A =T, //n — W, we get

VallAll = 1T = Vo + E(Va) || < [E(V,)| + Ve = T
(20) < ‘E(Vn” + ||Vn - TmYH + HTmY - Tn”
= o(v/n/rn) + O(Vt, +Vnfr) = O(Vt).

(19)
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Next, we apply Lemma A.2 to {U, — E(U,),t =1,...,t,}. Recall that V,, = Zi’;l U; and
W = (V, = E(V,))/+/n, then
sup [P(V, — E(Va) < 2|V = E(Va)]]) — @(2)]

= sup [P(W < z[|W[)) — &(z)|

(21) <cZE|Ut E(U)P[[Va = BVl

tn
<O E[UPV, — BV,

=1
Next, we get upper bounds of E|U;|* and ||V,, — E(V,,)|| 3. First, by Holder’s inequality
ZaEBt |}/;1| S (ZaeBt |}{1|3)1/3<Za€B 1)2/37 we have that

S| <ot X mnr <t Ym0 (i)

a€By a€By a€By T'n

For sequences a,, and b,,, we define a,, = ©(b,) if both a,, = O(b,) and b, = O(a,). Then,
using the definition of O(-), the variance of ) 5 1,Y, has the order of ©(p,) because Y is
(-dependent. Then the variance of V;, has the order of O(t,p,) = ©(n). Thus, ||V, —E(V},)||~®

has an order of ©(n~3/2). Overall, we have that

(23) sup [P(W < zl[W}) — ®(x)] < O(uipn(v/n/r4))O(n) = O(p,”).

(22) E|U* < iR

To complete the proof, we first replace Vi, = >, > .5 taYa by T, = Yok 16Xy then by
T, =Y, Xj. Since

(24) W< =§|A| <0} C{WH+ALz} C{W <zx+}U{|A| >},
we have that

(25) P(W <z—0)—P(A]>8) <P(W+A < 1) <PW < z+6) +P(A| > 0).
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Furthermore, one can get

sup [P(W < z[|[W]]) — &(z)]
(26) = sup [P(W < z) — @(z/[|W]])|

= sup P(T,/vn— A <x)—®(z/|W])|.
(27) P(W <z —6) —P(|A] > ) <P(T,/vn < z) <P(W < x+6)+P(|A] >9),
(28) sup P(T,/vn < z) —=P(W < 2)| <P(|A] > 6) = O(|A[?/6%) = O(p;," /).

sup [ (z/[[W[]) = o(=/[IW + All)

= O(|W + A/|[W[| — 1) = O(J|A])) = O(/tn/n) = O(p, /).

/

Letting & = p, /" we have that

B0) sup [B(Tu/vi < 2) = @/ [W + All| = O@,2) + O ) + 0w, 2).

Finally, use the above technique again with Ay = (T, — 1},)/v/n and § = ||A4]|"/2, we get

(31 sup [P(Tn/Vn < 2) = @(vnz/|Ta]l)] = OP(IAL] > [A"?) + p "2 + | Ad]).

Lemma A.3. (Bernstein’s inequality) Let Xi,..., X, be independent zero-mean random

variables. Suppose | X;| < M a.s., for alli. Then for all positive t,

N | —5t?
(32) P (Z X; > t) < exp (ZE(XE) - %Mt) :

Definition A.4. Let (Uy,...,Us) be a random vector. Then the joint cumulant is defined as

cum(Uy, ..., Ux) = > (=1)(p — 1)IE (H Uj> .E (H Uj) :

—~
o
w

~—

JEV] JEVL
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where Vi,...,V, is a partition of the set {1,2,...,k} and the sum is taken over all such

partitions.

Lemma A.5. Assume GMC(a) with o = k for some k € N, and sup, E(|X;|¥) < oo Then

there exists a constant C' > 0 such that for all u and 0 < my < -+ < my_q,

(34) |l Xo,0, Xumys -+ Xugm,_, )| < Cpm2 /B0
where X, ; =T (%) X|uN|+i|n/2)-

Proof. Since 7(+) is bounded, we have sup, sup; E(| X, :|¥) < co. We extend [WS04, Proposi-
tion 2| to the cases of locally stationary time series.

Given 1 <! < k—1, by multi-linearity of joint cumulants, we replace X, ,,, by independent
X, for all i > [ as follows

J = cum(Xy 0, Xumyy - - - s Xumg_y)
! !
= cum(Xy 0, Xumys -« - Xugmy_qs X, X )

u,mp’ U,ME—1
+ Cum(Xu,Oa Xu,m17 s 7Xu7ml_1 ) Xu,ml - Xq:’ml7 ce aXu,mk_l)
(35)
+ Cum<Xu,07 Xu,mp st 7Xu,ml,1 ) lei,mp s 7Xu,mk,1 - X;hmk—1>
k—1
=B+ ) A
=l
Note that (Xu0, Xumi,-- -5 Xum,_,) 18 independent with (X . ...., X7 ). By [Ros85,

pp-35], we have B = 0. Suppose we have that
C C
<;))(')') |AZ| < Ep(mi_ml—l)/k < Ep(ml_ml_l)/k

for I <i <k — 1 and some constant C' that does not depend on I. Then |.J| < Cplm—mu-1)/k
for any 1 <[ < k — 1. Then we get

mp—m

(37) |J| < lein p(ml_ml—l)/k = Cpma =% L < Cpm’“_l/k(k_l).

Next, we show Eq. (36). In particular, we show the case i = [ and the other cases can
be proven similarly. Note that E(|X,;|*) is uniformly bounded, by the definition of joint
cumulants in Definition A.4, we only need to show that for V' C {0,...,k — 1} such that
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[ ¢ V, we have that

<38) E <(Xu7ml — X;’ml) H Xu,mj> < Cp(mz—mz—l)/k.
jev
Letting |V| be the cardinality of the set V, then |V| < k — 1, and we have
V] i 4V
4 1 V]
v IV
(39) <R 1 Z X _|1+|V|>
Vi

< maxE (| Xy, "MV < M.
JjeVv

By Holder’s inequality and Jensen’s inequality

E ((Xu,mz - X;,ml) H Xu,mj>
JEV
I Xum,

JEV

(40) < HXu,mz B

1
Xuvml H1+|V\

1+|V]
4

< HXu,mz — X;LmszMl‘%v‘ < (O/pml*WLLfl)l/kM/ < Cp(mlfml,l)/k'

A.4. Proof of Lemma 8.4. Throughout this proof, we write )N(,Lﬂ as X}, and XLZL as X,
for short. First, letting oy = a(k/B,) cos(kf), we have that

By n —1 n
(41) hn(u,e)_ﬁ<z > XugXugmow+ Y Y Xu,qu,j+kak>.

k=0 j=n—k+1 k=—Bp j=n+k+1

By the summability of cumulants of orders 2 and 4 [Ros85, page 185], one can get

Bn n
(42) sgpsgpvar (Z Z XUJ-XWHCO%) = O(B2).

k=0 j=n—k+1

Therefore, we have sup, sup,, ||hn(u, )| = (nB,)"?0(B,).
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Next, note that by the assumption of GMC(4) defined in Eq. (1), we have that

(43) sup sup E(| X,,; — Xt < Cpn.
Then we have
(14)
Bn
. 1 .
supsupsup || Vs — Yol < supsup —— > [ Xy Xuior — XuiXu il (sup o)
6 u 7 u 7 2T k=B 0
Bn ) ) )
S C sup SUP Z H (Xu,z - Xu,i)Xu,i+k + Xu,i(Xu,i—l-k - Xu,i+k) ||
u 7 k=B,
= O(Bn> sup Sup HXu,z - Xu,z“
= O(B,,)supsup(E(| X.,; — )Z'w-])‘l)l/4
= O(Bpp™'4).
Finally

(145) supsup lga(u,6) = gu(u, 6)]| = O (S‘;p sup » [ Vi — ffu,iil) = O(nB,p™"*) = o(1).
u Uu i=1

A.5. Proof of Lemma 8.5. We write X,[ﬂ as X and Xﬁ as Xu,i for short. To show Eq. (72),
since ay, is bounded, letting z, = k,(p, + ¢») + 1 — ¢,, we have that

Bn n
46 sup E(max |V, x, (0)]) < C sup E XMXW i
(46) Ex(Ves, () € 33 0Bl 3 Xuius

Since ij(uzﬂ is 2¢,-dependent, if |j| < ¢,, we have

Z Xu,iXu,i+j = 020/ (n = 2,)/200) = O(\/ quln) = O(\/pnln).

1=2n

(47) sup

u
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If |j] < ¢, since E(XMXUHJXM/ ~u,i’+j) = 0if |i — 4| > ¢,, we have that

n 2 n
sup E Xu,iXujivrj|| =sup g E<Xu,iXu,i+qu,i’Xu,i’+j)
u i uoL
1=2Zn 1,1 =2Zn

= sup Z ZE(Xu,z’Xu,i—&-qu,i’Xu,i’—i—j)

iV =1—A, i=2n

= O(C]ngn) = O(pngn)a

where we have used the assumption sup,; E(|X;|*"%) < M. Therefore, we get Eq. (72).
To show Eq. (73), we first define ﬁn(u,e) by replacing X; by X;. Then we can prove
similarly to Eq. (44) that

(49) sup IE(me‘ctX |hn(u, ) — R (u, 0)[) = o(1).

Therefore, it suffices to show sup, E(max, |h,(u,6)|) = o(1). Using similar technique to
Eq. (46) we can show that

s 1
50 E B (u,0)]) =
(50) sup (m;iXI (u,0)]) NGEN

where we have used 7 < 1 and /7, B, /v/n = O((log n)"/?n"~1/2) = o(1).
To show Eq. (74), we note that GMC(4) implies the absolute summability of cumulants up

O(\ BnlnB,) = O(\/EBn/\/ﬁ) = o(1),

to the fourth order. Also, for zero-mean random variables X, Y, Z, W, the joint cumulants

(51) cum(X,Y, Z, W) = E(XY ZW) — E(XY)E(ZW) — E(XZ2)E(YW) — E(XW)E(Y Z).
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Therefore, letting £, be the set of the indices ¢’s such that Y, ; belongs to the block corre-
sponding to U, ,, we have that

Bn 2
var(U, DY KuiXuier — B(XuiXuien)]on

€Ly k=—DB

By
=Y Y E{[XuiXuirk — B(X0i X i) [ Xy Xu g — B(Xy ;X j0) ooy}

4,5€Ly kl=—DBnp,

(52) =3 > (X Xugr, Xug Xuget)owon

4,5E€Ly kl=—DBn

+ Z Z XUZXUJ (Xu7i+qu,j+l)ak04[

i,jELr k,l=—DBn,

+ D E(XuiXugr) E(Xuik Xug)Jakan,
4,jELr k,l=— By,
where the first term is finite since the fourth cumulants are summable. For the second term

(the last term can also be shown similarly), we use the condition Eq. (11), so that
(53)  B(XuiXuf)E(XuivhXujrr) = [r(u,t = j) +o(1/n)][r(u,i—j+ k= j) + o(1/n)].

Then using p, = o(n), B, = o(p,) and sup, Y o |r(u, k)| < oo, one can get

SUp max max Z Z r(u,i —j) 4+ o(1/n)][r(u,i —j+k—j)+o(l/n)]

i,jELr kl=— DBy,

Bn
(54) = Sup max max Z r(u,i—j) [ Z r(u,i—j+k—j)+o(B,/n)

woor 0 e, k——B,

< (2pn + 1)(2Bn +1 Sup Z ‘ ru, k + o(pan/n) = O(pan)

k=—00

To show Eq. (75), we note that

u,r

2E(U;, , )E(U,, — U,,,) — 2var(Uy, — Uy,
(7)’)) Var(U )_ Va,]:'(Uuﬂ,.) |:1 —I— ( u,r) ( 5 s ) Var< 5 ) >:| .

var(Uy,,)
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From Lemma 8.8, we know that var(U, . (0)) ~ p,B,02(0) and 02(8) = [14+1(20)] f>(u, ) [, a?(t)dt >
f2 f_ll a®(t)dt > 0. Thus, it suffices to show that
(56)

supsup sup E(U,, . )E(U,, — U,,,) = o(ppBy,), supsupsupvar(Uy,, — U, ) = o(pnBy).
u T 0 u r 0

By Lemma 8.6, applying similar inequalities as Eq. (82), we have that

sup sup sup var(Uy, — U, )
0

u K3
246/2
< sup sup sup —HUW ”2+6§2
o i 0 d6/2

= O((ta/PnBa)* (/B (logn) /%)%

= O(pnB,)O((log n)***/*(\/p, B,)/*(v/nB,) %)

= o(pnBy).

Finally, since E(U, ) < E(|U,.|) < [E(|Uu7r|2+5/2)]ﬁ, using again similar inequalities as
Eq. (82), we have that

sup sup sup E(U,, . )E(U,,, — U,,,)

0
246/2

U 2552

(58) < S SUp SUp HUu,rHQ—l—(s/QW

= O(|Uuy||246/2/dn)o(pnBr)
= O(/pafn(0g 1) 2)o(pa Bu) = o(paB).

A.6. Proof of Lemma 8.6. In this proof, we write X,Le] as Xk and Xq[f]l as XW- for short.
For simplicity, we first consider that u and i are fixed. Without loss of generality, we consider
the first block sum (7 = 1) so

(59) Ut (0) =YY, ;(0).
j=1
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We will first show that

2+5/2

77.
E E u u3+kak

j=1 k=—Bp

(60)

where oy = a(k/B,,)cos(kf). Then we conclude that O(¢,\/p,B,) is also uniformly over
u and 7 since the assumption sup, sup; E(|X,;|**°) < M. We first write by the triangle

inequality

(61) j=1k=-B 245/2
)
pn Bn
E E Xujrk + E KXuj XujskQh
] 1 k=—B 2+(S/2 ]:1 k:() 2+5/2

Now consider two cases (i) £, = o(B,,), then

Pn —ln Pn 0
(()2) Z Z u,j ug-l—kak Z (Xu,j Z Xu,j—l—kak) + Z Xu,qu,j+kak7

j=1 k=—B, 7=1

where the first term of the right hand side of Eq. (62) satisfies

Dn —Ln
3 (X 5 X)

63 Jj=1 k=—B, 245/2
(63) tn || L@n—h)/tn] 0,
S Xu,h+(j—1)£n Z Xu,h—k(j—l)gn-}-kak
h=1 j=1 k=—Bn

2448/2

Continuing to divide the sum of Z,;i", B, Xu,m(jfl)éﬁkak into ¢,, parts, then by sup,, ; E(|X,;|*™) <
M, we have that

Pn —t
(64) Z (Xu,j Z Xu,j—l—k:ak) = OO0\ pn/ln)OU,)O(\/ By /y)
: 7=l k=—=Bn 2+8/2

= O(gn V pan)v
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which holds uniformly over u and ¢. Similarly, for the second term of the right hand side of
Eq. (62)

DD DR N IES Dl boE o
; j=1 k=1-¢, 24+5/2  k=1- Jj=1 245/2
(65)
0  3ln ||L(Pn—h)/3tn] ~ R
= Z Z X ht3500 Xuht3500+k Ok = O(C2\/pn/ln).
k=1—£, h=1 j=1

2+6/2
Note that the order O(¢2\/p,/¢,) also holds uniformly over u and i. This is because
||Xu7h+3janu7h+3jgn+k || 2442 is uniformly bounded, which can be shown using Cauchy-Schwarz’s

inequality and sup, sup; E(|X,;|*"%) < M. Therefore, we have proven that, for case (i), we

have sup, sup; supy [|Uy,i(0)|2+5/2 = O(€nv/PnBn)-
For the second case (ii) B, = O(¢,), we have that

DI DR S Dy

j=1 k=—B, o9ts/2  k=—Bn

§ u ]+k‘ak’

=1

245/2
(66) 0 3y ||L(on—h)/30n]

- Z Z Z Xt 3560 Kot 43500460tk
k=—By h=1 7j=1
= O<Bn€n V pn/fn) == O<€n\/pan),

which is also uniform over v and 1.

248/2
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A.7. Proof of Lemma 8.8. Using the property of cumulants in Eq. (51), similarly to
Egs. (52) and (53), one can get that

2
Sn/2

i=—38n/2

Sn Bn
= § E Cum(Xu,i; Xu,iJrka Xu,j; Xu,j+l)05kal

(()7) 1,j=—5sn k,l=—By

+ Z Z r(u,i— 7)r(u,i+k —j—Doagoy + 0($,Bn/n)

%,j=—5n k,l=—Bn,
+ ), D rlui— = Or(ui+ k= j)ogor + o(syBa/n).
i,j=—8n k=—Bn
By Lemma A.5, we have that

(68) S cum(Xoo Xumes Xy Xuma) < C Y p/H0 < o,

mi,ma,m3EZ s=0

which implies that the first term of the right hand side of Eq. (67) is finite.
Finally, according to [Ros84, Theorem 2, Eqs. (3.9)—(3.12)], one can show that

> rlui—g)r(ui+k—j = Dagey
(69) ’
+ Z Z r(u,i— 3 —Dr(uyi+k — j)agy ~ $,B,02(0).

i,j=—sn k,l=—Bn

Lemma A.6. Let {X} be (-dependent with EXy = 0 and Xj, € LP with p > 2. Let
W, =>7_ Xi. Then for any Q > 0, there exists Cy,Cy > 0 only depending on Q) such that

70) P > 7)< €E2Q w0 p N p > 0,7
T0) B(Wl 2 2) < Gy (EWE) +Cymin FkZlHXkIIp,kZ: (1% = €5

Proof. See [LW10, Lemma 2]. O

Lemma A.7. Let {X,} be (-dependent with EX; =0, | Xy| < M a.s., £ <n, and M > 1. Let

I+k t—1
Skt = D1 Xt Doy Qng—s X, where l >0, I4+k < n and assume that max, ., || < Ko,
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max, o, EX? < Ko, max,,, EX} < K for some Ko > 0. Then for any x > 1, y > 1,
and @) > 0,

. Q
P(|Sk; — ESky| > x) < 2e79/4 4 Cyn® M? (x_2y2€3(M2 +k)> ais)
s=1

()
u 0227
CinPM2S PlIX] > ——
Ot P (101> Lt )
where C1,Cy > 0 are constants depending only on Q) and K.

Proof. See [LW10, Proposition 3]. O

Lemma A.8. Assume that X;, € LP, with p > 1, and EX = 0. Let C, = 18p/?(p — 1)~/
and p' = min(2,p). Let aq,...,€ C. Then under GMC, we have that

n 1/p
<C, (Z mv’) o(p"),
P

k=1

(72)

Z Oék(Xk — Xg])
k=1

and

1/’

n n 1/p n n
(73) 1D ewXll, <C (Z |ak|p’> DX, <c (Z !%!”') 7
k=1 k=1 k=1 k=1

for some constant C'.

Proof. This lemma follows from [LW10, Lemma 1] with ©¢41, = 0o(3_72,,, /) = o(pt). O

Lemma A.9. Assume EX,; =0, sup, E| X, x|? < oo, p>2. Let

. = S0 e

<f—l) Ln7u = Z Oéj’iju,qu,j’; LTL,'U, = Z ajlf.jX’l.[L,LXi[j,,L”

1<j<i’<n 1<5<j’<n

where aq, ..., € C. Then under GMC, we have that

sup,, ||Ln,u - ELn,u - (-Zn,u - Ein,u)“p
i3 agl?) 2

Proof. For fixed u, if E|X,|* < oo, the result follow from [LW10, Proposition 1] with

Oo.2p = 0(1) and dpo, = >y min{o(p’),0(p")} = o(¢p"). Since we have sup, E| X, x|*’ < oo

the proof of [LW10, Proposition 1] also holds uniformly over u. O

(75) = o(lp").
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Lemma A.10. Assume that EX,; =0, sup, EX}, < co and GMC(2). Let o; = j3; exp(ijh),
wherei =+/—=1,0 eR, B eR, 1-n<j< -1, meN and f/nﬁu = Zl§j<t§n aj_tXibeL{L.
Define

n t—1
(76)  Dy(u,0) = Aup — E(Aug | Fup—1),  Ma(u,0) =D Dy(u,0)* Y o Dj(u,6),
t=1 j=1

where (-)* denotes the complex conjugate, Ay = o E(X[e

u,

er | Fur) exp(ijl) where Fyp—1 =
FluN-ny2)+k-1- Then

— < VY2
<1 () Slip m3/2n1/2 sup,, “Xu,kH?; = m (ﬁ)7
where
—n—1
(78) Va(B)= max B7+m Yy |8 — Bl
1-n<i<—1 =

Proof. For fixed u, the result comes from [LW10, Proposition 2|. Since here we have assumed
sup,, ]EXé’k < 00, following the proof of [LW10, Proposition 2|, the upper bound also holds

uniformly over wu. 0

Lemma A.11. Suppose that EX}, = 0, sup, EX} < oo, and GMC(2) holds, then
(1) We have that

E[(gn(u1,61) — Egn(u1,61))(gn(uz, 62) — Egn(us, 62))]
nbB,,
uniformly on (ui,us,61,05) such that either (ui,us) € U? or (61,0) € ©2 where
U* = {(ur,ug) : v S ur Sup < 1= Feun —ug| > (1 - 1/(log B,)*)} and
@2 = {(01,92) -0 < 01 < 92 <m-— Bgl(loan)Z, |491 — 92| > Bgl(loan)Q}
(2) For ay, > 0 with limsup «v, < 1, we have that

E[(gn(u1,01) — Egn(us, 01))(gn(u2, 02) — Egn(ug, 62))]
A0 B, f(ur, 01) f (ua, 05) [L | a2(t)dt

uniformly on (uy,us, 01,0;) such that either (ui,us) € U? or (01,0:) € ©% where

U = {(un,uz) % < up < up < 1— 2 up —us| > 2(1— 1/(log B,))} and

éQ = {(91,92) : B;l(lOan)2 < 01 < 92 <mT-— B;l(IOan)Z, ‘91 — (92| > Bn_l}

(79) = O(1/(log B,)*),

(80)

'San,
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(3) We have that

E[QTL(“? 9) _ ]Egn( )]
An B, f%(u, 0) ftlz

a?(t)dt
uniformly on {(u,0) : B, '(log B,)* <0 < m — B2(log B,)?, 3% <u <1— 5}

— 1| = O(1/(10g B,)?).

(s1)

Proof. Throughout this proof, we write X 4 as X, and X ; as XM for simplicity.

(1) By Lemma A.9 we approximate g, —Eg, first by g, —Eg,. Then by Lemma A.10, we ap-
proximate g, —Eg, by M, (u, ), where M, (u,0) = > | Di(u,0)* Z] 10— Dj(u, 0).
Then it is suffices to show that |E[M,, (u1,601) — M (u1, 01)][ M, (ug, 02) — M (usg, 02)]| <
Crioasys and [E[M;, (ur, 01) + My (w1, 01)][M; (uz, 02) + My (uz, 02)]] < Cess. We
only prove the first inequality here, since the other inequality can be proved similarly.

Define
(82) rn(ul,Hl,uz,Qg) |E[ (Ulyel) +M (u1,91)][ ('UQ,HQ) +M (Ug,@g)”

Since the martingale differences {D;(u,#)} are uncorrelated but not independent,

we further define N,,(u,0) = 321 Dy(u, 0)* 302" i j—¢D;(u, 0), then || M, (u, 0) —

No(u, 0)|| = O(nl) and |ry,(uy, 01, us,0)] < |Fnluy, 01, u9,05)] + O(/nl(nB,) +
nl(B2)), where

(83) T(ur, 01, u, 02) := [E[Ny(us, 01) + Ny (ur, 61)][No(uz, 02) + Nj (us, 62)]].

Since ¢ = |n”] where 7 is small enough, it suffices to show that 7,(uy, 0y, us, 62) =
O(nB,/(log By,)?). Now we substitute N, (u,0) = >"1, Dy(u, 0)* Z;;efl Qnj—tDj(u,0)
to fn(ul, 91, Ug, 02>

If 6; # 05 and u; = uy, we have that
(84)

n t—{—1

—
t=1 j=1
Now it suffices to show that
n t—¢—1 (

t=1 j=1

E|Dy(u, 0) Dy (u, )’ (tBl) fcos(t — 7)(01 + 62)) + cos((t — 5)(6: — 0.

) cos((t — 7)(01 £ 63)) = O(nB,/(log B,)?).
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Since |01 — 0] > B, ' (log B,,)?, using 14+23",_, cos(kf) = sin((n+1)0/2)/sin(6/2) <
1/sin(0/2), sin(z) = ©(x) when x — 0, and denoting j =t — s, we have that

(85) > Z (j/By) cos[j (0 £ 65)]| < Cn/(B;*(log B,)?) = O(nB,/(log B,)?).

t=1 | j=1

If 6, = 60, but u; # uy, using Eq. (88) and n — N|u; —us| < n/(log B,,)?, we have that

Fn(ur, 0, u2,0) < CFroNjuy—un| (0, 0, u,0) = O((n — Nluy — us|)B,) = O(nB,/(log B,)?).

(2) When 6, # 0, using [WN67, Lemma 3.2(ii)] with the assumption on the continuity
of a(-) in Theorem 5.3, we have that

n t—

-1
(86) lim sup 2 -1 Z a (

n t=1 j=1

> cos((t — )01 — 0s)) < /aQ(t)dt.
If 6; = 05 and uy # usy then

n—Nl|ui—uz| t—£-1 P
limsup 2(nB,) " a’ ( J)

t=1 j=1
(87) < lim sup 2(nB,) " (n — Nluy —ua|) ) az( By, )

Jj=—Bn

< lim sup 2(an)1[an/(loan)2]/a2(t)dt < /az(t)dt.

n

(3) Since || Dy(u,0)||* = Z _EB(X,:Xuiri) exp(ijh), we have that

n Bn
Fn(u, 0,u,0) = O(nBy/(log Ba)?) + > [Dy(w,0)[> Y a*(s/By)
(88) t=1 s=—By

— O(nB,/(log By)?) + 47 f*(u, O)nB, / G2 (1)dt.

Lemma A.12. Let Xy,...,X,, be independent mean zero d-dimensional random vectors such
that | X;| < M. If the underlying probability space is rich enough, one can define independent

normally distributed mean zero random vectors Vi, ..., V., such that the covariance matrices
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of Vi and X; are equal, for all 1 < i < m; furthermore

(89) P (

Proof. See [EM97, Fact 2.2]. O

m

> (X - V)

=1

> 5) < crexp(—ced/M).

Lemma A.13. If X and Y have a bi-variate normally distributed distribution with expecta-

tions 0, unit variances, and correlation coefficient r, then

PH{X >c}n{Y >c})

90 i —1,

(%0) cso0 [27(1 — 1)2¢2] T exp (—lc—jr) (1+7)2

uniformly for all v such that |r| <6, for all0 < § < 1.

Proof. See [Ber62, Lemma 2]. O

A.8. Proof of Lemma 8.9. By Markov’s inequality, we have that

P (max max 190 (1, 6:) = Gn(u, 6, > 1/log Dn)

weld 0<i<By vnB,
(91) <> ]P’( e > 1/log Dy,

uelU 0<i<B;,

n u,@i _~n ’ll,,@i
E[Ig ( )nézn( )|]p/2

(1/log Dy)P/?
By Lemma A9, E|g,, (u, ;) —§n(u, ;)| = o(n'*+7pl""]) uniformly on u and 6;. Since D,, = B,,C,,
is polynomial of n, the GMC assumption guarantees

(92) P (max max > 1/log Dn> = o(1).
uel 0<i<Bp, nb,

< CB,C,

A.9. Proof of Lemma 8.10.

Lemma A.14. Let X;,t =1,...,n be an arbitrary sequence of real-valued random variables

with finite mean and variance. Then

-1
(93) E(max X;) < max EX; + o g var(X;).
n
i=1

1<i<n 1<i<n

Proof. See [Ave85, Theorem 2.1]. O



22 SUPPLEMENTARY MATERIAL

In this proof, we write X ,[f} and X}[ﬂ as X and Xu,i for simplicity. First of all, since a(+) has
bounded support [—1, 1], we only need to consider the case that |s — k| < B,. Furthermore,

let o, be an upper bound of «,, ; uniformly over u. Then, we have that
(94)

E (max max |gn(u, 0) — gn(u, 9)|)

ueld 0
S Oy E |max Z )Xk,qu,u - ]E(Xk,qu,u> - Xk,qu,u + E(Xk,qu,u)
ueU

2<k<n,max(1l,k—Bp)<s<k—1

< 2a,E | max Z ‘Xk,qu,u - Xk,qu,u

UEU o< h<n,max(1,k—Bp)<s<k—1

= 2a, E | max Z

UEU 9 k<n,max(1k—Bn)<s<k—1

Xk:,qu,u - Xk,qu,u - Xk,qu u T Xk quu

) ) )

n k-1
< 20, E | max Z \Xku\ Z ‘Xsu — Xl
| v\ r=2 s=max{1k—By}
n k-1
+ 20, E | max Z |)~(ku — X Z ‘Xsu|
uel \ k=2 s=max{1,k—By}

Next, we show that the first term of the right hand side of Eq. (94) satisfies

ni X u k:l Xsu_Xsu
E (max Zk;72 | k, | Zsfmax{l,k—Bn} | ) ) |> _ O(l)

(95)

eu nB,
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Similar arguments yield the same result for the second term of the right hand side of Eq. (94).
Note that

E [ ma Zk 2 |XU k| Zs max{1,k—Bp} |XU:S - XU,S|
uEZ/I

nbB,
(0()) < E | ma Zk 2 |X“ k‘ Zs max{1,k—Bp} |XU,S - Xu,s|
| B UEU nb,
+ E Zk 2 |Xu k’ Zs =max{1,k—(+1} |Xu75 — Xu,s|
UEU nB, '

Applying Lemma A.14 and using /-independence and Holder’s inequality, we have that

uniformly on u

k—¢

Z ‘Xu,k| Z ‘Xu,s - Xu,s|
k=2

s=max{1l,k—Bn}

k—¢

- (Z |f<u,k!> Bl > s — X
k=2

s=max{1l,k—Bn}
O(n)o ‘X k]"X k|>(7LBn)O‘ _EXuvkl‘Xu,k|>(an)a
< O(nB,)(EX] )P (B(IXunl” > (nB,)"))! P
OB)O((0Ba) )7 = O((nB,)' =)
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Furthermore, uniformly on u, we also have that

k—¢

Z |Xu,k| Z |Xu,s - Xu,s|
k=2

s=max{1,k—Bn}

n 2 k—¢
(98) =4\ (Z ’Xu,k’> K D K- Xl
2¢ k=2

s=max{1,k—Bn}

= W\/@(B%)E ’Xu,k1|f<u,k|>(n3n)a - EXu,k1|Xu,k|>(an)a :
< O(nBy)(EX] )P (P(IXupl” > (nB,)7)' /7
= O(nB,)O((nB,) ") "1" = O((nB,)"**Y).

By the assumptions p > 4 and (p — 1)a > 3/4, we have that

(99)

E Zk 2 ’XU k| Zs max{1,k—Bn} ‘X%S - XU,S‘ -0 C}L/Q(an)lia(pil) — o1
rfeu nB, - (nB,)/? = o(1),

since we have assumed Cp/? = o[(nB,)**~Y=2]. Next, uniformly on u, the second term of
the right hand side of Eq. (94) satisfies that

k—1

Z |Xu,k| Z |Xu,s - Xu,s|

s=max{1,k—0+1}

- O n€ ‘Xu k1X2 >(nBy) ]EX leZ,k>(”Bn)2a

< O(nl) <E|Xu,k|p> <[p>()~(57k < (an)Pa)>12/p
= O(n)O((nB,) )27
= O(n)O(nB,) "2,
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Furthermore, uniformly on u, we have that

k-1

Z |Xu,k| Z |Xu,s - Xu,s|
k=2

s=max{1,k—0+1}

2

(101) \/ O(n*)E ‘Xﬁ Lz smpaee — EXG 12 o,

O(nft) <E’Xuk|p> (P(Xﬁ,k - (an)pa)>12/p
O(nl)O((nB )—ap)l—z/p
O(nl)O(nB,)~ a(p-2)

IN

Overall, we have that
(102)

Zk 2 |Xuk| Zs max{1,k—+1} |Xus - Xu15| 1/2n€(n3n) (r—2)
E meu 5 =0 NGEN = o(1),

: 142a(p—2) o
since we have assumed C,, = o(Bp 2?2 p-2-27),

A.10. Proof of Lemma 8.11. We prove this lemma by first showing that
S Vi(u,6)

7j=1

(103) max max
nb,

ueld 0<i<Bj,

= 0[97(1),

and then showing
> Uy, 0:) = 320, U (u, ;)

(104) max max =1
nb,

uel 0<i<B,

= O]p(l).

To show Eq. (103), we note that {V;} are independent. Applying Lemma A.6, we have
that

(105)
kn+1 kn+1 Q o
nB, | logB, | — ! nB,(log B,,)~? 1],:1 vnB, ~logB, /"
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Similar to the proof of Lemma 8.12, one can show Zk”l EV}? = O(n'*7B) 7). Therefore,

by choosing v close to zero and ) large enough, we have that

kn+1 2 Q
(106) ( 20 BV, ) =0(n"°),

nB,(log B,,) ™2

for any ¢ > 0. For the other term

ot v C
(107) Z ( Vil 10ng>

we apply Lemma A.7 with M = (nB,)*, k = B, +{, { = |[n"] and y = (log B,,)?, which
yields

(108)

P (\)% = logc ;n)
< 2exp @@) +0 <n3(an)2°‘ (%@g B,)' 0™ | (nBn)** + Bn)) Q)

w(” o ;P('X’“'Z Tog BT I (nh +<Bn+LmJ>1/2>>)’

where the second term of the right hand side is O(n~¢) by choosing @) large enough. Since

a < 1/4 and |X;,| < (nB,)* almost surely, the last term of the right hand side converges to
zero almost surely if

(109) (nBa)* =0 ((log B[] ((nB.)* + (B, + an”)) |

which can be satisfied by choosing v close enough to zero. Therefore, by choosing () large
enough so that O(C,,B,n¢) = o(1) (Note that this only requires C,, = o(nB,;!) for some c,

which is always satisfied when C,, is polynomial of n), we have that

(110)
kn+1
1 221 V;
<0OC,B,)P J
- loan> < O ) (‘ nB,

kn+1
ijl Vj

nB,

P (max max

uel 0<i<Bn,

1
> 1
which implies Eq. (103).
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To prove Eq. (104), note that

U, U,(u.6) = Uy(u. 0)1 (IUJ-%G)! - (longn)4) — EU,(u,6)1 (IUJ-%H)\ S (10ngn>4) .

Therefore, other than using p, = B:*# instead of ¢, = B, + ¢, the proof of Eq. (104) is
essentially the same as the proof of Eq. (103).

A.11. Proof of Lemma 8.12. By Lemma A.3, we have that

i
U
P | max max h > x+/log(B,C,)
weU i¢[(log Bn)?,Bn—(log Bn)?] nb,
A
m U
= 0(Cy) Z P (‘Zy_ = > 10g(BnCn)>
L. i%[(loan)2,Bn—(loan)2] an
(112) i
Zkzl ‘Uj‘
— O(CuB,) exp —sx*nB,(log B, + log C,,)
o Zk" EU? + % log”§"4x\/nB (log B,, + log C,,)

Note that U; = ZkeH (Yo — EYy ), we first divide ZkeH (YH — EY}.,) into £ sums of sub-

sequences. Note that Y, , = Xj 0 Zs L ks Xso = Xpy Zs max(1k— By, )an,k,s)?s’g. Thus, one

can get |U;||> = O(¢B2). Then using ¢ = O(n") and k, = |n/(pn + ¢.)] = O(n/BL?), one

can get z;‘zl EU? = O(n'*"B,F) = o(nB,) by choosing v and 3 such that n?B,” = o(1).
Finally, we have that

Zk" EU? + 1 lovg”lf"w\/nB (log B, + log Cy,)

2Bl B, +logC,
O(Can)exp< "B (log By 4108 C) )

(113)

=0

—1221og(B,C,,)
C,, B, exp 2 T st
o(nB,)/(nB,) + 3 E

(log Bn)
3
— 0 [C’an exp <—§a:(log Bn)4>} = o(1),
since log C,, + log B,, = o(log B,,)* when C,, and B, are polynomials of n.

A.12. Proof of Lemma 8.13.
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(1)

(114)

(119)

(120)
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We first show that for |iy — is| > (log By)?/B, or |uy — up| > £(1 — 1/(log By)?), we
have that
E Zfil Uj (uh 011) Zfll Uj(u27 912)
nb,

= O(1/(log B)?).

Note that ) ; U; can be approximated by g,. This is because according to the proof

of Lemma &8.11, we have that

IE| Zfll Uj(“? 92) - gn<u> 9Z)|2
max max

= O(B, ).

n

Next, we can approximate g, by g,. This is because by Lemma 8.10 we have that

E[ga(u.6) — ga(u,0)° _

max mgix B, O(1/(log B,,)?).
Finally, we only need to show that
’COV(Qn(Ulazign, Gn(ua, 03,))] = O(1/(log B,)?),
which has been proved in Lemma A.11(i).
For convenience, we assume [ a?(t)dt = 1. Select d distinct tuples (0;,,w;),i =1,...,d
that (logB,)?> < iy < -+ < ig < B, — (logB,)* and w; € U,i = 1,...,d. Let

W, = Zf;l W; where

! f(ub 9“) 7 7 f(ud’ eid)
Note that by Lemma A.11(iii), we have that

(Z?L Uj (u, 9)) i
nbB,

)7 1< < k.

E —4m? f2(u,0)| = O(1/(log B,)?).

Together with Eq. (114), we have that

B, 47T2Id‘ = O(1/(log B,)?).

Then we approximate W,, by W/ = z;‘zl W} using Lemma A.12, where {W}} are

independent centered normally distributed random vectors. Then by Lemma A.12,
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we have Cov(W;) = Cov(WW}), for 1 < j < k,, and

w,-w,
P W, — W,| > 1/log B, | = O(e~ 085"y,
vnhB,,
Therefore, we have that
Cov(W,,
% A1, = O(1/(log B,)?).
Next, for 2 = (21,...,24), we define the minimum of {z;} by [z := min,.;,{z}.

Then we show that

Wala v )\
P2l >y, ) =1 2
( L. Y +o(1 Lexp o2
i) J
N

»J 7"'a (lOgB)2<]1§§
} such that for any two tuples (u;,,0;; )
— 0,1 > (log B,)?/By; if 6;, = 6;, then

uniformly on distinct tuples of {(u;,6
]d S Bn - (IOan) 527;\[
and (uj,, 0 ), if uj, = wy, then |0;
|uj, — ug| = F(1—1/(log By)?).
According to Eq. (121), we have that

Wil 1 g ht
P —22 >y, — - 0g Bn)
<\/an = Yn log B, Ole )

W, W, 1 s
<P >y, | <P nld > gy — O(e~leg Bn)™y,
: (\/n_Bn_y “P\vag, 2" e, ) PO

From Eq. (122), we have that

<wu; <1-—

Cov'/? (W))
vnhB,

so that for a standard normally distributed R%-valued random vector, W, the tail

probability of Cov' P(W) 1y oI, W satisfies that

vnBn

Cov'/2 (W) -
P ( (W - 27TId> w

— 271, = O(1/(log B,)?),

> 1/log Bn)

Putting together the above results we can use 27|W |y (recall that we defined the

minimum of {z;} by |z|q := min, ;. 4{2}) instead of ‘\/w to bound the tail probability
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(127)

(128)

(129)

(130)

(131)
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[Whla.
of oyt

P2r|W s > yn — 2/log B,) — O(e (08 B4
|Wn’d )

<P (24 >y,

- <m =7

SP(2W|W|dZyn—2/1OgB )+O( (log By)? /4)

Using the following approximation of tail probability of a standard normally distributed

random variable Z,

P(Z>2)=1-®(2) < z\/lﬂ exp (—%2) ;

we can get that

P(|2]>28) =2P (2> 2% < VBry;! eXp< 8yn>

Then we have shown that

P (\\/v% > yn> = (1+o(1)) (\/87y;1exp (—83/—52))0{

Similarly, using Lemma A.13 and Lemma A.11(ii), we can also have that

E U(uk> ) -
P(‘\/H_an(% o Zyn,k:—l,...,d>

d—2 )
<C (\/ yn exp ( 8%: )) y;z exp (—%(1 +(5)) ,

for some 0 > 0, uniformly on distinct tuples of {(u;,6;,),j =1,...,d: (log B,)* < j; <
- < ja < By, — (log B,)?, 5% < u; < 1— 3%} such that for any two tuples (u;,, 91-]1)

and (ujz,ﬁih)with j1 < Jo, if wj, = uy, then if 6;, = min; 6;, then \9,;].1 — Z]2| > B!

otherwise |0;, —0;, | > (log By)?/By; if 0;, = 0;; then [uj, —u,| > % (1—1/(log B,)? )

(4) Finally, we define

(132)

1S O e
“r A’n B, f%(u, ;)

> 2log B, + 2log C,, — log(wlog B, + wlog C,,) + x}



(133)

(138)

(139)

(140)

(141)
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and we show

P U Au,’i —1-— 676_1/2.

(log By,)2<i<B;,—(log Bn)2,ucld
To this end, we define
Au = U Au,i
(log By )2<i<Bpn—(log By)?
and
Pt,u = Z P(Auyil N---N Au,it)'
(log By)2<i1<+<it<Bpn—(log By)?

Then by Bonferroni’s inequality, we have for every fixed k and u that

2k ~ 2k—1
D (1) P, <P(A) <) (=D P.
t=1 t=1

Next following the proof of [Wat54, Theorem] and [WN67, Theorem 3.3] based on
Eq. (123) and Eq. (131), we can show that

P — [BaP(Au)] /4!

as n — oo. As shown in [Wat54, pp.799], with Eq. (123) and Eq. (131), when n — oo,

we have that
Py — [(Bn = 2(log B,)?)! /! + O(B,, — 2(log B)*)" P(Au)".
Therefore, we have shown that
P(A,) — 1 — e [BoPAuil],
Finally, we use the above techniques again to show

P (U Au> S 1—e "

ueU

which means we only need to show

C.P(A,) — exp(—z/2).
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Letting y?2 /4% = 2log B,, + 2log C,, — log(w log B,, + wlog C,,) + z, as in Eq. (123),

we have that

1 yn
CP(A,) — CoBuP(Ay;) — CB,P (|N| > %)

C.B, 2
— V8w exp (—ﬂ)

n 2
(142)
V8 x\ V/mlog B, + wlog C,,
— C,B, exp (——)
V8n2y/log B,, + log C,, 2 B, C,
x

— €X ——=).

P ( 2>

A.13. Proof of Remark 4.2. First of all, by the assumption GMC(2)

Efn(u, 9) - f(u, 9) = % [ Zn Ef’(u, k)a(k/Bn) _ Zr(u7 k)] eXp(\/—_lké’)
(143) o ke
_ % (B (u, K)a(k/By) — r(u, k)] exp(v=Tkd) + O(pP).

k=—B,,
Next, by the SLC condition, we know r(u, k) is Lipschitz. Together with the Lipschitz
condition of 7(+), we have that

N

(144)  E(u k) = %ZT (Z - ELM> - (Z Tk ~ WVJ) E(X; X, 1x)

- 1R (= aN]\ (it [Ny

(145) i% () () b + o)

(146) :% Lu§2 [T (H+M)2+o(k/n)] r(i/N, k) + O(k/N).
i={uN|-3

Since r(u, k) is twice continuously differentiable with respect to u, we have that

(147)

s =3 3 (LY [+ () 2ot

(148) +o(k/n)r(i/N,k) + O(k/N).
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Furthermore, since 7(-) is an even function

9) z(w)( L)) o)

Therefore, we have that
(150)  Ef(u, k) = [/ 7 (x)dx + 0(1/n)} r(u, k) + O(n®/N?) + o(k/n)r(u, k) + O(k/N)
(151) =r(u, k) +o(k/n+ 1/n)r(u, k) + O(k/N +n?/N?).

Therefore, by the locally quadratic property of a(-) at 0, we have that
Er(u, k)a(k/B,) — r(u, k)

(152) = Er(u, k) [a(O) +d (0)k/B, + %a”(())k‘Q/Bfl +o(k*/B2)| — r(u, k)

—C (222 o(k‘/n)) r(u, k) + O(k/N + n*/N?).

Then, using the fact that if ¢ {0, 7}, we know that

Bn an+1 Bne (Bn+1)6

, 1 sm( 6) _ sin 227 sin =
153 ko) = 2
(153) ;COS( ) 2 2 sin( 9/2 Zsm sm(Q/Q)

Then, for fixed 6 ¢ {0, 7}, we have that

B, By
(154) D cos(kb) = O(1), > kcos(kb) = O(B,).
k=0 k=0

If sup, ez I7(u, k)| < 0o and B,, = o(n), then

C E*r(u, k) exp(v/—1k6
I e

o B2
kEZ n

(155) Efo(u, ) — f(u,0) + O(B,/N +n?/N?).

Finally, B, = o(N'/3) implies O(B,,/N) = o(1/B2?). Also, n = o(N?/?) and B,, = o(N'/?3)
implies O(B2n?/N?) = o(1).
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A.14. Proof of Theorem 5.5. For simplicity, we denote d,,,, as d, and dg,, as dp. First, we

write

~

fa(u,0) — fn(uiaej) = fn(uae) - fn(uivej)
- E[fn(u7 9) - fn(uu gj)] + E[fn(u’ 0) - fn(uza QJ)]
Then by continuity we have that

(157) max sup IEf,(u,0) — Ef,(u;, 8;)| = op(+/logn).

{ui,0;} {uw:|lu—u;|<6u,0:10—0;]<dp}

(156)

Letting §,,(u, w;,0,0;) := Fo(u,0) — folus, 6,), it suffices to show that

(158) max sup |Gn(u,u;, 0,0;) — Eg,(u,u;, 0,6;)| = op(1/logn).
{ui,0;} {uwlu—u;|<6y,0:10—0;|<dp}

Note that
N ? P An U;, 0,
Gn(u,ui, 0,0;) =[fn(u,0) —Ef,(u,0)] [1 — M]
. Jn(u,0)
(159) A
+Ef,(u,0) [1 - M] .
fn(u, 0)
Then we can write
sup gn(“? Ui, 97 8])
{u,0}
5 ; Fulus, 05)
: < sup |fa(u,0) —Ef,(u,0)| sup | ——= —
+ sup ]Efn(u, 6) sup —fq(ui’ej) —1].
{u.0} (w0} | fn(u,)
Since by Theorem 4.1, we have that
(161) sup [ fn(u, 0) — Efn(u, 0)] = Op(1/logn).

{u.0}

Therefore, the following result completes the proof.
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Lemma A.15. If§, = O(N(lo’;n)a) and 0p = O(W) for some o > 0, then
n\Ws 0,
(162) max sup M — 1| = op(1).
{03} {uslu—w| <6,,0:0—051<50} | fr(u, @)
Proof. See Appendix A.15. O

A.15. Proof of Lemma A.15. First, we pick any (ug, ) such that |uy — u| < 6, and
|0p — 0] < dg. Then

(163)

Fu(ug, 00) — frlu,0) = Z (k/By)[F(uo, k) exp(v/—1kby) — #(u, k) exp(v/—1k0)].

Using 7 (%) =7 <7’ WVJ) +0 ( M), we have that

(164)

(g, k) exp(v/=Tkfl) = %if (Z — LuoN] ) . (Z Tk L“‘)NJ) (X:X14x) exp(v/—Thty)

n
=1

[T (@—L_“NJ) . (M) Lo (&;N)} (XiXi1x) exp(v/—1kb).

Note that exp(v/—1kby) = exp(v/—1k0)[exp(v/—1k(0y—0))] and cos(kby) = cos(kB) cos(k(0y—
0)) — sin(k0) sin(k(fp — 0)). Therefore, we have that

(166) Fu(ug, 0) = % i a(k/B,) 7 (ug, k) exp(v/—1k6) exp(v/—1k(6y — 6))
(167) = % - a(k/B,,)7(u, k) cos(kd) {1 + O (&;N)] [1+ O(kog)]
(168) - % (k) By (o, k) sin(k0)O(kdy)

0ulN

n

(169) = fulu,0) {1 +0 ( >] [1+ O(B,6)] + Op(B,d),
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where we have used the fact that the GMC condition implies 31" kr(u, k) = O(30", kp*) =
O(B,,). Note that we have assumed that f(u, ) > f. > 0 uniformly over u and 6, so we can
write Op(Bndg) = (Bndg)Op(fu(u,0)). Therefore, we have that

(170) Fulto, 00) = fu(us,0) = OBuN/n + Budg)Op(fu (1, 6)),

which implies that

fn(UOaHO) .
Jfalu,0)

In order to make it equal to op(1), we only need ¢, = o(n/N) and dy = o(1/B,,). Therefore,

choosing o > 0, 6, = O (m) and 9y = O (W) is sufficient.

(171) 1| = Op(5.N/n + Budy).

A.16. Proof of Remark 2.9. By the triangle inequality and Holder’s inequality, we have
that

| (u, k) = (s, k)|

= [E[G(u, Fi)G(u, Firx) — G(s, Fi)G(s, Figs)]]

G (u, Fi) = G(s, Fi)] Gu, Fig)ln + [ G (u, Firi) — G(s, Figr)] G(s, Fi) |

< NG u, Fi) = Gs, Fi)llg| G, Fi) lp + G (u, Fisk) = G5, Fir) |G s, Fi)ll
Clu — s|.

e e e e
—_
~

SN— S—r N~— SN— ~—
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