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S2 SPLASSO properties

S2.1 Derivation of the orthonormal case

In Section 3.2 of Samarov et al. (2013) the SPLASSO is studied under the assumption of

orthonormality of the design matrix. In solving for βi in the orthonormal setting we start

by fixing the remaining j 6= i coefficients. This is the same first step taken in the block-wise

coordinate descent based procedure we use to solve the SPLASSO problem (discussed in

Section 4) where all but the current parameter being estimated fixed.

Starting with equation (3.4) this can be expanded to

d∑
l′=1

β2
il′
− yTi x

′

lβil′ + λ1|βil′ |+ λ2
∑

j∈Nk(yi)

(β2
il′
− 2βil′βjl′ )

+ yTi yi + λ2
∑

j∈Nk(yi)

βTj βj.

(S2.1)

Noting that the objective function in (3.4) is convex, the optimal solution in (S2.1) is char-

acterized by its subgradient equations (as the l1 penalty term is non-differentiable). Recall

from our discussion in Section 3.2 that for illustrative purposes we assume
∑

j∈Nk(yi)
wij = 1

and that αil =
∑

j∈Nk(yi)
βjlwij and β̂il(OLS) = yTi xl. With these notations and assumptions

the subgradient equations for a particular β̂il are written as

β̂il(OLS)− (1 + λ2)β̂il + λ2αil =
λ1
2
vl (S2.2)

where the subderivative term

vl =

 sgn(β̂il) if β̂il 6= 0,

∈ {vl : |vl| ≤ 1} if β̂il = 0.

Dividing (S2.2) by 1 +λ2, letting γ = 1/(1 +λ2) and setting b̂il = γβ̂il(OLS) + (1− γ)αil the
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expression in (S2.2) can be written as

b̂il − β̂il =
λ1
2
γ. (S2.3)

When β̂il = 0, the subgradient equations are satisfied when

|b̂il| ≤
λ1
2
γ

and when β̂il 6= 0 we have

β̂il = sgn(b̂il)(|b̂il| −
λ1
2
γ).

Note, due to the convexity and continuity of the objective function in (3.4) when β̂il 6= 0,

sgn(b̂il) = sgn(β̂il). Putting this all together, for fixed j 6= i the SPLASSO estimate in the

orthonormal setting is

β̂il(SPLASSO) = sgn(b̂il)(|b̂il| −
λ1
2
γ)+. (S2.4)

S2.2 The Orthonormal Case - Additional Discussion

Following the discussion from Section 3.2 in Samarov et al. (2013), Figure 1 compares the

coefficient estimates of the OLS, LASSO and SPLASSO estimators under the assumption

of orthonormality and varying parameter values. Here we set the weighted average of the

surrounding coefficients, αi,l to be {0.1, 1, 2} (increasing from left to right along the columns)

with the regularization parameters λ1 = 1 and λ2 taking values in {0.1, 1, 2} (increasing from

top to bottom along the rows). The 45◦ line corresponds to the OLS estimate, the bold solid

line is the LASSO estimate, the dashed bold line the SPLASSO estimate and the solid black

point is the value of αi,l.

We start off by looking at the effect that the αi,l’s have on the SPLASSO estimate. Going
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from left to right along the columns of plots in Figure 1 one can see that as the weighted

average of the surrounding coefficients increases, the region over which thresholding occurs

begins to shift over to the left (this is particularly prominent in the second and third row

of plots). The implication is that unless the current coefficient’s estimated value is very

different from its neighbors, it is less likely to be set to 0 and more likely to be positive.

Next, as the value of the regularization parameter λ2 increases (going from top to bottom)

it has the effect of placing greater weight on the αi,ls. This also results in a shift left in the

region where the SPLASSO estimates are set to be 0.

S2.3 Feasible Set

Looking at the set of feasible solutions for the SPLASSO in the general case is important

as it gives us an understanding of how the regularization parameters, value of neighboring

coefficients and the spatial weights effect the coefficient estimates. Because the value of the

spatial penalty term depends on the neighboring coefficients, we consider a few test cases

to get a general idea of the models behavior. Consider the following example; looking at

Figure 2 suppose we are estimating the coefficient vector β ∈ R2 corresponding to the white

square at the center. The k = 1 neighborhood of this point is indicated by the light gray

and dark gray squares whose respective coefficient values are identical and are denoted by

β1 and β2. Lastly let w1 and w2 be the spatial weights for β1 and β2, respectively. Table 1

details the test cases we consider here. The particular parameterizations chosen are meant

to reflect what might be expected in practice. For the regularization parameters we consider

the cases where λ1 = λ2, λ1 < λ2 or λ1 > λ2 with either all the surrounding coefficients close

in value (β1 ≈ β2), or with one set greater than the other (β1 > β2), and having either

similar spatial weights (w1 ≈ w2), or with the weights greater for one set of coefficients than

the other (w1 > w2 or w1 < w2). The feasible sets corresponding to each of these cases are

shown in Figure 3.

For example, in the Case I in Table 1 we have β1 = β2 = (1/2, 1/2), w1 = w2 = 1/2 and

λ1 = λ2 = 1. This case captures the SPLASSO estimates behavior when all the surrounding
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Figure 1: An illustration of the behavior of the OLS, LASSO and SPLASSO coefficient
estimates in the orthonormal setting. Looking across the plots the values of the surrounding
neighbors, αi,l and regularization parameter λ2 steadily increase as we move left to right and
top to bottom.
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β1 β2β

Figure 2: An illustration of the test cases we consider for exploring the feasible set of
the SPLASSO model. The white “pixel” at the center corresponds to the location whose
coefficients (or abundances in the context of HSI), β we are estimating and the dark and
light gray pixels are its neighbors. The light and dark gray regions each share common
coefficients vectors β1 and β2 respectively.

coefficients and weights on the sparse and spatial penalties are equal. In cases V and IX once

again β1 = β2 but now we consider the cases where either the sparse term is less than the

spatial term, λ1(= 1) < λ2(= 2) or visa-versa, λ1(= 2) > λ2(= 1). The other cases shown in

Table 1 consider other possible combinations of neighboring coefficients, regularization and

spatial weight values. Note, we do not claim that the cases considered here are exhaustive, as

stated earlier they are meant to provide insight into general model behavior. Figure 3 shows

the feasible sets, highlighted in light blue, and Table 1 provides details on the parameters

used.

Looking at Figure 3 we can see that depending on whether λ1 is equal, greater or less than

λ2 (going from left to right) the corners of the feasible set become more or less pronounced

and likely to have thresholding occur. Similarly, depending on whether β1 is equal to or

greater than β2 and whether the spatial weight w1 is equal, greater than or less than w2,

we see that the feasible set is pulled more or less in the direction of the parameter with the

greatest weight.
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Case I II III IV V VI VII VIII IX
β1 ( 12 ,

1
2 ) (1,1) (1,1) (1,1) ( 12 ,

1
2 ) (1,1) (1,1) (1,1) ( 12 ,

1
2 )

β2 ( 12 ,
1
2 ) ( 12 ,

1
2 ) ( 12 ,

1
2 ) ( 12 ,

1
2 ) ( 12 ,

1
2 ) ( 12 ,

1
2 ) ( 12 ,

1
2 ) ( 12 ,

1
2 ) ( 12 ,

1
2 )

w1
1
2

1
2 0.75 0.25 1

2
1
2 0.75 0.25 1

2
w2

1
2

1
2 0.25 0.75 1

2
1
2 0.25 0.75 1

2
λ1 1 1 1 1 1 1 1 1 2
λ2 1 1 1 1 2 2 2 2 1

Case X XI XII
β1 (1,1) (1,1) (1,1)
β2 ( 12 ,

1
2 ) ( 12 ,

1
2 ) ( 12 ,

1
2 )

w1
1
2 0.75 0.25

w2
1
2 0.25 0.75

λ1 2 2 2
λ2 1 1 1

Table 1: The values used to generate the different feasible regions shown in Figure 3. The
columns, labelled I, II, . . . , XII correspond the coefficients used in each of the panels shown
in Figure 3. The values chosen were meant to reflect the cases one might expect to see in
practice.

S2.4 Decorrelation, convexity and relationship to the elastic net

As previously mentioned, the SPLASSO penalty shares some similarities with the elastic net,

in particular it combines the “decorrelation” property of the latter with spatial smoothing

across the coefficients. Before exploring this connection in more detail we introduce some

notation; let di =
∑n

j=1wij, with wij = wji, D = diag(d1, . . . , dn) and D = D ⊗ Im×m,

where ⊗ denotes the Kronecker product. Next define W = {wij}ni,j=1, W = W ⊗ Im×m and

L = D −W . Finally, letting B = (βT1 , . . . ,β
T
n )T , X = In×n ⊗X and Y = (yT1 , . . . ,y

T
n )T we

can express the SPLASSO objective function as

B̂(näıve SPLASSO) = arg min
B
||Y − XB||2 + λ1|B|1 + λ2BTLB. (S2.5)

This representation of the SPLASSO loss function allows for some interesting insights. The

key observation is that the matrix L in (S2.5) is the well known “Graph Laplacian” used in

spectral clustering (see von Luxburg (2007) for an overview on this topic).

Spectral clustering is an unsupervised learning method which is used as an approximation

to the graph cut problem (see Hagen & Kahng (1992) and Shi & Malik (2000)). Its objective
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Figure 3: This figure shows the set of feasible solutions for the SPLASSO model and its
relationship to the regularizations parameters λ1 and λ2 (columns) and the neighboring
coefficients and their associated weights (rows). Specific values for these parameters are
shown in Table 1.

is to separate (i.e. cluster) a collection of observations into two or more groups based on

the assumption that there exist high and low density regions in the data. More specifically,

spectral clustering looks at each observations as a node on a graph with the graph Lapla-

cian matrix representing the edge weights. If the edge weights are properly specified the

points which are similar to one another will have larger edge weights (i.e. will be strongly

connected to one another), and those that are different will have smaller edge weights (i.e.
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are less connected). The final step is to compute the eigenvalues and vectors of the graph

Laplacian and apply a standard clustering algorithm (such as k-means) to the eigenvectors

corresponding to the k − 1 smallest eigenvalues (excluding the smallest) to determine the

k clusters. For a discussion on the intuition behind the latter we refer the reader to von

Luxburg (2007).

Expressing the spatial penalty in the SPLASSO objective function using the graph Lapla-

cian provides us with some interesting insights. First, the positive semi-definiteness of the

graph Laplacian ensures convexity of the SPLASSO loss. Second, in the same way that L

connects and separates high and low density regions in the clustering setting, within the

framework of our model it connects and separates (dis)similar coefficient vectors, producing

smoother, less noisy estimates.

The following theorem gives a more detailed look at how our coefficient estimates are

affected by the graph Laplacian.

Theorem S2.1. Given the data (Y ,X ) and regularization parameters (λ1, λ2), the SPLASSO

estimates B̂ are given by

B̂(SPLASSO) = arg min
B
BT
(
X TX + λ2L

1 + λ2

)
B − 2YTXB + λ1|B|1. (S2.6)

If λ2 = 0 in (S2.6) then the SPLASSO simply becomes a series of LASSO models. On the

other hand, by setting λ2 > 0 we connect each βi to its neighbors. This can be seen more

clearly by writing out the first term in (S2.6). Letting S = XTX we have

X TX + λ2L
1 + λ2

=



S+λ2(d1−w11)I
1+λ2

−λ2w12I
1+λ2

· · · −λ2w1nI
1+λ2

−λ2w21I
1+λ2

S+λ2(d2−w22)I
1+λ2

· · · −λ2w2nI
1+λ2

...
...

. . .
...

−λ2wn1I
1+λ2

−λ2wn2I
1+λ2

· · · S+λ2(dn−wnn)I
1+λ2


. (S2.7)

The ijth block in (S2.7) tells us the degree of connectivity between βi and βj. Comparing
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this to the elastic net, the matrices, (S + λ2(di − wii)I)/(1 + λ2), i = 1, . . . , n, along the

diagonal are the same, less the scalar term di − wii.

The relationship between the SPLASSO and elastic net can be made even clearer if we

consider a slight variation on the SPLASSO penalty, specifically if we change the penalty

term to be

∑
ij

∥∥∥∥∥ βi√
di
−

βj√
dj

∥∥∥∥∥
2

wij = BTLsymB, (S2.8)

where Lsym = I−D−1/2WD−1/2. The matrix Lsym is referred to as the “normalized” graph

Laplacian in the spectral clustering literature. Letting Wsym = D−1/2WD−1/2 we have the

following result,

Corollary S2.1. Given the modified penalty term in (S2.8), data (Y ,X ) and regularization

parameters (λ1, λ2), the SPLASSO estimates Bsym(SPLASSO) are given by

B̂sym = arg min
B
BT
(
X TX + λ2I

1 + λ2
− λ2Wsym

1 + λ2

)
B − 2YTXB + λ1|B|1. (S2.9)

The matrix (X TX + λ2I)/(1 + λ2) in (S2.9) now has the exact same form as the elastic net.

This representation of the SPLASSO illustrates the balance between the decorrelation of

variables and the constraint of spatial smoothness.

In HSI applications the decorrelation property can be particularly important as end-

members are often strongly correlated. It was shown that when two (or more) covariates are

exactly correlated the LASSO fails to find a unique solution (Zou & Hastie (2005), Lemma 2)

and that it generally encounters difficulties when covariates are highly correlated. One of the

key properties of the elastic net is that it is able to overcome this through the introduction

of the l2 penalty term. In the following theorem we show that the SPLASSO shares a similar

property.

Theorem S2.2. Given data (yi,X), i = 1, . . . , n and parameters (λ1, λ2), let the response
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yi be centered and the predictors X standardized to have unit norm. With β̂i(λ1, λ2) being

defined as the näıve SPLASSO estimate, suppose β̂i,l(λ1, λ2)β̂i,s(λ1, λ2) > 0. Then with

Dλ1,λ2(l, s) =
1

||yi||
|β̂i,l(λ1, λ2)− β̂i,s(λ1, λ2)|,

we have

Dλ1,λ2(l, s) ≤
1

λ2

√
2(1− ρ) +

1

||yi||
∑

j∈Nk(yi)

|βj,l − βj,s|wij, (S2.10)

where ρ = xTl xs is the sample correlation.

What this theorem tells us is that under the SPLASSO model, when two variables xl and

xs are highly correlated, the differences between their coefficient estimates becomes progres-

sively smaller. Unlike the elastic net however, there is an additional term incorporating the

differences associated with neighboring coefficients.

S2.5 Connections with univariate soft thresholding

In this section we take a closer look at the behavior of the SPLASSO model as the weight

placed on the spatial regularization term increases to infinity. Using (S2.6) and (S2.9) in

Theorem S2.1 and Corollary S2.1 respectively, straightforward calculations show us that the

SPLASSO estimate becomes,

arg min
B
BTLB − 2YTXB + λ1|B|1, as λ2 →∞.

Taking a closer look at the objective function above, this can be re-expressed as

n∑
i=1

−2yTi Xβi +
∑

j∈Nk(yi)

||βi − βj||2wij + λ1|βi|1

 ,
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with straightforward modifications for Lsym. Written this way, the solution for a particular

βi,l, given its neighbors is simply

β̂i,l =
1

2
sgn

yTi xl +
∑

j∈Nk(yi)

βj,lwij

∣∣∣∣∣∣yTi xl +
∑

j∈Nk(yi)

βj,lwij

∣∣∣∣∣∣− λ1


+

,

as λ2 →∞. Thus as λ2 →∞ the correlation between coefficients is shrunk to zero, leaving

yTi xl +
∑

j∈Nk(yi)
βj,lwij, the univariate regression estimator plus the weighted average of the

neighboring coefficients.

S2.6 Rescaling and the SPLASSO

In Zou & Hastie (2005) the authors showed that the introduction of the l2 penalty term

resulted in the elastic net’s coefficient estimates receiving shrinkage from both the l1 and

the l2 penalties. In order to address this, they proposed rescaling the “näıve” solution as

they called it by a factor of 1 + λ2. Their justification for this stemmed primarily from two

points; first, that the LASSO is minimax optimal (Donoho et al. (1995)) and second, in the

orthonormal setting the näıve elastic net is simply the LASSO solution scaled by 1/(1 +λ2).

Intuitively then, multiplying the näıve elasatic net solution by (1 + λ2) would in yield a

minimax optimal solution. This logic was then extended to the general non-orthonormal

case.

In the context of the SPLASSO we recommend against this rescaling. To see why, we

begin by re-expressing the quantity in (S2.4) as

1

1 + λ2
sgn(β̂i,l + λ2αi,l)

(
|β̂i,l + λ2αi,l| −

λ1
2

)
+

. (S2.11)

From (S2.11) we see that there is the same scaling factor of 1/(1 + λ2) as in the elastic

net. However, this scaling factor plays an important role in balancing the influence of the

surrounding coefficient estimates and the OLS estimate. If we remove it this will cause the

overall estimate to be inflated by the term λ2αi,l.
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S3 A computationally efficient solution to the SPLASSO

Even with leveraging parallelization as described in Section4.2, for problems with sufficiently

large n the process of solving the LARS-SPLASSO algorithm at each point can still become

computationally expensive. In the context of some HSI applications this can be a major

issue as images may often have a spatial resolution of more than 1000× 1000 and a spectral

resolution of 1000 or more. In the following section we propose a more efficient solution to

the SPLASSO problem, also based on the ideas of coordinate descent.

In recent work by Friedman et al. (2007) a coordinate descent algorithm was proposed

for the LASSO and for several related methods. In that work it was shown that coordinate

descent provided considerable improvements in computational speed over competitors (in-

cluding LARS and other state-of-the-art optimization techniques). Additionally, in Liu et al.

(2009) a similar blockwise coordinate descent algorithm was proposed for the multivariate

response case.

Building on these ideas we show how a similar blockwise-coordinate descent based ap-

proach as in Liu et al. (2009) can be implemented for the SPLASSO. Our algorithm consists

of simultaneously updating the coefficients for a given βi while holding all the others fixed,

then cycling through this process until convergence. Suppose the current estimates are β̂i,

i = 1, . . . , n. Then βq is updated as

β̂q = arg min
β̂q,k

||rq,k − xkβ̂q,k||2 +λ1|βq,k| (S3.1)

+ λ2
∑

j∈N(yq)

(β̂q,k − βj,k)2wqj, for k = 1, . . . ,m,

where rq,k = yq−
∑

l 6=k xlβq,l denotes the partial residual vector. It can be shown that (S3.1)

can be solved in closed form. Letting bq,k = rTq,kxk + λ2
∑

j∈N(yq)
βj,kwqj we have

β̂q,k =
sgn(bq,k)(|bq,k| − λ1/2)+
xTk xk + λ2

∑
j∈N(yq)

wqj
. (S3.2)
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What is appealing about (S3.2) is that most quantities can be pre-computed. Specifically

for rTq,kxk = yTq xk −
∑

l 6=k xTl xkβq,l the inner products uq,k = yTq xk, 1 ≤ q ≤ n, 1 ≤ k ≤ m

and vl,k = xTl xk, 1 ≤ l, k ≤ m as well as
∑

j∈N(yq)
wqj can all be calculated in advance. This

provides considerable savings in computation once we start iterating through the coordinate

descent algorithm. Note, this updating procedure we just described is the same covariance

update discussed in Friedman et al. (2010).

The coordinate descent SPLASSO algorithm begins by initializing β̂i = 0, i = 1, . . . , n.

To generate the solution path, a decreasing sequence of regularization parameters, λ1 ∈

{C∆t, t = 0, . . . , t0}, 0 < ∆ < 1, t0 ∈ Z+, is selected where C ∈ R+. Here C is chosen so

that for t = 0, effectively all the coefficient estimates will be thresholded to 0, and for t = t0

they will be close to the OLS estimates, i.e. no thresholding.

Once the coefficients have been estimated by the coordinate descent algorithm for t = 0,

the coefficients estimates are recalculated using the previous coefficient estimates as the

starting values. This process is repeated for each t. This is the warm start concept discussed

in Liu et al. (2009) and Friedman et al. (2010). A summary of the algorithm is provided in

Figure 4.

Note, additional speedups are possible by indexing those β̂q,k, which have converged or have

been set to 0 for a given λ1, and skipping them as we iterate through the algorithm.

S4 The Adaptive SPLASSO

One of the shortcomings of the LASSO model is that while the inclusion of the l1 penalty term

comes with the benefit of encouraging sparsity it also introduces biased coefficient estimates

(as illustrated in Figure 3 of Samarov et al. (2013)). The adaptive LASSO, or ALASSO (Zou

(2006)) was developed to help reduce this bias through the addition of a set of weights for

each coefficient βi,l on the penalty term λ (or λ1 in the case of the SPLASSO). The weights

for those coefficients whose value is significantly different from 0 would be smaller (thus

reducing the amount of shrinkage), and greater for those that were closer to 0 (increasing
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Coordinate Descent SPLASSO:

• Compute inner products uq,k, 1 ≤ q ≤ n, 1 ≤ k ≤ m and vl,k, 1 ≤ l, k ≤ m and spatial
weight wij.

• Select value 0 < ∆ < 1, t0 and C.

• For each λ1 ∈ {C∆t, t = 1, . . . , t0}, iterate the through the following until convergence:

1. If t = 0 set as the starting value βi = 0, and βi = β̂i if t > 0, where β̂i is the
previous iterations estimates of the coefficients.

2. For each q ∈ {1, . . . , n} and every k ∈ {1, . . . ,m} calculate

β̂0
q,k =

sgn(bq,k)(|bq,k| − λ1/2)+
xTk xk + λ2

∑
j∈N(yq)

wqj

3. If |β̂0
q,k − β̂q,k| < ε, for all q and k, ε small stop, else repeat.

• Output SPLASSO solution path β̂i.

Figure 4: The Coordinate Descent SPLASSO algorithm

the amount of shrinkage). Using a similar framework as the ALASSO, we propose a variant

on the SPLASSO we call the adaptive SPLASSO (or ASPLASSO).

As with the ALASSO, we introduce a set of weights for each βi,l in our model, say φi,l,

i = 1, . . . , n, l = 1, . . . ,m, which are smaller or larger according to the coefficients relative

importance. The ASPLASSO model can be written as

n∑
i=1

||yi −Xβi||2 + λ1

m∑
l=1

φi,l|βi,l|+ λ2
∑

j∈N(yi)

wij

m∑
l=1

(βi,l − βj,l)2. (S4.1)

The weights φi,l can take on a number of forms, a reasonable choice is the reciprocal of the

weighted average of the neighboring coefficient estimates,

φi,l =
1∑

j∈Nk(y)
wijβj,l

. (S4.2)
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This model has a similar interpretation to the standard SPLASSO model discussed in Section

3 with one slight modification resulting from the introduction of the weights φi,l. The effect

of these weights is most easily seen in the case where we take, X as orthonormal. With b̂i,l,

αi,l and γ, as defined in Section 3.2, the ASPLASSO estimate are

β̂i,l(näıve ASPLASSO) = sgn(b̂i,l)

(
|b̂i,l| −

λ1
2
γφi,l

)
+

. (S4.3)

Setting φi,l = 1/|b̂i,l| in (S4.3) we see that as |b̂i,l| increases there will be less weight placed

on the penalty term, resulting in a reduction in the amount of shrinkage. On the other hand

with |b̂i,l| close to 0 the amount of shrinkage and the likelihood that the estimate will be set

to 0 increases.

S4.1 Solving the ASPLASSO

Both the LARS and the coordinate descent approaches used to solve the SPLASSO described

in Section 4 of Samarov et al. (2013) can also be used to solve the ASPLASSO. We begin with

the LARS formulation. Let x†il = xl/φi,l, β
†
i,l = φi,lβi,l, w

†
ijl = λ2wij/φ

2
i,l and β†j,l = φi,lβj,l,

for j ∈ N(yi). Putting these together, the problem in (S4.1) can then be expressed as

n∑
i=1

||yi −Xβi||2 + λ1

m∑
l=1

φi,l|βi,l|+ λ2
∑

j∈N(yi)

wij

m∑
l=1

(βi,l − βj,l)2

=
n∑
i=1

∥∥∥∥∥yi −
m∑
l=1

xl
φi,l

φi,lβi,l

∥∥∥∥∥
2

+ λ1

m∑
l=1

φi,l|βi,l|

+ λ2
∑

j∈N(yi)

m∑
l=1

wij
φ2
i,l

(βi,l − βj,l)2φ2
i,l

=
n∑
i=1

∥∥∥∥∥yi −
m∑
l=1

x†ilβ
†
i,l

∥∥∥∥∥
2

+ λ1

m∑
l=1

|β†i,l|+
∑

j∈N(yi)

m∑
l=1

w†ijl(β
†
i,l − β

†
j,l)

2

=
n∑
i=1

||yi −X†iβ
†
i ||2 + λ1|β†i |1 +

∑
j∈N(yi)

(β†i − β†j)
TW†

ij(β
†
i − β†j). (S4.4)
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where

y†i =



yi

W
†1/2
i1

β†i1
...

W
†1/2
ink

β†ink


, X†i = (1 + λ2)

−1/2



X

W
†1/2
i1

...

W
†1/2
ink


,

β†i = (1 + λ2)
1/2


β†i,1

...

β†i,m

W†
ij = diag(w†ij1, . . . , w

†
ijm),

β†j =


β†j,1

...

β†j,m

 , for j ∈ N(yi). (S4.5)

Through similar calculations to (4.1), and using the quantities in (S4.5), (S4.4) can be written

as

n∑
i=1

||y†i −X†β†i ||2 +
λ1

(1 + λ2)1/2
|β†i |1. (S4.6)

The same LARS-SPLASSO algorithm can then be used to solve (S4.6).

The coordinate descent approach to solving the ASPLASSO requires changing the update

of β̂0
q,k in Step 2 of the coordinate descent SPLASSO algorithm shown in Figure 6 of Samarov

et al. (2013) to

β̂0
q,k =

sgn(bq,k)(|bq,k| − φi,l/2)+
xTk xk + λ2

∑
j∈N(yq)

wqj
.

Currently work is under way to implement both the LARS and coordinate descent solutions

to the ASPLASSO.
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S5 Proofs

In this section we provide proofs from some of the results discussed in the previous sections.

We begin with Theorem S2.1

Proof. Let B̂ be the solution of (S2.5). Calculations similar to (4.1) show (S2.5) can be

written as

||Y∗ −X ∗B∗||2 +
λ1

(1 + λ2)1/2
|B∗|1, (S5.1)

where

Y∗ =

 Y
0

 , X ∗ =
1

(1 + λ2)1/2

 X

L1/2

 , B∗ = (1 + λ2)
1/2B. (S5.2)

Using (S5.1) we get

B̂ = arg min
B

∥∥∥∥Y∗ −X ∗ B
(1 + λ2)1/2

∥∥∥∥2 +
λ1

(1 + λ2)1/2

∣∣∣∣ B
(1 + λ2)1/2

∣∣∣∣
1

= arg min
B
BT
(
X ∗TX ∗

1 + λ2

)
B − 2

Y∗TX ∗

(1 + λ2)1/2
+ Y∗TY∗ +

λ1|B|1
1 + λ2

. (S5.3)

Plugging in the identities in (S5.2) into (S5.3), we have

B̂ = arg min
B

1

1 + λ2

[
BT
(
X TX + λ2L

1 + λ2

)
B − 2YTXB + λ1|B|1

]
+ YTY

= arg min
B
BT
(
X TX + λ2L

1 + λ2

)
B − 2YTXB + λ1|B|1.

Next we provide a proof of Theorem S2.2. Note the structure of this proof is quite similar

to that of Zou & Hastie (2005).

Proof. If β̂i,l(λ1, λ2)β̂i,s(λ1, λ2) > 0, then both β̂i,l(λ1, λ2) and β̂i,l(λ1, λ2) are non-zero and
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have the same sign. Taking the derivative of the SPLASSO loss (3.4) with respect to βi,l

and βi,s, and setting equal to zero, one gets

− 2xTl (yi −Xβi(λ1, λ2)) + λ1sign(β̂i,l(λ1, λ2))

+ 2λ2
∑

j∈Nk(yi)

(β̂i,l − βj,l)wij = 0, (S5.4)

− 2xTs (yi −Xβi(λ1, λ2)) + λ1sign(β̂i,s(λ1, λ2))

+ 2λ2
∑

j∈Nk(yi)

(β̂i,s − βj,l)wij = 0. (S5.5)

Next we subtract (S5.4) from (S5.5) which gives

(xs − xl)
T (yi −Xβ̂i(λ1, λ2)) + λ2(β̂i,l(λ1, λ2)− β̂i,s(λ1, λ2))−

λ2
∑

j∈Nk(yi)

(βj,l − βj,s)wij,

which is equivalent to

β̂i,l(λ1, λ2)− β̂i,s(λ1, λ2) =
1

λ2
(xl − xs)

T r̂i(λ1, λ2) +
∑

j∈Nk(yi)

(βj,l − βj,s)wij, (S5.6)

where r̂i(λ1, λ2) = yi − Xβi(λ1, λ2) is the residual vector. Since the columns of X are

standardized to have unit norm, ||xi − xj||2 = 2(1 − ρ) where ρ = xTi xj. Since our loss

function is convex,

||r̂i(λ1, λ2)||2 + λ2||β̂i(λ1, λ2)||2 + λ1|β̂i(λ1, λ2)|1 ≤ ||yi||2,

so ||r̂i(λ1, λ2)|| ≤ ||yi||2. Then (S5.6) implies that

Dλ1,λ2(l, s) ≤
1

||yi||

∣∣∣∣(xl − xs)
T r̂i

λ2

∣∣∣∣+
1

||yi||

∣∣∣∣∣∣
∑

j∈Nk(yi)

(βj,l − βj,s)wij

∣∣∣∣∣∣
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≤ 1

λ2

√
2(1− ρ) +

1

||yi||
∑

j∈Nk(yi)

|βj,l − βj,s|wij
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