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A1. Derivation of the autocovariance functions and spectral densities

Defining mj,i = g(Mj,i) for some function g : R→ R such that E(g2(M)) <∞, we start

by showing that:

E(mj,imj,i−h) = E(mj,i)
2 + Var(mj,i)(1− γj)h. (0.1)

for h ≥ 0. In the binomial MSMD model, the multiplier Mj,i, if it switches, takes the

value of m0 or (2−m0) with equal probability. To simplify notation, define pj := 1− 1
2γj ,

m0,1 := g(m0), m0,2 := g(2−m0), m0 := (m0,1,m0,2)
′. Then the transition matrix, Pj ,

associated with the j-th multiplier can be written as:

Pj =
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pj 1− pj

1− pj pj

)
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)(
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2
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′,

where C is the matrix of eigenvectors of the transition matrix and Aj holds the corre-

sponding eigenvalues. Then by the Law of Iterated Expectations (LIE),

E(mj,imj,i−h) = E(mj,imj,i−h|mj,i−h = m0,1)P(mj,i−h = m0,1)

+ E(mj,imj,i−h|mj,i−h = m0,2)P(mj,i−h = m0,2),

=
1

2
m0,1E(mj,i|mj,i−h = m0,1) +

1

2
m0,2E(mj,i|mj,i−h = m0,2),

=
1

2
m′0P

h
j m0,

=
1

2
m′0CA

h
jC
′m0,

=
1

4
(m0,1 +m0,2)

2 +
1

4
(1− γj)h(m0,1 −m0,2)

2,

= E(mj,i)
2 + Var(mj,i)(1− γj)h.

When the multiplier Mj,i is drawn from a continuous distribution upon switching, then

the new value it takes is different from the current value with probability one. Then we
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have:

E(mj,imj,i−h) = E[E(mj,imj,i−h|mj,i−h),

= E[mj,i−hE(mj,i|mj,i 6= mj,i−h)P(mj,i 6= mj,i−h)

+ mj,i−hE(mj,i|mj,i = mj,i−h)P(mj,i = mj,i−h)]

= E[mj,i−h(E(mj,i)(1− (1− γj)h) +m2
j,i−h(1− γj)h)]

= E(mj,i)
2(1− (1− γj)h) + E(m2

j,i)(1− γj)h,

= E(mj,i)
2 + Var(mj,i)(1− γj)h.

as claimed.

Now given that the multipliers and εi are all mutually independent, we obtain by

LIE and (0.1) for h > 0:

Cov (Xi, Xi−h) = Cov(ψiεi, ψi−hεi−h),

= E(ψiψi−h)E(εi)E(εi−h)− E(ψi)E(ψi−h)E(εi)E(εi−h),

= ψ̄2

 k∏
j=1

E(Mj,iMj,i−h)−

 k∏
j=1

E(Mj,i)

2 ,
= ψ̄2

( k∏
j=1

[1 + Var(M)(1− γj)h]− 1

)
,

and for h = 0:

Var (Xi) = E(ψ2
i )E(ε2i )− E(ψi)

2E(εi)
2,

= ψ̄2[E(M2)kE(ε2i )− 1]

as claimed. Turning to the spectral density, take the discrete Fourier transform of the

autocovariance function:

2π

ψ̄2
fX(ω)

=

∞∑
h=−∞

1

ψ̄2
Cov(Xi, Xi−|h|)e

−ıωh,

= Var(Xi)− [(1 + Var(M))k − 1] +
∞∑

h=−∞

( k∏
j=1

(1 + Var(M)(1− γj)|h|)− 1

)
e−ıωh,
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= E(M2)Var(ε1) +
∞∑

h=−∞

1∑
p1=0

1∑
p2=0

· · ·
1∑

pk=0

(p1,...,pk)6=(0,...,0)

(
Var(M)

∑k
j=1 pj

k∏
j=1

(1− γj)|h|pj
)
e−ıωh,

= E(M2)Var(ε1) +
1∑

p1=0

1∑
p2=0

· · ·
1∑

pk=0

(p1,...,pk)6=(0,...,0)

(
Var(M)

∑k
j=1 pj

) ∞∑
h=−∞

( k∏
j=1

(1− γj)pj
)|h|

e−ıωh

= E(M2)Var(ε1) (0.2)

+
1∑

p1=0

1∑
p2=0

· · ·
1∑

pk=0

(p1,...,pk)6=(0,...,0)

 Var(M)
∑k

j=1 pj

[
1−

(∏k
j=1(1− γj)pj

)2]
1 +

(∏k
j=1(1− γj)pj

)2
− 2

(∏k
j=1(1− γj)pj

)
cosω

 ,

where we use the multi-binomial theorem and the well-known fact that for any ρ ∈
(−1, 1),

∞∑
h=−∞

ρ|h|e−ıωh =
1− ρ2

1 + ρ2 − 2ρ cosω
,

since (p1, ..., pk) 6= (0, ..., 0) implies that |
∏k
j=1 δ

pj
j | < 1.

Turning to the autocovariance function for logarithmic durations, given that the

multipliers and εi are all independent, we obtain by (0.1) for h 6= 0:

Cov(xi, xi−h) =
k∑
j=1

Cov(mj,i,mj,i−h) = Var(logM)
k∑
j=1

(1− γj)h,

and for h = 0:

Var(xi) =

k∑
j=1

Var(mj,i) + Var(log εi) = kVar(logM) + Var(log εi),

as claimed. The spectral density then follows directly by calculating the discrete Fourier

transform of the autocovariance function:

2πf(ω) =

∞∑
h=−∞

Cov(xi, xi−|h|)e
−ıωh,

= Var(log ε1) +

∞∑
h=−∞

Var(logM)
k∑
j=1

(1− γj)|h|
 e−ıωh,

= Var(log ε1) + Var(logM)
k∑
j=1

1− (1− γj)2

1 + (1− γj)2 − 2(1− γj) cosω
.
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It is interesting to note that the autocovariance function of the logarithmic MSMD

process is equivalent to that of a signal-plus-noise process {zi}, in which the signal is a

sum of k independent AR(1) processes:

zi =
k∑
j=1

yj,i + ηi,

yj,i = ρjyj,i−1 + ηj,i

parametrized by ρj = 1 − γj , σ2ηj,i = σ2m(1 − (1 − γj)2), j = 1, .., k, and σ2ηi = σ2e . In

view of the seminal work of Granger (1980) on aggregation of short-memory processes

of heterogenous persistence, it is hardly surprising to find that as k → ∞ the MSMD

process can generate highly persistent logarithmic durations.

A2. Densities of innovations εi

Imposing a unit mean, the densities corresponding to the exponential and Weibull dis-

tributions are:

fE(ε) = exp(−ε),

fW (ε;κ) = κξκW ε
κ−1 exp(−ξκW εκ), ξW = Γ(1 + 1/κ).

For κ = 1, the Weibull distribution reduces to the exponential distribution with unit

mean.

A3. Estimators of the asymptotic variance of the Whittle estimator

The plug-in estimators of M(θ0) and V (θ0) are given by

M(θ̂) =
1

n

n−1∑
i=1

[
∂2f(ωi;θ)

∂θ∂θ′

(
1

f(ωi;θ)
− In(ωi)

f2(ωi;θ)

)]
θ=θ̂

,

V (θ̂) =
2

n

n−1∑
i=1

[g(ωi;θ)g(ωi;θ)′]θ=θ̂

+
2π

n2

n−1∑
i1=1

n−1∑
i2=1

[
g(ωi1 ;θ)

f(ωi1)

g(ωi2 ;θ)′

f(ωi2)
S(−ωi1 , ωi2 ,−ωi2 ;θ)

]
θ=θ̂

.

The Newey-West estimator of V (θ0) reads

V̂ (θ0) =
1

n

n−1∑
i=1

[
∂qi(θ)

∂θ

∂qi(θ)

∂θ′

]
θ=θ̂
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+
1

n

B∑
b=1

n−1∑
i=b+1

(
1− b

B + 1

)[
∂qi(θ)

∂θ

∂qi−b(θ)

∂θ′
+
∂qi−b(θ)

∂θ

∂qi(θ)

∂θ′

]
θ=θ̂

,

where qi(θ) = log f(ωi;θ) + In(ωi)
f(ωi;θ)

.

A4. Centering and scaling terms in the specification test in Section 3.4

The centering and scaling terms are given by:

Cn(k) =
1

nπ

n−1∑
l=1

(1− l/n)k2(l/pn) +
1

2π
,

Dn(k) =
2

π2

n−2∑
l=1

(1− l/n)(1− (l + 1)/n)k4(l/pn).

A5. Competing duration models

The ACD model

Engle and Russell (1998) suggest that the durations, xi, obey the following process

abbreviated as ACD(p,q):

xi = ψiεi,

ψi = ω +

q∑
j=1

αjxi−j +

p∑
l=1

βlψi−l

where ω, αi and βi are parameters to be estimated, ψi is the conditional duration,

the conditional mean of xi i.e. Ei−1(xi) = ψi, and εi is the iid duration innovation

having a distribution with positive support. Sufficient conditions for positive durations

are that ω > 0, αj ≥ 0 and βj ≥ 0. Weak stationarity is guaranteed by
∑q

j=1 αj +∑p
j=1 βj < 1. Overall, the model specification is similar to a GARCH model, except

that the conditional mean is being modelled as opposed to the conditional volatility. The

autocovariance function of the ACD model decays exponentially, thereby not enabling

long memory which is signified by hyperbolic decay.

The ACD models can be estimated using maximum likelihood, given the distribution

of the disturbance term. Engle & Russell (1998) propose the exponential and Weibull

distributions, while Grammig & Maurer (2000) suggest the Burr distribution and Lunde

(1999) the generalized gamma distributions. An attractive property of the exponential

distribution is that the maximum likelihood estimator has a QMLE interpretation, akin

to the MLE of GARCH model under normality. Forecasting in the ACD model proceeds
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via the ARMA representation (see Engle & Russell, 1998 for details).

The LMSD model

Bauwens & Veredas (2004) propose the the Stochastic Conditional Duration (SCD)

model given by:

xi = εie
ψi ,

ψi = ω + βψi−1 + ui,

where εi and ui are mutually independent iid innovations and ω and β are parameters

to be estimated. Unlike the ACD model, no conditions on parameters are required to

ensure positive durations. Also, weak stationarity is guaranteed as long as β is less than

1, which is a simpler condition than for the ACD model. Overall, the model specification

is similar to a stochastic volatility model.

While the ACD has only one, observable random variable driving the system dynam-

ics, the SCD model has an observable random variable driving the observed duration and

a latent random variable, ui, driving the conditional duration (now eψi) via an AR(1)

process. The extra random variable enables a richer dynamics structure: Bauwens &

Veredas (2004) point out that the parameters governing dispersion (σ) and persistence

(β) are separated under the SCD model, whereas they are the same in the ACD model

(α + β), so enabling the SCD model to fit a greater variety of persistence-dispersion

profiles.

As with the ACD model, the SCD model is only capable of generating geometric

decay in the autocovariance function. In order to enable long memory, Deo, Hsieh &

Hurvich (2006) introduce the Long Memory Stochastic Duration (LMSD) process, in

which the logged conditional duration equation is replaced with:

ψi = ω + βψi−1 + (1− L)−dui

Here there is more persistence because the logged conditional duration equation has

changed from an AR(1) process to an ARFIMA process.

Estimation of the SCD and LMSD models is less straightforward owing to the unob-

servable factor. Bauwens & Veredas (2004) advocate employing the Kalman Filter, while

Deo et al. (2006) suggest QMLE using the Whittle approximation. We adopt the latter

approach here. The Whittle estimator of the parameters is consistent and asymptotically

normal. Forecasting the SCD and LMSD models is possible either through calibration

of the best linear predictor, as advocated by Deo, Hsieh & Hurvich (2010), or via the
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Kalman Filter. While the LMSD process contains an infinite series of coefficients, it is

still possible to create a state-space form as observed by Chan & Palma (1998) and we

adopt their approach here.
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