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C. Games with Multiple Actions

Our results can be generalized to games with more than two actions. Suppose

that firms choose actions from Yi = {1, . . . , YdY
}, dY < +∞. Player i’s payoffs

from outcome y are given by

αi,y(w) + [βi,yi
(w)zi,yi

− ei,yi
]. (1)

Note that in contrast to the main that now we have an action-specific covariate

and shock for every firm.

The following assumption is a standard location and scale normalizations of

the payoffs.

Assumption 1

(i) αi,(0,y−i)(w) = βi,0(w) = 0 for all i, y−i, and w; ei,0 = 0 a.s. for all i.

(ii) βi,yi
(w) 6= 0 for all i, yi 6= 0, and w.

Let z = (zi,yi
)i∈I,yi∈Yi\{0} be a dZ =

∑

i dYi
-dimensional vector of payoff relevant

action-specific covariates; x = (zT, wT)T be the vector of all observed covariates;

and e = (ei,yi
)i∈I,yi∈Yi\{0} be a vector of payoff shocks. We allow shocks to be

correlated and we impose no restrictions on the sign of αi,y( · ).

We group all payoff parameters and Σ( · ) into a single parameter θ ∈ Θ.
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Proposition C.1 Under assumptions 1–4, and 11, both θ0 and h0 are identified,

and any solution concept S nested into SR(θ) is discernible relative to the set of

parameters that satisfy assumptions 1–3, and 11.

Proof. Similar to the proof of Proposition 4.1 we can turn a game with many

actions to a game with two actions by sending zi,yi
to +∞ or −∞, and then apply

Proposition A.2 to identify the payoff parameters. Then similarly to the proof of

Proposition 4.2, identification of h0 follows from completeness of the exponential

family of distributions. The latter automatically implies discernibility of Nash

solution concept in rationalizability. �

D. Additional Details for Entry Example

D.1. Proof of Nondiscernibility of PNE and SAA

Let fe denote the p.d.f. of e. Our assumptions imply that fe(e1, e2) > 0

and fe(e1, e2) = fe(e2, e1) almost everywhere on R
2. For each possible outcome

y ∈ {0, 1}2, let pPNE(y; η′) and pSAA(y; η) denote the probabilities of the outcome

according to each of the two solution concepts under consideration.

Fix any parameter value η ≥ 0. We will show that there exists some η′ ≥ 0

such that pPNE(y; η′) = pSAA(y; η) for every possible outcome y. If η = 0, then we

can simply set η′ = 0. Hence, for the rest of the proof, we assume that η > 0.

On one hand, if η′ = η, then

pPNE((0, 0); η′) =
∫ ∞

η′

∫ ∞

η′

fe(e1, e2) de2 de1

<
∫ ∞

η

∫ ∞

η
fe(e1, e2) de2 de1 +

∫ η

0

∫ η

0
fe(e1, e2) de2 de1

= pSAA((0, 0); η).

(See Figure 1). On the other hand, if η′ = 0, then

pPNE((0, 0); η′) =
∫ ∞

0

∫ ∞

0
fe(e1, e2) de2 de1
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>
∫ ∞

η

∫ ∞

η
fe(e1, e2) de2 de1 +

∫ η

0

∫ η

0
fe(e1, e2) de2 de1

= pSAA((0, 0); η).

Since pPNE((0, 0); η′) is continuous in η′, there exists some η′ ∈ (0, η) such that

pPNE((0, 0); η′) = pSAA((0, 0); η). Fix such η′.

Since pPNE((1, 1); η′) = pSAA((1, 1); η) and there are only four possible out-

comes it follows that

pPNE((1, 0); η′) + pPNE((0, 1); η′) = pSAA((1, 0); η) + pSAA((0, 1); η).

Now, we will show that pPNE((1, 0); η′) = pPNE((0, 1); η′) and pSAA((1, 0); η) =

pSAA((0, 1); η). This implies that the probabilities of all outcomes are the same

under both solution concepts. For PNE, we have that

pPNE((1, 0); η′) =
∫ 0

−∞

∫ ∞

0
fe(e1, e2) de2 de1 +

∫ η′

0

∫ η′

e1

fe(e1, e2) de2 de1

=
∫ 0

−∞

∫ ∞

0
fe(e2, e1) de1 de2 +

∫ η′

0

∫ η′

e2

fe(e2, e1) de1 de2

=
∫ 0

−∞

∫ ∞

0
fe(e1, e2) de1 de2 +

∫ η′

0

∫ η′

e2

fe(e1, e2) de1 de2

= pPNE((0, 1); η′),

where the second equality follows from using the change of variables (e1, e2) →
(e2, e1), and the third one from the symmetry fo fe. The argument for SAA is

completely analogous. �

D.2. Discernibility of PNE and SAA with an Excluded Covariate

Let us consider a modified version of the entry example. Suppose that every-

thing is as in Section 2, except that firm i’s profit is given by

yi ·
[

η0(1 − y−i) + z − ei

]

,

where z is a covariate supported on the whole real line, independent of e, and

such that Assumption 3 holds. The researcher observes the joint distribution of

outcomes (y1, y2, z). We claim that, with this added covariate, PNE and SAA
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are no longer observationally equivalent. Now, if the firm behavior corresponds

to SAA, then it cannot be explained by PNE, and vice versa.

Proposition D.1 In the entry example with a covariate, for every η, η′ > 0 there

exists z ∈ R such that SSA with η0 = η and PNE with η0 = η′ imply different

outcome distributions conditional on z = z.

Proof. It suffices to consider the probability of no entry, i.e., y = (0, 0). Fix any

η, η′ > 0. If η′ ≥ η, then PNE implies a higher probability of no entry than SAA

regardless of the realization of z (see Figure 1). Hence, we assume for the rest of

the proof that η > η′.

The probability of no entry conditional on z = z is [1 − Φ(z + η)]2 under PNE

and [Φ(z + η′) − Φ(z)]2 + [1 − Φ(z + η′)]2 under SAA. Let χ : R → R give the

difference between these probabilities as a function of z, i.e.,

χ(z) = [Φ(z + η′) − Φ(z)]2 + [1 − Φ(z + η′)]2 − [1 − Φ(z + η)]2.

We will show that there exist numbers z such that χ(z) 6= 0.

Note that χ is differentiable and

χ′(z) = 2[Φ(z + η′) − Φ(z)][φ(z + η′) − φ(z)]

− 2[1 − Φ(z + η′)]φ(z + η′) + 2[1 − Φ(z + η)]φ(z + η).

Let z∗ := −η′/2 < 0, so that z∗ = −(z∗ + η′) and z∗ + η′ > 0 . Since φ( · ) is

symmetric around 0, this implies that φ(z∗) = φ(z∗ + η′). Therefore the first term

of χ′(z∗) is equal to zero and we have

χ′(z∗) = −2[1 − Φ(z∗ + η′)]φ(z∗ + η′) + 2[1 − Φ(z∗ + η)]φ(z∗ + η)

= 2[φ(z∗ + η) − φ(z∗ + η′)] + 2Φ(z∗ + η′)φ(z∗ + η′) − 2Φ(z∗ + η)φ(z∗ + η)

< 2Φ(z∗ + η′)φ(z∗ + η) − 2Φ(z∗ + η)φ(z∗ + η)

= −2φ(z∗ + η)[Φ(z∗ + η) − Φ(z∗ + η′)] < 0,

where the first inequality follows because φ is decreasing on the positive real line,

and thus φ(z∗ + η′) > φ(z∗ + η). Since χ′(z∗) 6= 0, there exists an open set Z ′ such

that χ(z) 6= 0 for all z ∈ Z ′. �

Note that the proof of Proposition D.1 considers only the probability of y =
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(0, 0). The probability of this outcome in the multiplicity region is zero under any

PNE. Hence, the conclusion of the proposition does not depend on any assump-

tions about equilibrium selection.

D.3. Alternative Entry Subsidy

A form of subsidy that is more common in practice consists of giving a lump

sum subsidy τ̂ > 0 to any firm that enters a market with some observable charac-

teristics (see, e.g., Goolsbee (2002)). Under the PNE assumption, every market

that would be served without the policy would also be served with the policy.

Hence, the policy has an unambiguously positive effect (abstracting from the

cost). However, this need not be the case under SAA.

Proposition D.2 Suppose that firms profits are given by

πi(y) = yi ·
[

α + η(1 − y−i) − ei

]

,

firms make entry decisions in accordance with the SAA model, and e is normally

distributed with zero mean and the identity matrix as a covariance matrix. There

exists an open set Ξ ⊆ R
2 and a threshold τ̄ such that if (α, η) ∈ Ξ and τ̂ < τ̄ ,

then the probability that a market is not served is increasing in the size of the

subsidy.

Proof. Under strategic ambiguity there is no entry if either ei > α + η + τ̂ for

i = 1, 2, or α + τ < ei < α + η + τ̂ for i = 1, 2 (See Figure 1). Hence, the

probability that a market is not served as a function of τ̂ is given by

P (τ̂) =
[

1 − Φ(α + η + τ̂)
]2

+
[

Φ(α + η + τ̂) − Φ(α + τ̂)
]2

. (2)

Taking derivatives

P ′(τ̂) = −2φ(α + η + τ̂)
[

1 − Φ(α + η + τ̂)
]

. . .

. . . + 2
[

φ(α + η + τ̂) − φ(α + τ̂)
]

·
[

Φ(α + η + τ̂) − Φ(α + τ̂)
]

. (3)
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Evaluating when τ̂ = 0, α < 0, and η = −α +
√−α yields

P ′(0)

2φ(−α)
=

[

Φ
(√

−α
)

− 1
]

+



1 − φ(α)

φ
(√

−α
)



 ·
[

Φ
(√

−α
)

− Φ(α)
]

(4)

When α −→ −∞, the right-hand side converges to 1. Hence, we must have

P ′(0) > 0 when −α is sufficiently large. Since P is continuous, this must also be

true in an open set. �
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