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A Proofs

We follow the notation and the results in Abadir and Magnus (2005, ch. 13). Given a N ×m
matrix X, vec(X) is the vector obtained by stacking the columns of X one underneath the

other. The Nm × Nm commutation matrix CN,m is such that CN,mvec(X) = vec(X ′). For

N = m the m2 ×m2 commutation matrix is denoted by Cm. The identity matrix of order k is

denoted by Ik, and ‘⊗’ is the Kronecker product. Given a square matrix U , the symmetrizer

matrix is Nn = 1
2
(In2 + Cn) and Nnvec(U) = vec

[
1
2
(U + U ′)

]
.

A.1 Gradient and information matrix

The gradient vector is
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(
∂`t
∂f ′t

)′
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′
t − Ft)− 2V̇ ′t F

−1
t vt

]
. (A.1)

We now compute the information matrix as the expected value of the Hessian matrix

It = −Et

[
∂2`t
∂ft∂f ′t

]
. (A.2)

From the third line of (A.1) we can write that
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Ḟ ′tvec(F−1t − F−1t vtv

′
tF
−1
t ) + 2V̇ ′t F

−1
t vt

]
= −1

2

[
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The negative Hessian is equal to:
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where Φt = Ḟ ′t(IN ⊗ F−1t )vec(IN − vtv′tF−1t ). Let us now compute the following Jacobian:
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t )Ḟt. (A.6)

where F̈t =
∂vec(Ḟ ′t )

∂f ′t
. Putting together (A.5) and (A.6) we obtain the following expression:
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where V̈t =
∂vec(V̇ ′t )

∂f ′t
. Following Harvey (1989, p.141), taking the conditional expectation

of (A.7) the fourth and the seventh term in (A.7) are the only nonzero elements and the

information matrix is equal to

It =
1

2
Ḟ ′t
(
F−1t ⊗ F−1t

)
Ḟt + V̇ ′t F

−1
t V̇t. (A.8)

A.2 Jacobians of the Kalman filter

Let us write the KF recursions (3) in terms of the predictive filter:

vt = yt − Ztat, Ft = ZtPtZ
′
t +Ht,

Kt = Tt+1PtZ
′
tF
−1
t , Lt = Tt+1 −KtZt,

at+1 = Tt+1at +Ktvt Pt+1 = Tt+1PtL
′
t +Qt+1, t = 1, ..., n.

(A.9)



Given the model specific Jacobian matrices:

Żt =
∂vec(Zt)

∂f ′t
, Ḣt =

∂vec(Ht)

∂f ′t
, Ṫt =
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,

we compute the following Jacobian matrices:
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= Ṫt+1 − (Z ′t ⊗ Im)K̇t. (A.13)
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Ṗt+1 =
∂vec(Pt+1)

∂f ′t+1

=
∂vec(Tt+1PtL

′
t)

∂vec(Tt+1)′
∂vec(Tt+1)

∂f ′t+1

+
∂vec(Tt+1PtL

′
t)

∂vec(L′t)
′

∂vec(L′t)

∂vec(Lt)′
∂vec(Lt)

∂f ′t+1

+ Q̇t+1
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Plugging (A.12) in (A.14) we obtain

Ȧt+1 = [(a′t ⊗ Im) + (v′tF
−1
t ZtPt ⊗ Im)]Ṫt+1

= [(a′t + v′tF
−1
t ZtPt)⊗ Im]Ṫt+1

= (a′t|t ⊗ Im)Ṫt+1. (A.16)



Plugging (A.12) and (A.13) in (A.15) we obtain

Ṗt+1 = (LtPt ⊗ Im)Ṫt+1 + (Im ⊗ Tt+1Pt)Cm[Im2 − (Z ′tF
−1
t ZtPt ⊗ Im)]Ṫt+1 + Q̇t+1

= (LtPt ⊗ Im)Ṫt+1 + Cm[(Tt+1Pt ⊗ Im)− (Tt+1PtZ
′
tF
−1
t ZtPt ⊗ Im)]Ṫt+1 + Q̇t+1

= (LtPt ⊗ Im)Ṫt+1 + Cm[(Tt+1Pt − Tt+1PtZ
′
tF
−1
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= 2Nm(Tt+1Pt|t ⊗ Im)Ṫt+1 + Q̇t+1. (A.17)

Note that expressions (A.10), (A.11), (A.16) and (A.17) can be be also obtained by differenti-

ating the recursions in (3), therefore avoiding the computation of (A.12)-(A.15). Shifting one

period backward (A.16) and substituting into (A.10) we obtain:

V̇t = −[(a′t ⊗ IN)Żt + (a′t−1|t−1 ⊗ Zt)Ṫt]. (A.18)

Shifting one period backward (A.17) and substituting into (A.11) we obtain

Ḟt = 2NN(ZtPt ⊗ IN)Żt + 2(Zt ⊗ Zt)Nm(TtPt−1|t−1 ⊗ Im)Ṫt + Ḣt + (Zt ⊗ Zt)Q̇t. (A.19)

A.3 State space model in forward form

Let us consider the state space model in the so-called forward form:

yt = Ztαt + εt, εt ∼ N (0, Ht),

αt+1 = Ttαt + ηt, ηt ∼ N (0, Qt), α1 ∼ N (a1, P1), t = 1, ..., n.
(A.20)

The log-likelihood function is the same as in (2), thus ∇t and It are the same as in (6). The

recursions in (3) are replaced by the following ones:

vt = yt − Ztat, Ft = ZtPtZ
′
t +Ht,

Kt = TtPtZ
′
tF
−1
t , Lt = Tt −KtZt,

at+1 = Ttat +Ktvt Pt+1 = TtPtL
′
t +Qt, t = 1, ..., n.

(A.21)

Here we assume the following time dependency in the system matrices: Zt = Z(ft, θm), Ht =

H(ft, θm), but Tt = T (ft+1, θm) and Qt = Q(ft+1, θm). The formulae (A.10)-(A.19) remain

unchanged by simply replacing Tt+1, Ṫt+1, Qt+1, and Q̇t+1 with Tt, Ṫt, Qt, and Q̇t.

B Examples

In this section, we look at some examples of time-varying state space models that have been

considered in the literature and show how they can be analyzed with our score driven algorithm.

In particular, in section B.1 we consider the local level model with time-varying volatility, a



model that has been popularized by Stock and Watson (2007) to study inflation dynamics. In

section, B.2 we consider autoregressive processes with time-varying parameters.

B.1 Local level model

Let us consider the local level model with time-varying volatilities:

yt = µt + εt, εt ∼ N (0, σ2
ε,t),

µt = µt−1 + ηt, ηt ∼ N (0, σ2
η,t).

(B.1)

This model has been proposed by Stock and Watson (2007) to model US inflation. The

estimation of (B.1) using the score-driven approach was initially proposed by Creal et al.

(2008, sec. 4.4). Their algorithm, however, contains some inconsistencies and below we show

how it should be modified. First, the state vector and the system matrices are equal to αt = µt,

Zt = Tt = 1, Ht = σ2
ε,t, Qt = σ2

η,t. Thus, the application of the Kalman Filter leads to the

following recursions:

vt = yt − at, at+1 = at + ktvt,

dt = pt + σ2
ε,t, pt+1 = (1− kt)pt + σ2

η,t+1,

kt = pt/dt, t = 1, ..., n.

(B.2)

Second, the vector of time-varying parameters, which is recursively estimated using the score-

driven filter (4), is equal to ft = (log σε,t, log ση,t)
′. Third, the corresponding Jacobian matrices

are Ḣt =
(
2σ2

ε,t, 0
)
, Q̇t =

(
0, 2σ2

η,t

)
, Żt = Ṫt = (0, 0)′. Finally, the conditional log-likelihood is

equal to `t ∝ −1
2
(log dt + v2t /dt), and the gradient vector and information matrix in (6) are:1

∇t =
1

2d2t
ḋ′t(v

2
t − dt), It =

1

2d2t

[
ḋ′tḋt

]
, (B.3)

where ḋt =
(
2σ2

ε,t, 2σ
2
η,t

)
. The score’s driving mechanism is represented by (v2t − dt), that is

the deviation of the current estimate of the prediction error variance (by means of vt) from its

past estimate (dt). Such term is weighted by ḋt, which determines the different impact on the

two time-varying volatilities.2 A multivariate extension of the score driven model considered

in this section has been used by Buccheri et al. (2020) to model high-frequency multivariate

financial time-series.

1Note that the information matrix is singular. Therefore, it needs to be smoothed to be used as scaling
matrix.

2Note that the resulting algorithm is different from the one derived in Creal et al. (2008). In fact, the two
volatilities are only updated using information in the second moments of the data and the level of the prediction
error, vt, does not enter directly the filter.



B.2 Autoregressive models

Here, we consider models that are perfectly observable. In this case, our algorithm collapses to

the score-driven filter proposed in the literature by Blasques et al. (2014) and Delle Monache

and Petrella (2017). Let us consider the following autoregressive model with time-varying

parameters:

yt = φtyt−1 + ξt, ξt ∼ N (0, σ2
t ), (B.4)

the model can be easily cast in state space form by setting αt = yt, Zt = 1, εt = 0, Ht = 0,

Tt = φt, ηt = ξt and Qt = σ2
t . The vector of interest is ft = (φt, σ

2
t )
′, and the corresponding

Jacobians are Ṫt = (1, 0), Q̇t = (0, 1), Żt = Ḣt = 0. For simplicity we do not impose any

restrictions on ft.
3 Combining the KF (3) with the new filter (6)-(7) leads to the following

expression for the scaled-score vector:

st = I−1t ∇t =

[
1

y2t−1
(yt−1ξt)

(ξ2t − σ2
t )

]
. (B.5)

The driving process for the coefficient φt is the prediction error scaled by the regressor, while the

volatility σ2
t is driven by the squared prediction error. These match exactly those in Blasques

et al. (2014) and Delle Monache and Petrella (2017).

We can easily extend to the case of vector autoregressive model of order p:

yt = Φ1,tyt−1 + · · ·+ Φp,tyt−p + ct + ξt, ξt ∼ N (0,Γt). (B.6)

The SSF representation can be obtain by setting:

αt = (y′t, . . . , y
′
t−p, 1)′, Zt = I, Tt =



Φ1,t . . . Φp,t ct

I
. . .

I

0 0


, Qt =


Γt

0
. . .

0

 ,

where ft = (vec(Φt)
′, vec(Γt)

′)′, with Φt = [Φ1,t, . . . ,Φp,t, ct]. We therefore have that Żt =

Ḣt = 0, while Ṫt and Q̇t, are selection matrices. After some algebra, the scaled-score can be

specialized in two sub-vectors driving the coefficients and the volatilities:

st = I−1t ∇t =

[
(X ′tΓ

−1
t Xt)

−1X ′tΓ
−1
t ξt

vec(ξtξ
′
t)− vec(Γt)

]
, (B.7)

where Xt = (α′t−1 ⊗ I). Interestingly, the algorithm proposed by Koop and Korobilis (2013)

3Delle Monache and Petrella (2017) show how to impose stable roots.



can be obtained as a special case of ours by imposing some restrictions on the model. First, set

the law of motion (4) c = 0, A = I and let B depend on two scalar parameters (one driving the

coefficients and one the volatility). Second, replace the information matrix for the time-varying

coefficients by its smoothed estimator: Ĩc,t = (1− κ)Ĩc,t−1 + κ(X ′tΓ
−1
t Xt).

It is well known that VAR models tend to suffer from the ‘curse of dimensionality’ and

to overfit the data (see, e.g., Litterman, 1979; Doan et al., 1986). In the context of fixed

coefficients, Bayesian techniques are used to shrink the parameters, therefore reducing esti-

mation variance. Our algorithm can easily accommodate shrinkage, as detailed in Appendix

D. A regularized version of the model proposed by Koop and Korobilis (2013) can then be

easily obtained, where the parameters can be shrunk towards any type of prior that can be

reformulated in the form of stochastic constraints. These include the most popular priors typ-

ically considered in the Bayesian VAR literature, including the Minnesota prior, the sum of

coefficients prior and the long-run prior (see, e.g., Del Negro, 2012; Kapetanios et al., 2019).

C Monte Carlo exercise

The Monte Carlo exercise is based on a battery of simple bivariate models that share a common

component. We simulate two time series (y1,t and y2,t) that load (with parameters λ1,t and

λ2,t) on a common factor µt and are each affected by idiosyncratic noise. The common factor

evolves as an AR(1), with coefficient ρt. In this model, we look at the time variation of a subset

of parameters one at the time. Specifically, DGP1 lets the loading on the common factor vary

over time and keeps all the remaining parameters fixed. In DGP2 we keep both factor loadings

constant (λ1,t = 1 and λ2,t = 1) while allowing for time variation in the AR coefficient of the

common factor, ρt. In DGP3 and DGP4 we experiment with time-varying volatility, either in

the measurement or in the transition equations, keeping everything else fixed. In these latter

cases, the simulated model is a univariate signal plus noise model. In all cases, we consider two

different sample sizes, n = 250 and n = 500. As for the laws of motions for the TVPs entering

the various DGPs, we experiment with 6 different possibilities:

Case 1: CONSTANT ft = a1,∀t;
Case 2: SINE ft = a2 + b2 sin

(
2πt
T/2

)
;

Case 3: SINGLE STEP ft = a3 + b3 (t ≥ τ);

Case 4: DOUBLE STEP ft = a4 + b4I (t ≥ τ1) + c4I (t ≥ τ2);

Case 5: RAMP ft = a5 +
(

b5
T/c5

)
mod (t);

Case 6: AR(1) MODEL ft = a6(1− b6) + b6ft−1 + ξt, ξt ∼ N (0, c6);

where ft = λt in DGP1, ft = ρt in DGP2, ft = σ2
ε,t in DGP3, and ft = σ2

u,t in DGP4.4 We

4Moreover, ft in the AR(1) model is transformed to be within the unit circle for DGP2, and to be positive



start with a baseline case in which we keep the parameters constant over time. We then move

to four cases where the parameters change according to a deterministic process. In case 2 the

parameters follow a cyclical pattern determined by a sine function. In cases 3 and 4 we let

the parameters break at discrete points in time, allowing for either one or two breaks. We set

the location of the discrete breaks at given point in the sample. In the case of a single break,

this occurs in the middle of the sample. When we consider two breaks, they are located at 1/3

and 2/3 of the sample. Case 5 (RAMP) is a rather challenging case, whereby the parameters

increase for some time before returning abruptly to their starting levels. Finally, case 6 is

the only one in which we let the parameters vary stochastically, following a persistent AR(1)

model. We consider two cases, one with a near unit root process (i.e. with an AR root of

0.99) and a low variance, one with lower persistence (AR root of 0.97) but substantially higher

variance. We obtain very similar results in these two specifications. The DGPs that we design

are simple, in that time variation is introduced in all the channels in which it can manifest itself,

but only one at the time. By focusing on a single channel at the time, we can better identify the

situations in which our model either succeeds or fails at tracking parameter variation. Further

details on the calibration of the parameters are provided in the next subsections.

The results of the Monte Carlo exercise are shown in Table C.1. The table is organized

in four panels, corresponding to each of the four DGPs. On the left hand side of the table

we show the results for a sample size of n = 250, on the right hand side those obtained when

setting n = 500. For each DGP the analysis is based on 300 simulations. In each panel we

report the results obtained for the six alternative laws of motion described above. We base

our assessment on five different statistics, namely the Root Mean Squared Error (RMSEs),

the Mean Absolute Error (MAE), the correlation between actual and estimated coefficients,

the Coverage (i.e. percentage of times that the actual parameters fall in a given estimated

confidence interval) and the number of cases in which a pile-up occurs (#Pile-up). The last

statistics consists of the number of simulations in which the static coefficients that pre-multiply

the score end up being lower than 10−6, which we take as sufficient evidence that the estimated

parameters are effectively zero, i.e. that the model does not detect any time variation.

We highlight five results. First, for all the DGPs in which the true parameters are constant

the model performs extremely well. This means that the adaptive filter correctly collapses the

parameters to a constant. As a result, RMSEs and MAEs are virtually nil, the actual coverage

extremely precise and a pile-up at zero occurs in about 75 percent of the cases for the volatility

models and more than half of the cases for the loadings and AR coefficients.5 This result implies

that our estimation method does not generate spurious time variation in the coefficients when

for DGP3 and DGP4.
5For the latter two cases, in an additional 20% of the simulations the estimated parameters are virtually

constant, despite not being classified as a pile-up according to the criterion we have set above.



this is not present in the data generating process. Second, the pile-up problem is not of primary

concern for our estimator. The number of instances in which our method (incorrectly) concludes

that there is no time variation is basically zero in most cases. Third, for all the DGPs and

across all the specifications for the parameters we obtain extremely good coverage. Coverage

is almost perfect when time variation involves the autoregressive coefficients, somewhat lower

when it affects the volatility of the measurement and of the transition equation, in particular

when parameters break at discrete points in the sample. Fourth, across all DGPs the RAMP

specification is the one that the model finds more challenging to estimate. This specification

generally leads to low correlation between actual and estimated parameters, higher RMSEs

and MAEs and lower coverage. This is not surprising, since our model is, by construction,

designed to detect smooth changes, whereas in the RAMP model periods of small, continuous

changes are suddenly interrupted by large breaks. Fifth, the adaptive filter is very effective in

estimating time-varying loadings and autoregressive coefficients, but it is rather conservative

in the estimation of the time-varying variances, especially when these are driven by a near unit

root process. For this DGP, in one third of the cases the filter ends in a pile-up when the

sample is relatively small (T=250). However, when time variation is detected, the algorithm

yields relatively low RMSEs and MAEs and a satisfactory coverage. We take these results

as evidence that, in the case of time-varying variances, the algorithm needs relatively more

evidence of breaks in the parameters to move away from zero. A larger sample size (of the

type encountered in financial applications that use high frequency data) basically eliminates

the problem.

C.1 Specification of the DGPs

DGP1 - Time-Varying loadings[
y1,t

y2,t

]
=

[
1

λt

]
µt +

[
ε1,t

ε2,t

]
,

[
ε1,t

ε2,t

]
∼ N (0, I) ,

µt = 0.8µt−1 + ut ut,∼ N (0, 1) .

DGP2 - Time-Varying AR coefficient[
y1,t

y2,t

]
=

[
1

1

]
µt +

[
ε1,t

ε2,t

]
,

[
ε1,t

ε2,t

]
∼ N (0, I),

µt = ρtµt−1 + ut, ut ∼ N (0, 1).

DGP3 - Time-Varying Volatility in the measurement equation

yt = µt + εt, εt ∼ N (0, σ2
ε,t),

µt+1 = 0.8µt + ut, ut ∼ N (0, 1).



DGP4 - Time-Varying Volatility in the transition equation

yt = µt + εt, εt ∼ N (0, 1),

µt+1 = 0.8µt + ut, ut ∼ N (0, σ2
η,t).

C.2 Calibration

DGP1:Time-varying loadings

CONSTANT: a1 = 1;

SINE: a2 = 2, b2 = 1.5;

SINGLE STEP: a3 = 1, b3 = 2, τ = (2/5)n;

DOUBLE STEP: a4 = 1, b4 = c4 = 1.5, τ1 = (1/5)n, τ2 = (3/5)n;

RAMP: a5 = 0.5, b5 = 4, c5 = 2;

AR(1) [b6 = 0.99]: a6 = 1, b6 = 0.99, c6 = 0.082.

AR(1) [b6 = 0.97]: a6 = 1, b6 = 0.97, c6 = 30.242.

DGP2: Time-varying autoregressive coefficient

CONSTANT: a1 = 0.7;

SINE: a2 = 0, b2 = 0.7;

SINGLE STEP a3 = 0.8, b3 = −0.6, τ = (2/5)n;

DOUBLE STEP:a4 = 0.8, b4 = c4 = −0.5, τ1 = (1/5)n, τ2 = (3/5)n;

RAMP: a5 = 0.3, b5 = −0.9. c5 = 2;

AR(1) [b6 = 0.99]: a6 = 0.2, b6 = 0.99, c6 = 0.082;

AR(1) [b6 = 0.97]: a6 = 0.2, b6 = 0.97, c6 = 0.242;

and in the latter two cases we also impose the restriction that |ρt| < 1.

DGP3 and DGP4: Time-varying volatilities

CONSTANT: a1 = 1;

SINE: a2 = 1, b2 = 0.9;

SINGLE STEP: a3 = 1, b3 = 4, τ = (2/5)n;

DOUBLE STEP:a4 = 1, b4 = c4 = 3, τ1 = (1/5)n, τ2 = (3/5)n;

RAMP: a5 = 0.5, b5 = 8, c5 = 2;

AR(1) [b6 = 0.99]: a6 = 0, b6 = 0.99, c6 = 0.082;

AR(1) [b6 = 0.97]: a6 = 0, b6 = 0.97, c6 = 0.242;

In DGP3 and DGP4, after having simulated the dynamic of the volatility the time-varying

volatilities are rescaled so as to have a fixed ratio between the measurement and transition

error variances equal to 1.

For each DGP we target 300 simulations. However, the actual number of samples changes



depending on the specifications. In the case of constant coefficients, where we would like to see

our estimator to end up in a pile-up situation as often as possible, we perform 300 simulations

and compute all the statistics on these samples. For the remaining specifications, on the other

hand, we keep on drawing artificial samples until we obtain 300 simulations in which the

estimated parameters are different from zero and compute RMSEs, MAEs, correlations and

coverage ratios on these 300 artificial samples. At the same time, we also keep track of the

number of times in which the pile-up problem arises. To better understand how we proceed,

let us take a concrete example, that is the bottom-left panel of Table 1 (DGP4, i.e. the model

with time-varying volatility in the transition equation, n = 250). In the first row we report the

results for the constant coefficient case. As explained, for this case we simulate 300 artificial

samples and estimate the model using our algorithm. It turns out that in 236 out of 300

simulations our estimation method ends up in a pile-up. The RMSEs, MAEs, Correlations and

Coverages, are estimated on all the 300 simulations. Now let us take in the same panel the

last line, referring to one of the AR(1) specifications. In this case we need to draw up to 314

samples to obtain 300 simulations in which the estimation algorithm does not end being stuck

in a region of the likelihood where the model loading is zero. Now, in this case all the remaining

statistics are computed on the 300 ‘good’ samples. We proceed in this way because we want

to appraise two different issues. The former is the percentage of cases in which the algorithm

ends up in the pile-up even if the true DGP implies time variation. The second is how well

it estimates the parameters conditional on the model correctly detecting time variation. The

two points are of independent interest. If we were to find that the model often ends up in

the pile-up but it is very precise when it does not, one could decide to force the algorithm to

stay away from zero, for instance by using a grid-based estimation method. This is the choice

made, for instance, by Koop and Korobilis (2013). Similarly, in their Monte Carlo Markov

Chain estimation, Stock and Watson (2007) reject draws in which the variances are very close

to zero.

In figures C.1-C.8 we report the simulated true process for the time-varying parameters (red

line), and the fan chart associated to the 5th, 10th, 20th, 30th, 40th, 60th, 70th, 80th, 90th and 95th

quantile of the filtered parameters. In the case of the AR(1) specification we focus on the more

persistent AR(1) DGP and report the difference between actual and estimated parameters.

The figures are based on 300 replications.



Table C.1: Monte Carlo Exercise

DGP 1: time-varying LOADINGS COEFFICIENT

T = 250 T = 500

RMSE MAE Corr. 68% Cov. 90% Cov. # Pile up RMSE MAE Corr. 68% Cov. 90% Cov. # Pile up

CONSTANT 0.003 0.003 0.678 0.900 165 0.000 0.000 0.680 0.900 180
SINE 0.473 0.380 0.909 0.636 0.852 0 0.386 0.305 0.940 0.648 0.868 0
SINGLE STEP 0.406 0.280 0.927 0.656 0.876 0 0.335 0.229 0.951 0.660 0.882 0
DOUBLE STEP 0.462 0.339 0.936 0.640 0.860 0 0.390 0.277 0.953 0.652 0.874 0
RAMP 0.695 0.461 0.723 0.648 0.856 0 0.575 0.367 0.817 0.658 0.870 0
AR(1) [b6 = 0.99] 0.265 0.213 0.727 0.676 0.892 0 0.274 0.217 0.807 0.676 0.892 0
AR(1) [b6 = 0.97] 0.523 0.415 0.803 0.660 0.872 0 0.527 0.413 0.828 0.662 0.872 0

DGP 2: time-varying AUTOREGRESSIVE COEFFICIENT

T = 250 T = 500

RMSE MAE Corr. 68% Cov. 90% Cov. # Pile up RMSE MAE Corr. 68% Cov. 90% Cov. # Pile up

CONSTANT 0.006 0.006 0.676 0.900 147 0.005 0.004 0.680 0.900 156
SINE 0.330 0.267 0.780 0.684 0.900 0 0.268 0.212 0.866 0.682 0.900 0
SINGLE STEP 0.228 0.166 0.769 0.684 0.900 0 0.203 0.140 0.811 0.686 0.902 0
DOUBLE STEP 0.240 0.185 0.872 0.684 0.900 0 0.209 0.160 0.892 0.686 0.900 0
RAMP 0.341 0.261 0.392 0.682 0.900 0 0.299 0.221 0.548 0.683 0.900 0
AR(1) [b6 = 0.99] 0.297 0.237 0.608 0.684 0.900 4 0.301 0.241 0.695 0.686 0.902 1
AR(1) [b6 = 0.97] 0.477 0.377 0.575 0.686 0.900 0 0.478 0.375 0.593 0.685 0.900 0

DGP 3: TIME-VARYING VOLATILITY - MEASUREMENT EQUATION ERROR

T = 250 T = 500

RMSE MAE Corr. 68% Cov. 90% Cov. # Pile up RMSE MAE Corr. 68% Cov. 90% Cov. # Pile up

CONSTANT 0.000 0.000 0.676 0.896 231 0.000 0.000 0.682 0.899 232
SINE 0.981 0.768 0.747 0.672 0.876 1 0.829 0.637 0.813 0.678 0.882 0
SINGLE STEP 0.808 0.605 0.843 0.618 0.848 0 0.659 0.477 0.883 0.652 0.870 0
DOUBLE STEP 0.702 0.551 0.856 0.628 0.848 0 0.595 0.460 0.889 0.648 0.870 0
RAMP 0.960 0.764 0.498 0.640 0.860 20 0.803 0.599 0.646 0.656 0.874 1
AR(1) [b6 = 0.99] 0.717 0.571 0.568 0.664 0.880 93 0.748 0.578 0.608 0.668 0.886 24
AR(1) [b6 = 0.97] 1.446 0.998 0.600 0.664 0.868 22 1.489 1.005 0.626 0.674 0.878 3

DGP 4: TIME-VARYING VOLATILITY - TRANSITION EQUATION ERROR

T = 250 T = 500

RMSE MAE Corr. 68% Cov. 90% Cov. # Pile up RMSE MAE Corr. 68% Cov. 90% Cov. # Pile up

CONSTANT 0.000 0.000 0.676 0.896 236 0.000 0.000 0.680 0.898 241
SINE 1.052 0.832 0.714 0.672 0.880 1 0.871 0.673 0.794 0.672 0.886 0
SINGLE STEP 0.829 0.614 0.834 0.644 0.864 0 0.680 0.485 0.874 0.656 0.878 0
DOUBLE STEP 0.754 0.592 0.849 0.644 0.868 0 0.620 0.481 0.885 0.656 0.876 0
RAMP 1.015 0.822 0.468 0.644 0.868 1 0.829 0.640 0.615 0.659 0.881 0
AR(1) [b6 = 0.99] 0.768 0.623 0.622 0.668 0.888 95 0.776 0.607 0.613 0.668 0.887 34
AR(1) [b6 = 0.97] 1.533 1.069 0.590 0.664 0.876 14 1.523 1.042 0.619 0.664 0.880 5

Note. The results shown in the first and in the second panel (DGP1 and DGP2) refer to a bivariate factor
model in which two variables are driven by a single common factor that evolves as an autoregressive process
of order 1. In the first case (DGP1) the loading of the second variable on the common factor varies over time
and all the other parameters are kept constant. In the second case (DGP2) the autoregressive component of
the common factor varies over time and all the other parameters are kept constant. The results shown in the
third and in the fourth panel (DGP3 and DGP4) refer to ARMA(1,1) models that are cast in state space and
feature time-varying variances of the random disturbance in, respectively, the measurement and the transition
equation. The abbreviations Corr. and Cov. stand, respectively for Correlation and Coverage, while # Pile-up
denotes the number of simulations in which the algorithm delivers constant parameters. The different laws of
motion of the parameters in the first column (Constant, Sine, Single Step, Double Step, Ramp and AR(1) are
described in Section 4).



Figure C.1: time-varying loadings, n=250
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Figure C.2: time-varying loadings, n=500



Figure C.3: time-varying autoregressive coefficients, n=250
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Figure C.4: time-varying autoregressive coefficients, n=500



Figure C.5: time-varying measurement equation error variance, n=250
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Figure C.6: time-varying measurement equation error variance, n=500



Figure C.7: time-varying transition equation error variance, n=250
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Figure C.8: time-varying transition equation error variance, n=500



D Shrinking the vector of parameters by the L2 penalty

As the dimension of the system grows, it could be desirable to impose some shrinkage on

the model parameters to avoid an increase in the estimation variance (Hastie et al., 2001).

Following (Theil and Goldberger, 1961), priors can be incorporated into the state space model

(1), with the score driven system matrices described by (4), augmenting the model using the

following Gaussian constraints:

rt = Rtft + ut ut ∼ N (0,Σt), (D.1)

where rt, Σt and Rt are known and the random disturbance ut is Gaussian and uncorrelated

with the other two disturbances εt and ηt. Since ut is Gaussian, the resulting penalty will be

quadratic with the matrix Σt regulating the degree of shrinkage; e.g for Σt →∞ the constraints

vanish, while for Σt → 0 the constraints hold exactly. The vector rt can be considered a vector of

artificial observations. The likelihood function for the vector of ‘augmented data’, ỹt = (y′t, r
′
t)
′

is equal to:

`pt = log p(ỹt|Yt−1, θ) ∝ −
1

2

(
log |Ft|+ v′tF

−1
t vt

)
− 1

2

(
log |Σt|+ u′tΣ

−1
t ut

)
, (D.2)

which can be interpreted as a ‘penalized likelihood’ with a quadratic penalty function. The

resulting ‘penalized’ score is:

spt = (Ipt )−1∇p
t = (It +R′tΣ

−1
t Rt)

−1(∇t +R′tΣ
−1
t ut). (D.3)

Using the Woodbury identity we obtain6:

(Ipt )−1 = (It +R′tΣ
−1
t Rt)

−1 = I−1t − I−1t R′t(RtI−1t R′t + Σt)
−1RtI−1t = (I −ΥtRt)I−1t , (D.4)

where Υt = I−1t R′t(RtI−1t R′t + Σt)
−1. Finally, we can express the penalized (regularized) score

as follows:

spt = (I −ΥtRt)st + Υtut, (D.5)

From the last expression it is straightforward to obtain the two polar cases for Σt → 0 and

Σt → ∞. To illustrate with a simple example how such ‘penalized score’ works let us define

Rt = I, rt = f̄ , and Σt = 1
λ
I so that the constraints reduce to ft ∼ N (f̄ , 1

λ
I). This corresponds

to a Ridge-type penalty with λ regulating the degree of penalization. The penalized score will

be spt = (I − Λt)st + Λt(f̄ − ft), where Λt = λ(It + λI)−1. If we assume a simple random-walk

law of motion for ft, that is ft+1 = ft + Bspt , and the information matrix equals to identity

6In case It is not invertible we use its smoothed estimator Ĩt = (1− κ)Ĩt−1 + κIt which is invertible.



matrix, the resulting regularized score-driven filter is:7

ft+1 =
Bλ

1 + λ
f̄ +

(
I − Bλ

1 + λ

)
ft +

B

1 + λ
st. (D.6)

The law of motion is now mean reverting towards the desired value f̄ . Everything else equal,

the larger is λ, the lower is the weight assigned to actual data and the more binding is the

constraint. Notice that the strategy of stochastic constraints is very flexible, and generalizes a

number of shrinkage methods, including Ridge regressions, Minnesota priors, sum of coefficients

priors as well as the long-run prior in Giannone et al. (2019). Kapetanios et al. (2019) discuss

in details these additional cases.

E Mixed frequencies and missing observations

Assume to have a data set containing missing observations. The observed vector is represented

by Wtyt, where Wt is an Nt × N selection matrix with 1 ≤ Nt ≤ N , meaning that at least

one observation is available at time t. Note that Wt is obtained by eliminating the i− th row

from IN when the i− th variable is missing. In this setting, at each time t the likelihood `t is

computed using Nt observations; i.e. `t = log p(Wtyt|Yt−1, θ), that is the marginal likelihood.

In practice, the score of the marginal likelihood is computed and the updating of ft is based on

the available information.8 Given this reparameterization, the measurement equation in (1) is

modified as follows:

Wtyt = WtZtαt +Wtεt, Wtεt ∼ N (0,WtHtW
′
t), (E.1)

and the first four expressions of the KF (3) are modified as follows:

vt = Wt(yt − Ztat), Ft = Wt(ZtPtZ
′
t +Ht)W

′
t ,

at|t = at + PtZ
′
tW
′
tF
−1
t vt, Pt|t = Pt − PtZ ′tW ′

tF
−1
t WtZtPt.

(E.2)

The expressions in (7) become

V̇t = −[(a′t ⊗Wt)Żt + (a′t−1|t−1 ⊗WtZt)Ṫt],

Ḟt = 2NNt(WtZtPt ⊗Wt)Żt + (WtZt ⊗WtZt)2Nm(TtPt−1|t−1 ⊗ Im)Ṫt

+(Wt ⊗Wt)Ḣt + (WtZt ⊗WtZt)Q̇t.

(E.3)

Mixed frequencies typically involve missing observations and temporal aggregation. The

case of mixed frequencies is of particular interest for a number of applications, like for instance

forecasting low frequency variables using higher frequency predictors (nowcasting). Indeed

low frequency indicators can be modeled as a latent process that is observed at regular low

7The same regularized filter can be obtained by setting ft ∼ N (f̄ , 1
λIt), which is the Litterman-type of prior.

8A formal discussion of dealing with missing values in score-driven models can be found in Lucas et al. (2016).



frequency intervals and missing at higher frequency dates. The relation between the observed

low frequency variable and the corresponding (latent) higher frequency indicator depends on

whether the variable is a flow or a stock and on how the variable is transformed before entering

the model. In all cases, the variable can be rewritten as a weighted average of the unobserved

high frequency indicator (see e.g., Banbura et al., 2013).

F Correlated disturbances

Let consider the case in which the disturbances in (1) are correlated, that is E(ηtε
′
t) = Gt. In

this case the following expressions in (3) need to be modififed:

Ft = ZtPtZ
′
t + ZtGt +G′tZ

′
t +Ht,

at|t = at + (PtZ
′
t +Gt)F

−1
t vt,

Pt|t = Pt − (PtZ
′
t +Gt)F

−1
t (PtZ

′
t +Gt)

′.

(F.1)

Therefore, the expression for Ḟt in (7) need to be modified as follows:

Ḟt = [2NN(ZtPt ⊗ IN) + (G′t ⊗ IN) + (IN ⊗G′t)CNm]Żt

+(Zt ⊗ Zt)2Nm(TtPt−1|t−1 ⊗ Im)Ṫt + Ḣt + (Zt ⊗ Zt)Q̇t

+[(IN ⊗ Zt) + (Zt ⊗ IN)CmN ]Ġt.

(F.2)

G Empirical application

G.1 Identification of the model

In this section, we consider the identification of the model presented in section 3. Let us start

by looking at the constant parameter version of the model:

pdt+1 = pd− b1µ̃t+1 + b2g̃t+1 + νt+1, νt+1 ∼ N (0, σ2
ν),

∆dt+1 = g + g̃t + εd,t+1,

µ̃t+1 = φµµ̃t + εµ,t+1,

g̃t+1 = φgg̃t + εg,t+1.

(G.1)

The measurement error νt is uncorrelated with the innovations of the model for which we

assume a general a covariance structure, εt = (εd,t, εµ,t, εg,t)
′ ∼ N (0,Ω). Below we discuss the

restrictions needed for this model to be identified.

Model (G.1) is equivalent to one estimated by Binsbergen and Koijen (2010), whose identi-

fication issue is discussed at lenght in Cochrane (2008), with the key difference being that we

have added the measurement error in the pdt equation. To be more precise, the specification

for ∆dt+1 implies an ARMA(1,1) process, while the model for pdt without the measurement

error νt is an ARMA(2,1). The resulting bivariate model is a restricted VARMA(2,1) with



five parameters9 to identify the covariance Ω. Specifically, we set one correlation to zero as

in Binsbergen and Koijen (2010) and Rytchkov (2012), i.e. Corr(εd,t, εg,t) = 0. Adding the

measurement error νt in the pdt equation, the additional parameter σ2
ν is identified by the ad-

ditional moving average coefficients.10 By introducing time-varying long-run mean pdt, and gt,

the implied reduced form models for pdt and ∆dt become ARIMA(2,1,3) and ARIMA(1,1,2),

respectively. Thus, the two additional moving average coefficients are used to identify the two

parameters, bµ and bg, scaling the score-driven filters for µt and gt in (21)-(22). Since our model

features a time-varying Ωt, at each point in time for a given covariance matrix Ω the model is

identified; i.e. the model is locally identified.

G.2 Modelling the correlation matrix by partial correlations

Here we show how to model a time-varying correlation matrix by imposing bounds on the

partial correlations. In order to save in notation we drop the subscript t. Let consider the

following covariance matrix Ω = DRD′, where D = diag([σ1, σ2, σ3)] and R is the correlation

matrix:

R =


1 %12 %13

%12 1 %23

%13 %23 1

 .
To ensure positive standard deviations we model δi = log σi so that σi = exp δi. For the

correlations we model γ = (γ12, γ13, γ23)
′, where γij = h(%ij) and h(·) is the inverse function of

the transformation %ij = ψr(γij) that we describe below.

A well defined correlation matrix R must be positive semidefinite with ones on the main

diagonal, this poses a non-trivial problem; see e.g. Budden et al. (2008). On the other hand, the

one-to-one mapping between the correlations and the partial correlations allows us to impose

simple constraints to the partial correlations. Inspired by Joe (2006), Daniels and Pourahmadi

(2009) and Lewandowski et al. (2009), we re-parametrize the correlation matrix with respect

to the partial correlation matrix. Specifically, R is positive semidefinite if the corresponding

partial correlation matrix

Π =


1 π12 π13

π12 1 π23

π13 π23 1


has all the elements πij ∈ (−1, 1), where πij are the partial correlations between variables i and

j. To satisfy those bounds on the partial correlations πij we use the Fisher transformation,

that is πij = tanh(γij), so that we model γij = atanhπij. The function mapping the elements

9The tree autoregressive coefficients and the two constants are identified by construction. The two moving
average coefficients and three parameters of the covariance matrix are used to identify the six elements of the
matrix Ω.

10Adding the measurement error νt, the reduced form model for pdt becomes an ARMA(2,2).



of R into the elements of Π is:11

%12 = π12, %13 = π13, %23 = π23

√
(1− π2

12)(1− π2
13) + π12π13. (G.2)

Thus, we perform two transformations:

%ij = ψr(γij) = ψr,2(ψr,1(γij)), (G.3)

where ψr,1(·) = tanh(·), ψr,2(·) is defined in (G.2). The resulting Jacobian is:

∂%

∂γ′
=

∂%

∂π′
∂π

∂γ′
=


1 0 0

0 1 0

κ12 κ13 κ23




1− π2
12 0 0

0 1− π2
13 0

0 0 1− π2
23

 ,
where

κ12 = π13 − π12π23

√
1− π2

13

1− π2
12

, κ13 = π12 − π13π23

√
1− π2

12

1− π2
13

, κ23 =
√

(1− π2
12)(1− π2

13).

Remark: If the partial correlations πij are bounded using the cosine function, i.e. ψr,1(·) =

cos γij, the transformation (G.3) turns out to be the same as the hyperspherical coordinates

used in, e.g., Creal et al. (2011) and Buccheri et al. (2020). This means that the use of

hyperspherical coordinates implies modelling inverse consine of the partial correlations. The

proof for a correlation matrix of general dimension is beyond the scope of this paper.

In our application, the identification of the model requires to set to zero one of the corre-

lations. Without loss of generality we set to zero the correlation between the first and second

innovation. Eploiting the mapping between the correlations and partial correlations we have

that π12 = 0 implies %12 = 0. Therefore, we model the following vectors % = (%13, %23)
′,

π = (π13, π23)
′, γ = (γ13, γ23)

′ The mapping between correlations and partial correlation is

%13 = π13, %23 = π23
√

1− π2
13, and the Jacobian is

∂%

∂γ′
=
√

1− π2
13

[√
1− π2

13 0

−π13π23 1− π2
23

]
.

G.3 State space, score driven vector and jacobians

The model in section 3 can be cast easily in state space form:

yt = Ztαt + εt, εt ∼ N (0, H),

αt = Tαt−1 + ηt, ηt ∼ N (0, Qt),

11See also Yule and Kendall (1965, ch. 12) and Anderson (1984, p. 41).



where

yt =

[
∆dt

pdt

]
, Zt =

[
ḡt 0 0 1 1 0 0

pdt
1

1−ρtφg −
1

1−ρtφµ 0 0 0 0

]
, H =

[
0 0

0 σ2
ν

]
,

αt =



1

g̃t,

µ̃t,

g̃t−1

εd,t

εg,t

εµ,t


, T =



1 0 0 0 0 0 0

0 φg 0 0 0 0 0

0 0 φµ 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


, ηt = Sη


εd,t

εg,t

εµ,t

 , Sη =



0 0 0

0 1 0

0 0 1

0 0 0

1 0 0

0 1 0

0 0 1


,

Qt = SηΩtS
′
η, Ωt = DtRtDt, with Dt contains the standard deviations, and Rt denotes the

correlation matrix. The zero correlation between the measurement error in dividend growth

(εd,t) and the stochastic disturbance in expected dividend growth (εg,t), which is required for

the identification of the model, is appropriately imposed. The resulting matrices are is:

Dt =


σd,t 0 0

0 σg,t 0

0 0 σµ,t

 , Rt =


1 0 %dµ,t

0 1 %gµ,t

%dµ,t %gµ,t 1

 .
The vector of time-varying parameters is:

ft =


ϕt

δt

γt

 , ϕt =

[
µt,

gt

]
, δt =


log σd,t

log σg,t

log σµ,t

 , γt =

[
atanhπdµ,t

atanhπgµ,t

]
.

The vector ft follows the score driven model discussed in section 2, with the following specifi-

cation of the static parameters:

c = [0, 0, cσd , cσg , cσµ , cπd,µ , cπg,µ ]′,

A = diag([1, 1, aσd , aσg , aσµ , aπd,µ , aπg,µ ]),

B = diag([bµ, bg, bσd , bσg , bσµ , bπd,µ , bπg,µ ]).

Time variation in the Z matrix. Using the notation in section 2.2 we have that

vec(Zt) = S0,z + S1,zψz (S2,zft) ,



where

S0,z =



06×1

1

0

1

05×1


, S1,z =



1 0 0 0

0 1 0 0

0 0 0 0

0 0 1 0

0 0 0 0

0 0 0 1

08×4


, S ′2,z =



1 0

0 1

0 0

0 0

0 0

0 0

0 0


,

ψz (ϕt) =


gt

pdt
1

1−ρtφg

− 1
1−ρtφµ

 , pdt = gt − log(expµt − exp gt), ρt =
exp pdt

1 + exp pdt
.

The Jacobian matrix is:

Żt = S1,zΨz,tS2,z, Ψz,t =


0 1
∂pdt
∂µt

∂pdt
∂gt

φg
(1−φgρt)2

∂ρt
∂µt

φg
(1−φgρt)2

∂ρt
∂gt

− φµ
(1−φµρt)2

∂ρt
∂µt

− φµ
(1−φµρt)2

∂ρt
∂gt

 ,
∂pdt
∂µt

= − expµt
expµt−exp gt

,
∂pdt
∂gt

= −∂pdt
∂µt

,
∂ρt
∂µt

= −ρt(1−ρt) expµt
expµt−exp gt

,
∂ρt
∂gt

= − ∂ρt
∂µt
.

Time variation in the Q matrix. Recall that the covariance matrix of the transition

equation is Qt = SηΩtS
′
η where Ωt = DtRtDt. Using the notation in Section 2.2, and the

standard rules of matrix differentiation, we have that:

Q̇t = (Sη ⊗ Sη)
[
(DtRt ⊗ I + I ⊗DtRt)Ḋt + (Dt ⊗Dt)Ṙt

]
.

We now express the matrices of volatilities and correlations as follows:

vec(Dt) = S1,dψd (S2,dft) , vec(Rt) = S0,r + S1,rψr (S2,rft) ,



where S1,d S2,d, S1,r, S2,r are selection matrices

S1,d =



1 0 0

0 0 0

0 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 0

0 0 1



, S ′2,d =



0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0


, S0,r =



1

0

0

0

1

0

0

0

1



, S1,r =



0 0

0 0

1 0

0 0

0 0

0 1

1 0

0 1

0 0



, S ′2,r =



0 0

0 0

0 0

0 0

0 0

1 0

0 1


.

The functions ψd(δt) and ψr(γt) and their Jacobians are described in section G.2. Specifically,

we have that:

Ḋt = S1,dΨd,tS2,d, Ṙt = S1,rΨr,tS2,r,

where

Ψd,t = Dt, Ψr,t =
√

1− π2
dµ,t

√1− π2
dµ,t 0

−πdµ,tπgµ,t 1− π2
gµ,t

 .



H Term structure of expected returns and dividend growth

in recessions

In Figure H.1 we plot the whole term structure of expected returns and expected dividend

growth for three historical episodes. In particular, we look at the year before the recession,

the peak of the recession and the year after the recession. We find that discount rates shocks,

especially at the short end of the curve, contributed greatly to the severity of the recessions in

1929 and 2008, while they played a relatively minor role in the 2001 recession episode. These

results are consistent with the narrative in Campbell et al. (2013).

Figure H.1: Expected Returns and Dividend Growth: Selected Episodes
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Note. Figure H.1 plots the term structure of expected return (left panel) and dividend growth (right panel)
around some specific events. In particular, the upper panel looks at the Great Depression, the middle panel
looks at the years around the 2001 recession and the bottom panel looks at the years of the Great Recession.



I Additional Results

Figure I.1: Term Structure of Expected Returns and Dividend Growth

Note. Figure I.1 plots the term structure of expected return and dividend growth.



Figure I.2: Steady State Comparisons
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Note. The left panel of Figure I.2 reports two alternative measures of the long-run riskless real rate that we
recover from the estimates in section 5. Specifically, µt|t−1 − µext|t−1 and gt|t−1 − gext|t−1. The estimates of

pdt|t−1 from the two models are reported in the panel on the right together with the (log) level of the price
dividend ratio.



Table I.1: Excess Return Model: Estimation Results

φµ 0.863 bµ 0.081
[0.007] [0.010]

φg 0.355 bg 0.053
[0.011] [0.007]

σ̄d 0.062 aσd 0.858 bσd 0.016
[0.061; 0.065] [0.023] [0.001]

σ̄g 0.097 aσg 0.765 bσg 0.012
[0.096; 0.104] [0.052] [0.003]

σ̄µ 0.019 aσµ 0.847 bσµ 0.015
[0.018; 0.024] [0.051] [0.003]

ρ̄d,µ 0.888 aπd,µ 0.980 bπd,µ 0.025
[0.660; 0.892] [0.010] [0.010]

ρ̄g,µ -0.001 aπg,µ 0.820 bπg,µ 0.025
[-0.026; -0.018] [0.047] [0.005]

σ2
ν 0.008 κh 0.020

[0.0002] [0.0001]

Log Lik. 322.232

Note. Table I.1 reports parameter estimates for the model estimated in section 5. First column: autoregressive
coefficients of expected returns and expected dividend growth (φµ and φg) and average (over the whole sample)
estimates of the volatilities (σ̄d, σ̄g and σ̄µ) and correlations (ρ̄d,µ and ρ̄g,µ) that form the matrix Qt. σ2

ν is
the volatility of the measurement error for the price dividend ratio. The second and third columns show the
estimates of the coefficients that enter the law of motion of the score driven time-varying processes (4) where A
and B are diagonal matrices, and the smoothing coefficient applied to the Hessian term (κh). For each coefficient
we report in square brackets the associated standard error. For the average volatilities and correlations in the
first column we report the 68% confidence interval from 1000 simulations of the model (calculated as in Blasques
et al., 2016).



References

Abadir, K. and Magnus, J. (2005). Matrix Algebra. Cambridge University Press, Cambridge, UK.

Anderson, T. W. (1984). An Introduction to Multivariate Statistical Analysis. Wiley series in prob-
ability and mathematical statistic.

Banbura, M., Giannone, D., Modugno, M., and Reichlin, L. (2013). Now-Casting and the Real-Time
Data Flow, volume 2 of Handbook of Economic Forecasting, pages 195–237. Elsevier.

Binsbergen, J. H. V. and Koijen, R. S. J. (2010). Predictive Regressions: A Present Value Approach.
Journal of Finance, 65(4):1439–1471.

Blasques, F., Koopman, S. J., Lasak, K., and Lucas, A. (2016). In-sample confidence bands and out-
of-sample forecast bands for time-varying parameters in observation-driven models. International
Journal of Forecasting, 32(3):875–887.

Blasques, F., Koopman, S. J., and Lucas, A. (2014). Optimal Formulations for Nonlinear Autore-
gressive Processes. Tinbergen Institute Discussion Papers 14-103/III, Tinbergen Institute.

Buccheri, G., Bormetti, G., Corsi, F., and Lillo, F. (2020). A Score-Driven Conditional Correlation
Model for Noisy and Asynchronous Data: an Application to High-Frequency Covariance Dynamics.
Journal of Business Economic Statistics, forthcoming.

Budden, M., Hadavas, P., and Hoffman, L. (2008). On the generation of correlation matrices. Applied
Mathematics E-Notes, 8:279–282.

Campbell, J. Y., Giglio, S., and Polk, C. (2013). Hard Times. Review of Asset Pricing Studies,
3(1):95–132.

Cochrane, J. H. (2008). State-Space vs. VAR Models for Stock Returns. Unpublished manuscript.

Creal, D., Koopman, S. J., and Lucas, A. (2008). A General Framework for Observation Driven
Time-Varying Parameter Models. Tinbergen Institute Discussion Papers 08-108/4, Tinbergen
Institute.

Creal, D., Koopman, S. J., and Lucas, A. (2011). A Dynamic Multivariate Heavy-Tailed Model for
Time-Varying Volatilities and Correlations. Journal of Business & Economic Statistics, 29(4):552–
563.

Daniels, M. and Pourahmadi, M. (2009). Modeling covariance matrices via partial autocorrelations.
Journal of Multivariate Analysis, 100(10):2352–2363.

Del Negro, M. (2012). Bayesian Macroeconometrics. In The Oxford Handbook of Bayesian Econo-
metrics. Oxford University Press.

Delle Monache, D. and Petrella, I. (2017). Adaptive models and heavy tails with an application to
inflation forecasting. International Journal of Forecasting, 33(2):482–501.

Doan, T., Litterman, R. B., and Sims, C. A. (1986). Forecasting and conditional projection using
realistic prior distribution. Staff Report 93, Federal Reserve Bank of Minneapolis.

Giannone, D., Lenza, M., and Primiceri, G. E. (2019). Priors for the Long Run. Journal of the
American Statistical Association, 114(526):565–580.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning. Springer
Series in Statistics. Springer New York Inc., New York, NY, USA.

Joe, H. (2006). Generating random correlation matrices based on partial correlations. Journal of
Multivariate Analysis, 97(10):2177 – 2189.

Kapetanios, G., Marcellino, M., and Venditti, F. (2019). Large timevarying parameter VARs: A
nonparametric approach. Journal of Applied Econometrics, 34(7):1027–1049.



Koop, G. and Korobilis, D. (2013). Large time-varying parameter VARs. Journal of Econometrics,
177(2):185–198.

Lewandowski, D., Kurowicka, D., and Joe, H. (2009). Generating random correlation matrices based
on vines and extended onion method. Journal of Multivariate Analysis, 100(9):1989 – 2001.

Litterman, R. B. (1979). Techniques of forecasting using vector autoregressions. Working Papers
115, Federal Reserve Bank of Minneapolis.

Lucas, A., Opschoor, A., and Schaumburg, J. (2016). Accounting for missing values in score-driven
time-varying parameter models. Economics Letters, 148(C):96–98.

Piatti, I. and Trojani, F. (2017). Predictable Risks and Predictive Regression in Present-Value
Models. Working paper, Said Business School.

Rytchkov, O. (2012). Filtering Out Expected Dividends and Expected Returns. Quarterly Journal
of Finance, 2(03):1–56.

Shiller, R. J. (1989). Market Volatility. MIT Press, Cambridge, MA.

Stock, J. H. and Watson, M. W. (2007). Why Has U.S. Inflation Become Harder to Forecast? Journal
of Money, Credit and Banking, 39(s1):3–33.

Theil, H. and Goldberger, A. S. (1961). On pure and mixed statistical estimation in economics.
International Economic Review, 2(1):65–78.

Yule, G. and Kendall, M. (1965). An introduction to the theory of statistics. C. Griffin & Co.,
Belmont, California; 14th ed.


	Proofs
	Gradient and information matrix
	Jacobians of the Kalman filter
	State space model in forward form

	Examples
	Local level model
	Autoregressive models

	Monte Carlo exercise
	Specification of the DGPs
	Calibration

	Shrinking the vector of parameters by the L2 penalty
	Mixed frequencies and missing observations
	Correlated disturbances
	Empirical application
	Identification of the model
	Modelling the correlation matrix by partial correlations
	State space, score driven vector and jacobians 

	Term structure of expected returns and dividend growth in recessions
	Additional Results

