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A ABC-MCMC and ABC-SMC

This section derives the ABC-MCMC algorithm (section A.1), and the ABC-SMC of Del

Moral et al. (2012) (section A.2).

A.1 ABC-MCMC and early rejection

ABC-MCMC Marjoram et al. (2003) can be derived by applying standard Metropolis-

Hastings (MH) to the target

π (θ, x | y) ∝ p (θ) l (x | θ)Pε (y | x) (1)

(omitting the dependence of the target on ε to keep the notation consistent throughout the

paper). ABC-MCMC uses the proposal q (θ∗ | θ) l (x∗ | θ∗) on the pair (θ, x), giving the

acceptance probability

α ((θ, x), (θ∗, x∗)) =
p (θ∗) l (x∗ | θ∗)Pε (y | x∗)
p (θ) l (x | θ)Pε (y | x)

q (θ | θ∗) l (x | θ)
q (θ∗ | θ) l (x∗ | θ∗)

(2)

=
p (θ∗)Pε (y | x∗)
p (θ)Pε (y | x)

q (θ | θ∗)
q (θ∗ | θ)

. (3)

The cancellation of the likelihood terms allows this algorithm to be implemented.
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A.1.1 Indicator kernels and early rejection

In ABC a common choice for the kernel Pε is Pε (y | x) ∝ I (d (y, x) <= ε), where d is a

distance metric. We now consider the implications of using this kernel on the ABC-MCMC

acceptance probability in the preceding section. Firstly, we must consider the possibility

that the denominator in the ratio is equal to 0, due to having d (y, x) > ε. The general MH

framework of Tierney (1998) (see the main paper) dictates that the acceptance probability

in this case should be 0: the practical implications of this are that one must ensure that

the initial value of x satisfies d (y, x) <= ε, or the chain will never move from its starting

point (in practice instead often different values of (θ, x) are explored until d (y, x) <= ε is

satisfied, with this initial exploration being discarded). Therefore, we may always assume

that d (y, x) <= ε after the chain is initialised and hence the acceptance probability may

be written as

α ((θ, x), (θ∗, x∗)) =


p(θ∗)q(θ|θ∗)
p(θ)q(θ∗|θ) if d (y, x∗) <= ε

0 otherwise
. (4)

Let u be the uniformly distributed random number in [0, 1] generated in order implement

the accept-reject step. Picchini & Forman (2016) note that a rejection will always occur if

u >
p (θ∗) q (θ | θ∗)
p (θ) q (θ∗ | θ)

(5)

thus this condition may be checked before x∗ is simulated from the likelihood. If the pro-

posed point is not rejected after this first step, x∗ is simulated, and the proposal is accepted

if d (y, x∗) <= ε. The consequence of this idea is that for θ∗ that have a small probability

under the prior, we have an “early rejection” that avoids the (potentially expensive) cost

of simulation. The computational savings of this approach will only be significant if the

posterior is not too different from the prior.

For clarity, pseudo-code for the early rejection method is given in algorithm 1.
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Algorithm 1 A single iteration of early rejection ABC-MCMC.

Inputs: Current value of θ.

Outputs: Proposed value θ∗ and accept/reject decision for this proposed value.

u ∼ U (0, 1)

θ∗ ∼ q (· | θ)

if u < 1 ∧ p(θ∗)q(θ|θ∗)
p(θ)q(θ∗|θ) then

x∗ ∼ l (· | θ∗)

if d (y, x∗) < ε then

Accept θ∗.

else

Reject θ∗.

end if

else

Reject θ∗.

end if

A.2 ABC-SMC

Recall from the main paper the weight update used in an SMC sampler (Del Moral et al.

2006) when using a sequence of targets πt, an MCMC move for the “move” step, and where

the SMC sampler backwards kernel is the reverse of this MCMC kernel:

w̃
(i)
t+1 = w

(i)
t

πt+1

(
θ
(i)
t

)
πt

(
θ
(i)
t

) . (6)

The sequence of targets used in the ABC-SMC sampler of Del Moral et al. (2012) is given

by

πt (θt, xt | y) ∝ p (θt) l (xt | θt)Pεt (y | xt) , (7)

for t = 1 : T . We saw in the previous section that the ABC-MCMC kernel is a valid

MCMC kernel targeting πt (θt, xt | y). Choosing the SMC sampler backwards kernel to be
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the reverse of this MCMC kernel we obtain

w̃t+1 = wt
p (θt) l (xt | θt)Pεt+1 (y | xt)
p (θt) l (xt | θt)Pεt (y | xt)

(8)

= wt
Pεt+1 (y | xt)
Pεt (y | xt)

. (9)

In the case of indicator kernels, this weight update becomes

w̃t+1 = wtI (d (y, xt) < εt+1) ,

and early rejection may be used in the ABC-MCMC move. Early rejection may provide a

significant computational saving in the early stages of the SMC, since the target is likely

to be close to the prior.

B Derivation of DA-ABC-MCMC and DA-ABC-SMC

B.1 DA-ABC-MCMC

We present a derivation of DA-ABC-MCMC, using the notation from the main paper. As

in the previous sections, the extended state space view of ABC-MCMC is used, where the

move is seen to be a Metropolis-Hastings move on the space (θ, x1), with θ∗ proposed via

q (· | θ) and x∗1 via l1 (· | θ∗). We may view the move as being on the space (θ, x1, x2), with

target proportional to

p (θ∗) l1 (x1 | θ) l2 (x2 | x1, θ)Pε2 (y | x1, x2)

with x∗2 being proposed via l2 (· | x∗1, θ∗). We will see that in practice this simulation does

not need to be performed at the first stage (this construction is essentially the same as in

Sherlock et al. (2017)). The acceptance probability at the first stage is

α1 = min

{
1,
p (θ∗) l1 (x∗1 | θ∗)Pε1 (y1 | x∗1) l2 (x∗2 | x∗1, θ∗)
p (θ) l1 (x1 | θ)Pε1 (y1 | x1) l2 (x2 | x1, θ)

q (θ | θ∗) l1 (x1 | θ) l2 (x2 | x1, θ)
q (θ∗ | θ) l1 (x∗1 | θ∗) l2 (x∗2 | x∗1, θ∗)

}
= min

{
1,
p (θ∗)Pε1 (y1 | x∗1)
p (θ)Pε1 (y1 | x1)

q (θ | θ∗)
q (θ∗ | θ)

}
.
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We observe that the marginal distribution of the target we have used is the ABC posterior

with l1, ε1 and y1.

Using delayed acceptance, as described in the main paper, the acceptance probability

at the second stage is

α2 = min

{
1,
p (θ∗) l1 (x∗1 | θ∗) l2 (x∗2 | x∗1, θ∗)Pε2 (y | x∗1, x∗2)
p (θ) l1 (x1 | θ) l2 (x2 | x1, θ)Pε2 (y | x1, x2)

p (θ) l1 (x1 | θ)Pε1 (y1 | x1) l2 (x2 | x1, θ)
p (θ∗) l1 (x∗1 | θ∗)Pε1 (y1 | x∗1) l2 (x∗2 | x∗1, θ∗)

}
= min

{
1,
Pε2 (y | x∗1, x∗2)
Pε2 (y | x1, x2)

Pε1 (y1 | x1)
Pε1 (y1 | x∗1)

}
.

B.2 DA-ABC-SMC

We now justify the weight update for the DA-ABC-SMC method described in the main

paper. The target distribution used at iteration t is proportional to

p (θt) l1 (x1,t | θt) l2 (x2,t | x1,t, θt)Pε2,,t (y | x1,t, x2,t) .

Using the same approach as in section A.2, we see that the weight update for each particle

is given by

w̃t+1 = wt
p (θt) l1 (x1,t | θt) l2 (x2,t | x1,t, θt)Pε2,,t+1 (y | x1,t, x2,t)
p (θt) l1 (x1,t | θt) l2 (x2,t | x1,t, θt)Pε2,,t (y | x1,t, x2,t)

= wt
Pε2,,t+1 (y | x1,t, x2,t)
Pε2,,t (y | x1,t, x2,t)

.

B.2.1 Using indicator kernels

In this section we consider the situation when Pε1,t is chosen to be an indicator function;

i.e. Pε1,t
(
y1,t | x∗1,t

)
∝ I

(
d
(
y1,t, x

∗
1,t

)
<= ε1,t

)
, where d is a distance metric. In this case

when specifying our acceptance probabilities we need to account for our target distributions

having zero density in some parts of the space. We follow the framework of Tierney (1998),

in which for a target π(θ) and proposal q, the MH acceptance probability is written as

α =

min
{

1, π(θ
∗)q(θ|θ∗)

π(θ)q(θ∗|θ)

}
(θ, θ∗) ∈ R,

0 (θ, θ∗) /∈ R,
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where R = {(θ, θ∗) | π (θ∗) q (θ | θ∗) > 0, π (θ) q (θ∗ | θ) > 0}. Thus, at the t-th iteration of

the SMC the acceptance probability at the first stage of the delayed acceptance is

α1,t =

min
{

1,
p(θ∗t )
p(θt)

q(θt|θ∗t )
q(θ∗t |θt)

}
d (y1,t, x1,t) , d

(
y1,t, x

∗
1,t

)
< ε1,t,

0 otherwise.
. (10)

As in Picchini & Forman (2016), we may perform the first stage of delayed acceptance in

two stages, which we will refer to as steps 1a and 1b, such that some simulations from

l1 may be avoided. At step 1a, θ∗t is simulated from q (· | θt) and an accept-reject step is

performed using the acceptance probability

α1a,t = min

{
1,
p (θ∗t )

p (θt)

q (θt | θ∗t )
q (θ∗t | θt)

}
.

At step 1b, x∗1,t is simulated from l1 (· | θ∗t ) and the entire move
(
θ∗t , x

∗
1,t

)
is accepted (to be

used in stage 2) with probability

α1b,t =

1 d (y1,t, x1,t) , d
(
y1,t, x

∗
1,t

)
< ε1,t

0 otherwise
. (11)

Splitting the first stage into two substages could itself be seen as a form of delayed accept-

ance, but its acceptance rate is the same as the single step implementation since it simply

uses the fact that I
(
d
(
y1,t, x

∗
1,t

)
< ε1,t

)
is either 1 or 0 in order to reorganise the single step

calculation in a computationally efficient way.

The acceptance probability at the second stage is

α2,t =

1 d (y1,t, x1,t) , d
(
y1,t, x

∗
1,t

)
< ε1,t and d (y, x2,t) , d

(
y, x∗2,t

)
< ε2,t

0 otherwise
,

which may be seen directly from the description of DA from the main paper with the

appropriate choices of π2 and K1. Note that d (y, x2,t) < ε2,t must be true for the particle

to have non-zero weight, and d (y1,t, x1,t) , d
(
y1,t, x

∗
1,t

)
< ε1,t must be satisfied to reach the
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second stage of DA, thus in practice we use

α2,t =

1 d
(
y, x∗2,t

)
< ε2,t,

0 otherwise.

C Lotka-Volterra model

C.1 Full details of methods

All of our empirical results were generated using R (R Core Team 2019). We study the

data “LVPerfect” in the R package smfsb (Wilkinson 2018) (the numerical methods for

simulating from the likelihood are also taken from this package), previously studied in

Wilkinson (2011). In this data the simulation starts with initial populations X = 50 and

Y = 100, and has 30 time units, with the values of X and Y being recorded every 2 time

units, resulting in 16 data points in each of the two time series. Our prior follows that in

Wilkinson (2011), being uniform in the log domain. Specifically we use

p (log (θ)) ∝
3∏
i=1

U (log (θi) | lower = −6, upper = 2) .

Our ABC approach follows that in Wilkinson (2011), Papamakarios & Murray (2016):

as summary statistics we use a 9-dimensional vector composed of the mean, log variance and

first two autocorrelations of each time series, together with the cross-correlation between

them. These statistics were normalised by the standard deviation of the statistics determ-

ined by a pilot run, precisely as in Wilkinson (2011). The distance between the summary

statistics used in ABC was taken to be the Euclidean norm between the normalised stat-

istic vectors. In all our ABC algorithms we used a final tolerance log(ε2) = log(0.15) ≈

−1.89712. Reducing the tolerance below this level does not appear to have a large impact

on the posterior distribution.

We used DA-ABC-SMC with a variety of choices of U , A and N , and two different

choices of the Euler-Maruyama step size s in the cheap simulator s = 0.5 and s = 0.1,

both of which result in very rough approximations of the dynamics. We compared these
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approaches with standard ABC-SMC, with N = 200 particles and a sequence of tolerances

selected such that U = 100 unique particles are retained at each iteration, and also “ground

truth” for the posterior expectation and standard deviation of the parameters found using

a long run (105 iterations) of ABC-MCMC. We also compared our approach with a method

based on the SMC2-style approach of Duan & Fulop (2015). This approach uses the same

SMC-based likelihood estimate (with M particles) as particle MCMC (Wilkinson 2011),

but embeds this within an SMC sampler rather than a pseudo-marginal MCMC chain. The

sequence of distributions in the “external” SMC sampler is given by raising the likelihood

estimate to a power: beginning with 0 and ending with 1 (so that the final distribution is the

true posterior). The posterior targeted by this method is the same as in particle MCMC.

We used the same model as in the particle MCMC of Wilkinson (2011): specifically we used

a normal distribution with mean 0 and standard deviation 10 as the measurement model

at each time step. Wilkinson (2011) shows that the posterior obtained using this model

has a much smaller standard deviation compared to the one obtained when using ABC,

therefore when comparing the SMC2 approach with ABC, we only compared the posterior

mean (bearing in mind that this is also slightly different between the two cases). In order

that the computational cost is comparable with the ABC approaches, we use a DA move

within the method of Duan & Fulop (2015). Full details of this method follow.

Algorithm 2 gives the SMC sampler of Duan & Fulop (2015). This method is adapted

so that the sequence of powers to which the likelihood estimates are raised is determined

adaptively, by using a bisection search to find the power such that the conditional effective

sample size (CESS) (Zhou et al. 2016) is αN (where α is a proportion). The CESS is

defined as

CESS =
N
(∑N

i=1w
(i)
t+1ω

(i)
t

)2
∑N

i=1w
(i)
t+1

(
ω
(i)
t

)2
where ω(i) is the incremental weight for the ith particle (the factor by which we multiply

w
(i)
t by in order to obtain w̃

(i)
t+1.
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Algorithm 2 The SMC sampler of Duan & Fulop (2015), with adaptation to choose the
sequence of distributions.

Inputs: Number of particles N , the proportion α used in the adaptive approach to

choosing the sequence of distributions, the proportion β used in resampling, prior p, particle

filtering parameters for estimating l (including the number of particles M).

Outputs: Particles
{(
θ
(i)
t , x

(i)
t

)}N
i=1

and weights
{
w

(i)
t

}N
i=1

for all t.

for i = 1 : N do

θ
(i)
0 ∼ p (·)

Run a particle filter to find the likelihood estimate l̂
(i)
0 at θ

(i)
0 .

w
(i)
0 = 1/N

end for

τ0 = 0, t = 0.

while τt < 1 do

Use bisection to choose τt+1 s.t. the CESS is αN .

for i = 1 : N do

w̃
(i)
t+1 = w

(i)
t (l̂

(i)
t )(τt+1−τt)

end for

Normalise {w̃t+1}Ni=1 to give normalised weights {wt+1}Ni=1.

Perform resampling if the ESS falls below βN .

for i = 1 : N do

θ
(i)
t+1 = θ

(i)
t , l̂

(i)
t+1 = l̂

(i)
t(

θ
(i)
t+1

)∗
∼ q

(
· | θ(i)t

)
Run a particle filter to find the likelihood estimate

(
l̂
(i)
t+1

)∗
at
(
θ
(i)
t+1

)∗
.

u ∼ U (0, 1)

if u < 1 ∧
p
((
θ
(i)
t+1

)∗)((
l̂
(i)
t+1

)∗)τt+1
q
(
θ
(i)
t |

(
θ
(i)
t+1

)∗)
p
(
θ
(i)
t+1

)(
l̂
(i)
t+1

)τt+1
q
((
θ
(i)
t+1

)∗
|θ(i)t

) then

θ
(i)
t+1 =

(
θ
(i)
t+1

)∗
, l̂

(i)
t+1 =

(
l̂
(i)
t+1

)∗
end if

end for

t = t+ 1

end while
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When applying algorithm 2 to the Lotka-Volterra data, we found that in order for the

SMC to avoid degeneracy (and give a posterior near to the true posterior), it required a

configuration (in terms of choosing appropriate N , α and β) that resulted in a computa-

tional cost of more than an order of magnitude slower than the ABC approaches. Due to

this, we used a delayed acceptance MCMC move in place of the particle MCMC move given

in algorithm 2. Algorithm 3 gives the resultant algorithm. In this approach, analogous to

our description of DA-ABC-SMC, l2 = l is the true likelihood to be estimated using a

particle filter, and l1 is a computationally cheap likelihood. Algorithm 3 was the method

used in the main paper, with β = 0.5 in all cases, and different values of N , M and α. We

note that the SMC2 method of Chopin et al. (2013) was also tried, but was not found to

be competitive in terms of the computational effort required to avoid degeneracy.
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Algorithm 3 The SMC sampler of Duan & Fulop (2015), with adaptation to choose the
sequence of distributions and a DA-MCMC move.

Inputs: Number of particles N , the proportion α used in the adaptive approach to

choosing the sequence of distributions, the proportion β used in resampling, prior p, particle

filtering parameters for estimating l1 and l2 = l (including the number of particles M).

Outputs: Particles
{(
θ
(i)
t , x

(i)
t

)}N
i=1

and weights
{
w

(i)
t

}N
i=1

for all t.

for i = 1 : N do

θ
(i)
0 ∼ p (·)

Run particle filters to find the likelihood estimates l̂
(i)
1,0 and l̂

(i)
2,0 at θ

(i)
0 .

w
(i)
0 = 1/N

end for

τ0 = 0, t = 0.

while τt < 1 do

Use bisection to choose τt+1 s.t. the CESS is αN .

for i = 1 : N do

w̃
(i)
t+1 = w

(i)
t (l̂

(i)
2,t)

(τt+1−τt)

end for

Normalise {w̃t+1}Ni=1 to give normalised weights {wt+1}Ni=1.

Perform resampling if the ESS falls below βN .

for i = 1 : N do

θ
(i)
t+1 = θ

(i)
t , l̂

(i)
t+1 = l̂

(i)
1,t(

θ
(i)
t+1

)∗
∼ q

(
· | θ(i)t

)
Run a particle filter to find the likelihood estimate

(
l̂1

(i)

t+1

)∗
at
(
θ
(i)
t+1

)∗
.

u1 ∼ U (0, 1)

if u1 < 1 ∧
p
((
θ
(i)
t+1

)∗)((
l̂
(i)
1,t+1

)∗)τt+1
q
(
θ
(i)
t |

(
θ
(i)
t+1

)∗)
p
(
θ
(i)
t+1

)(
l̂
(i)
1,t+1

)τt+1
q
((
θ
(i)
t+1

)∗
|θ(i)t

) then

Run a particle filter to find the likelihood estimate
(
l̂2

(i)

t+1

)∗
at
(
θ
(i)
t+1

)∗
.

u2 ∼ U (0, 1)

if u2 < 1 ∧
((
l̂
(i)
2,t+1

)∗)τt+1
(
l̂
(i)
1,t+1

)τt+1(
l̂
(i)
2,t+1

)τt+1
((
l̂
(i)
1,t+1

)∗)τt+1 then

θ
(i)
t+1 =

(
θ
(i)
t+1

)∗
, l̂

(i)
1,t+1 =

(
l̂
(i)
1,t+1

)∗
, l̂

(i)
2,t+1 =

(
l̂
(i)
2,t+1

)∗
end if

end if

end for

t = t+ 1

end while
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All algorithms were run 30 times, and used an expensive simulator with Euler-Maruyama

step size 0.0005 (which resulted in a very accurate approximation), and included the scheme

of Picchini & Forman (2016) to avoid simulations from the likelihood where they may be

rejected using the prior only. In all approaches the MCMC proposal was Gaussian centred

at the current point with variance given by the sample variance of the previous particles.

To measure computational cost, we counted the total number of steps S (taking the median

S̄ over the 30 runs) simulated using Euler-Maruyama, taking into account that some simu-

lations were cut short due to the numerical solver diverging (in the implementation in the

smfsb package, the practical result of this is that after a certain point in the simulation, the

size of the populations is assigned “NaN”). When the simulation diverged, both population

sizes were assigned to be zero after the time of the divergence.

C.2 Results

The R packages ggplot2 (Wickham 2016), matlab (Roebuck 2014) and mvtnorm (Genz &

Bretz 2009) were used when generating the results for this section. Our first observation is

with the parameters N = 200 and U = 100, ABC-SMC sometimes had difficulty converging

to the final tolerance. Of the 30 runs, 4 runs were not close to reducing the log tolerance to

0.15 (for some runs this was the case after more than 20,000 SMC iterations). This was not

observed for any other approach. In order to present comparisons between ABC-SMC and

the other approaches, we focus on median rather than mean simulation times (reported in

table 1). We truncated the unfinished runs to 5,000 SMC iterations and treat them as if

they had finished, but to provide a fair comparison we also present results where these runs

are excluded.
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Method S̄ Med. SMC iter.
DA-ABC-SMC: N = 500, U = 100, A = 100, s = 0.1. 1.27× 109 508
DA-ABC-SMC: N = 500, U = 100, A = 100, s = 0.5. 1.08× 109 231

DA-ABC-SMC: N = 1000, U = 100, A = 100, s = 0.1. 8.27× 108 159.5
DA-ABC-SMC: N = 1000, U = 100, A = 100, s = 0.5. 7.04× 108 159
DA-ABC-SMC: N = 1000, U = 200, A = 100, s = 0.1. 5.98× 109 1423
DA-ABC-SMC: N = 1000, U = 50, A = 100, s = 0.1. 2.66× 108 43.5

DA-ABC-SMC: N = 5000, U = 100, A = 100, s = 0.1. 4.78× 108 65.5
DA-ABC-SMC: N = 10000, U = 100, A = 100, s = 0.1. 5.46× 108 63

SMC2: N = 100, M = 100, α = 0.9, s = 0.1. 7.89× 108 20
SMC2: N = 100, M = 100, α = 0.99, s = 0.1. 2.53× 109 62.5
SMC2: N = 100, M = 1000, α = 0.9, s = 0.1. 6.23× 109 17

ABC-SMC: N = 200, U = 100. 2.84× 109 816.5

Table 1: Median number S̄ of Euler-Maruyama steps and median number of SMC iterations
for each method.
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U = 50, A = 100, s = 0.1.
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(g) DA-ABC-SMC: N = 5000,
U = 100, A = 100, s = 0.1.
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(h) DA-ABC-SMC: N = 10000,
U = 100, A = 100, s = 0.1.

Figure 1: log(ε1), the tolerance in the first stage of DA, plotted against log(ε2), the tolerance
in the second stage of DA.
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(a) DA-ABC-SMC: N = 500,
U = 100, A = 100, s = 0.1.
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(b) DA-ABC-SMC: N = 500,
U = 100, A = 100, s = 0.5.
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(c) DA-ABC-SMC: N = 1000,
U = 100, A = 100, s = 0.1.
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(d) DA-ABC-SMC: N = 1000,
U = 100, A = 100, s = 0.5.

●

● ●

●

●

●
●

●

●
●● ● ●●

●

●

●

●

●

●

●
●

●

●
●1

2

3

0.0e+00 5.0e+09 1.0e+10 1.5e+10 2.0e+10 2.5e+10
Number of time steps

E
st

im
at

ed
 m

ea
n 

of
 θ

1

(e) DA-ABC-SMC: N = 1000,
U = 200, A = 100, s = 0.1.
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(f) DA-ABC-SMC: N = 1000,
U = 50, A = 100, s = 0.1.
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(g) DA-ABC-SMC: N = 5000,
U = 100, A = 100, s = 0.1.
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(h) DA-ABC-SMC: N = 10000,
U = 100, A = 100, s = 0.1.
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(i) SMC2: N = 100, M = 100,
α = 0.9, s = 0.1.
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(j) SMC2: N = 100, M = 100,
α = 0.99, s = 0.1.
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(k) SMC2: N = 100,M = 1000,
α = 0.9, s = 0.1.
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(l) ABC-SMC: N = 200, U =
100.

Figure 2: The estimated posterior mean of θ1 plotted against the total number of time steps
used in Euler-Maruyama. Ground truth from ABC-MCMC is marked with a horizontal
line.
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(a) DA-ABC-SMC: N = 500,
U = 100, A = 100, s = 0.1.
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(b) DA-ABC-SMC: N = 500,
U = 100, A = 100, s = 0.5.
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(c) DA-ABC-SMC: N = 1000,
U = 100, A = 100, s = 0.1.
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(d) DA-ABC-SMC: N = 1000,
U = 100, A = 100, s = 0.5.
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(e) DA-ABC-SMC: N = 1000,
U = 200, A = 100, s = 0.1.
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(f) DA-ABC-SMC: N = 1000,
U = 50, A = 100, s = 0.1.
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(g) DA-ABC-SMC: N = 5000,
U = 100, A = 100, s = 0.1.
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(h) DA-ABC-SMC: N = 10000,
U = 100, A = 100, s = 0.1.
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(i) ABC-SMC: N = 200, U =
100.

Figure 3: The estimated posterior standard deviation of θ1 plotted against the total number
of time steps used in Euler-Maruyama. Ground truth from ABC-MCMC is marked with a
horizontal line.
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(a) DA-ABC-SMC: N = 500,
U = 100, A = 100, s = 0.1.
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(b) DA-ABC-SMC: N = 500,
U = 100, A = 100, s = 0.5.
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(c) DA-ABC-SMC: N = 1000,
U = 100, A = 100, s = 0.1.

●● ●● ●●●●●●● ●●● ●● ●●● ●●●●●●0.0

0.5

1.0

0.0e+00 5.0e+09 1.0e+10 1.5e+10 2.0e+10 2.5e+10
Number of time steps

E
st

im
at

ed
 m

ea
n 

of
 θ

2

(d) DA-ABC-SMC: N = 1000,
U = 100, A = 100, s = 0.5.
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(e) DA-ABC-SMC: N = 1000,
U = 200, A = 100, s = 0.1.
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(f) DA-ABC-SMC: N = 1000,
U = 50, A = 100, s = 0.1.
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(g) DA-ABC-SMC: N = 5000,
U = 100, A = 100, s = 0.1.
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(h) DA-ABC-SMC: N = 10000,
U = 100, A = 100, s = 0.1.
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(i) SMC2: N = 100, M = 100,
α = 0.9, s = 0.1.
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(j) SMC2: N = 100, M = 100,
α = 0.99, s = 0.1.
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(k) SMC2: N = 100,M = 1000,
α = 0.9, s = 0.1.
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(l) ABC-SMC: N = 200, U =
100.

Figure 4: The estimated posterior mean of θ2 plotted against the total number of time steps
used in Euler-Maruyama. Ground truth from ABC-MCMC is marked with a horizontal
line.
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(a) DA-ABC-SMC: N = 500,
U = 100, A = 100, s = 0.1.
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(b) DA-ABC-SMC: N = 500,
U = 100, A = 100, s = 0.5.
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(c) DA-ABC-SMC: N = 1000,
U = 100, A = 100, s = 0.1.
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(d) DA-ABC-SMC: N = 1000,
U = 100, A = 100, s = 0.5.
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(e) DA-ABC-SMC: N = 1000,
U = 200, A = 100, s = 0.1.
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(f) DA-ABC-SMC: N = 1000,
U = 50, A = 100, s = 0.1.
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(g) DA-ABC-SMC: N = 5000,
U = 100, A = 100, s = 0.1.
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(h) DA-ABC-SMC: N = 10000,
U = 100, A = 100, s = 0.1.
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(i) ABC-SMC: N = 200, U =
100.

Figure 5: The estimated posterior standard deviation of θ2 plotted against the total number
of time steps used in Euler-Maruyama. Ground truth from ABC-MCMC is marked with a
horizontal line.
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(a) DA-ABC-SMC: N = 500,
U = 100, A = 100, s = 0.1.
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(b) DA-ABC-SMC: N = 500,
U = 100, A = 100, s = 0.5.
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(c) DA-ABC-SMC: N = 1000,
U = 100, A = 100, s = 0.1.
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(d) DA-ABC-SMC: N = 1000,
U = 100, A = 100, s = 0.5.
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(e) DA-ABC-SMC: N = 1000,
U = 200, A = 100, s = 0.1.
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(f) DA-ABC-SMC: N = 1000,
U = 50, A = 100, s = 0.1.
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(g) DA-ABC-SMC: N = 5000,
U = 100, A = 100, s = 0.1.
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(h) DA-ABC-SMC: N = 10000,
U = 100, A = 100, s = 0.1.
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(i) SMC2: N = 100, M = 100,
α = 0.9, s = 0.1.
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(j) SMC2: N = 100, M = 100,
α = 0.99, s = 0.1.
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(k) SMC2: N = 100,M = 1000,
α = 0.9, s = 0.1.
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(l) ABC-SMC: N = 200, U =
100.

Figure 6: The estimated posterior mean of θ3 plotted against the total number of time steps
used in Euler-Maruyama. Ground truth from ABC-MCMC is marked with a horizontal
line.
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(a) DA-ABC-SMC: N = 500,
U = 100, A = 100, s = 0.1.
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(b) DA-ABC-SMC: N = 500,
U = 100, A = 100, s = 0.5.
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(c) DA-ABC-SMC: N = 1000,
U = 100, A = 100, s = 0.1.
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(d) DA-ABC-SMC: N = 1000,
U = 100, A = 100, s = 0.5.
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(e) DA-ABC-SMC: N = 1000,
U = 200, A = 100, s = 0.1.
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(f) DA-ABC-SMC: N = 1000,
U = 50, A = 100, s = 0.1.
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(g) DA-ABC-SMC: N = 5000,
U = 100, A = 100, s = 0.1.
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(h) DA-ABC-SMC: N = 10000,
U = 100, A = 100, s = 0.1.
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(i) ABC-SMC: N = 200, U =
100.

Figure 7: The estimated posterior standard deviation of θ3 plotted against the total number
of time steps used in Euler-Maruyama. Ground truth from ABC-MCMC is marked with a
horizontal line.

D Latent exponential random graph model

An exponential random graph model (ERGM) is a model for network data in which the

global network structure is modelled as having arisen through local interactions. In this

section we consider the situation in which the network is not directly observed, thus xh is

a hidden network made up of a random variable for each edge which takes value 1 if the

edge is present and 0 if it is absent, and y is a noisy observation of this network. The

ERGM on xh is

l
(
xh | θx

)
∝ exp

(
θTx S

(
xh
))
,
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with an intractable normalising constant, and our noisy observations are modelled by

g
(
yi | xhi , θy

)
∝ exp

(
θy
(
2xhi − 1

)
(2yi − 1)

)
where the normalising constant is tractable. We studied the Dolphin network (figure 8a)

(Lusseau et al. 2003), as also analysed in Caimo & Friel (2011) where the network is treated

as directly observed, and used the same summary statistics and priors as in this paper. The

igraph package (Csardi & Nepusz 2006) was used to load this data into R. We used the

statistics

S1(x
h) =

∑
i<j

xhij the number of edges

S2(x
h) = exp (φu)

n−1∑
i=1

{
1− (1− exp (−φu))i

}
Di

(
xh
)

geometrically weighted degree

S3(x
h) = exp (φv)

n−2∑
i=1

{
1− (1− exp (−φv))i

}
EPi

(
xh
)

geometrically weighted edgewise shared partner

with φu = φv = 0.8, the prior on θx = (θ1, θ2, θ3) and θy was (θ1, θ2, θ3, θy) ∼ N (0, 30I4);

and we used the Euclidean distance to compare simulated with observed statistics. The

ergm package (Hunter et al. 2008) in R was used to simulate from l (· | θx), which uses

the “tie no tie” (TNT) sampler and the expensive simulator used 15, 000 iterations. Our

DA-ABC-SMC algorithm used U = A = 100, and again the MCMC proposal was taken

to be a Gaussian distribution centred at the current particle, with covariance given by the

sample covariance of the particles from the previous iteration.

We ran DA-ABC-SMC for N = 1, 000, and a cheap simulator having B = 1, 500 (after

exploratory runs suggested that this would be enough iterations to provide a useful DA

proposal) and compared the results with standard ABC-SMC with the same configuration

as in the previous section (both using 3 × 108 iterations of the TNT sampler). Figure 8b

shows the results from the two algorithms, this time showing the sequence ε1,t alongside

the sequence ε2,t. Again we observe that the tolerance in DA-ABC-SMC reduces faster

than standard ABC-SMC, and that the tolerance ε1,t changes adaptively. This data has

not previously been studied using a latent ERGM. Using particle MCMC as in Everitt
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(a) The Dolphin network.
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Figure 8: DA-ABC-SMC applied to the latent ERGM.

(2012) would require at every MCMC iteration to run an SMC sampler to integrate out

the latent ERGM space, which consists of 1891 binary edge variables. We might expect

that many SMC particles would be required to produce low variance marginal likelihood

estimates, leading to a high computational cost. However, the acceptance rate was very

low towards the end of our ABC runs, suggesting that a very large computational cost

would be required to reduce ε2,t to be close to zero.
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