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This material is organized as follows. Section 1 gives the proofs of Theorem 2.1 and its

extensions. Section 2 gives the proof of Theorem 3.1. Section 2 gives the proof of Equation (16)

of the main text. Section 3 gives a brief review of the SAMC and SAA algorithms. Section 4

describes the proposals used by SAA for rLasso. Section 5 discusses some implementation issues

of SAA for rLasso.

1 Proof of Theorem 2.1 and its extensions

Proof. We first prove the normality part. Using the same notation as in Knight and Fu (2000),

we define the following class of functions {Vn : Rp → R}∞n=1. For any u ∈ Rp,

Vn(u) = L(β∗ + u/
√
n)− L(β∗)

=
n∑
i

[(εi − uTxi/
√
n)2 − ε2i ] +

p∑
j=1

(
Pλ(β

∗
j + uj/

√
n)− Pλ(β∗j )

)
= (I) + (II),

where L(β) = ‖y −Xβ‖2 + Pλ(β), and εi denotes the ith element of ε as defined in Equation

(1) of the main text. It is easy to see that the minimum Vn(u) is attained at ûn =
√
n(β̂− β∗),

where β̂ is the minimizer of L(β).

By Slutsky’s and continuous mapping theorem, we have

(I) = uT
(

1

n
XTX

)
u− 2

εTX√
n
u

d→ uTΣu− 2uTW ,

where Σ is defined in Equation (3) of the main text, εTX/
√
n

d→W , and W is a normal random

vector with mean zero and covariance matrix σ2Σ. Then it is easy to show

(I)
e−d−→ uTΣu− 2uTW ,
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by Theorem 5 of Knight (1999), where
e−d−→ denotes epi-convergence in distribution for a sequence

of random lower-semicontinuous functions.

For the second term of Vn(u), we show that it can converge uniformly over any compact set

U ∈ Rp:

(II) = Pλ(β
∗
j + uj/

√
n)− Pλ(β∗j ) =


Pλ(uj/

√
n)

0

ujP
′
λ(β̃

∗
j )/
√
n

⇒


∞, if β∗j = 0, uj 6= 0,

0, if β∗j = 0, uj = 0,

0, if β∗j 6= 0,

(1)

where β̃∗j is some value between β∗j and β∗j + uj/
√
n, and “⇒” denotes uniform convergence as n

increases. Let

V (u) =

 −2uTtW t + uTt Σtut, if uj = 0 ∀j /∈ t,
∞, Otherwise.

Then, by Lemma 1 of Pflug (1995), we have Vn(u)
e−d−→ V (u), and V (u) has the unique minimum

û = (Σ−1
t W t, 0)T . SinceW t, the subvector ofW , follows N(0, σ2Σt), we have ût ∼ N(0, σ2Σ−1

t ).

To show ûn →d û, it is sufficient to show that ûn = Op(1) (see Theorem 1 of Knight (1999)),

where Op(1) denotes bounded in probability. Note that

Vn(u) ≥ uT
(

1

n
XTX

)
u− 2

εTX√
n
u−

p∑
j=1

Pλ(β
∗
j )

∆
= Ṽn(u).

Since 0 = Vn(0) ≥ Vn(ûn) ≥ Ṽn(ûn), Ṽn(u) is convex, arg min(Ṽn(u)) = Op(1), and the eigen-

values of XTX/n is Op(1), it follows that ûn = Op(1). For more details of epi-convergence in

distribution and limiting distribution of argmin estimators, see Pflug (1994, 1995), Geyer (1994,

1996) and Knight (1999,2001).

We now prove the model consistency part. For any j ∈ t, the asymptotic normality result

implies that β̂j
p→ β∗j ; which further implies

P (j ∈ ξ(β̂n)|j ∈ t)→ 1, as n→∞. (2)

For any j /∈ t, the asymptotic normality result implies P (|(ûn)j| < δ)→ 1 for any sufficiently

small δ > 0. In addition, we have

P{(ûn)j 6= 0, |(ûn)j| < δ} ≤ P{ inf
(ûn)j 6=0

Vn(u) ≤ Vn(0), |(ûn)j| < δ}

<P

{
−
(
εTX√
n

)T (
XTX

n

)−1(
εTX√
n

)
−

p∑
i=1

Pλ(β
∗
i ) + Pλ(δ/

√
n) ≤ 0

}

→P

{
Pλ(δ/

√
n)−

p∑
i=1

Pλ(|β∗i |) ≤
1

σ2
χ2
p

}
→ 0, as n→∞,

(3)
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where the last row follows from the asymptotics
(
εTX√
n

)T (
XTX
n

)−1 (
εTX√
n

)
d→ χ2

p/σ
2 (by Slut-

sky’s theorem and continuous mapping theorem). Note that in this case, we have β∗j = 0 and

Pλ(δ/
√
n)→∞. Therefore,

P{(ûn)j = 0} ≥ P{(ûn)j = 0, |(ûn)j| < δ} = P (|(ûn)j| < δ)− P{(ûn)j 6= 0, |(ûn)j| < δ} → 1,

which implies

P (j /∈ ξ(β̂n)|j /∈ t)→ 1, as n→∞. (4)

The consistency of the model selection can then be concluded by combining (2) and (4).

Extension of Theorem 2.1

Corollary 1. Assume conditions A1 (Pλn(0) = 0), A4 and

(A′2) Pλn(·) is symmetric; Pλn(·/
√
n) uniformly converges to ∞ on (0, U ] for any U ∈ R;

limn Pλn(δ/
√
n)/Pλn(β) =∞ and limn Pλn(β)/n = 0 for any fixed δ and β.

(A′3) Pλn(·) is continuously differentiable on R\{0} and limn P
′
λn

(β)/
√
n = 0 for any β 6= 0.

are satisfied, then the results of Theorem 2.1 still hold.

Proof. The proof follows that of Theorem 2.1 by replacing λ by λn. The equation (1) holds

because of condition (A′2) and (A′3); By condition (A′2), Pλ(δ/
√
n) − |t|Pλn(mini∈t |β∗i |) → ∞,

hence (3) holds. We only need to show that ûn = Op(1).

In order to show that arg minVn(u) = Op(1), it is sufficient to show that for any ε, there

exists a compact set Mε ∈ Rp such that P [minu/∈Mε Vn(u) > Vn(0) = 0] > 1 − ε for sufficiently

large n. Since E(εTXu/
√
n) = 0, Var(εTXu/

√
n) = uT (XTX/n)u and Equation (3) of the

main text holds, when |ui|’s are sufficiently large we have

uT
(

1

n
XTX

)
u− 2

εTX√
n
u ≥

p∑
j=1

κu2
j/2,

with probability greater than 1− ε, where κ is the smallest eigenvalue of Σ. Consider the terms

in the following summation

p∑
j=1

[κu2
j/2 + Pλn(β∗j + uj/

√
n)− Pλn(β∗j )] =

∑
j

gn(uj, β
∗
j ).
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If β∗j = 0, gn(uj, β
∗
j ) > 0 for any large uj. If β∗j 6= 0, without losing generality, we assume it

positive. For uj ∈ (−2
√
nβ∗j , 0)\{−

√
nβ∗j }, Pλn(β∗j + uj/

√
n) > Pλn(β∗j ) and gn(uj, β

∗
j ) > 0; for

uj > 0, gn(uj, β
∗
j ) > κu2

j/2 − uj|P ′λn(β∗j )|/
√
n, by A′3 , it is positive for large n and large uj;

for uj < −2
√
nβ∗j , gn(uj, β

∗
j ) > gn(−2uj − 2

√
nβ∗j , β

∗
j ) > 0 for large n by previous case; for

uj = −
√
nβ∗j , gn(uj, β

∗
j ) = nκβ∗2j /2− Pλn(β∗j ) > 0 for large n.

Therefore, we have shown that P [minu/∈Mε Vn(u) > Vn(0) = 0] > 1− ε.

2 Proof of Theorem 3.1

To prove Theorem 3.1, we first prove the following lemma.

Lemma 1. Considering the linear regression (1) of the main text and the following model selec-

tion criterion

β̂ = arg min
|ξ(β)|≤r

{‖y −Xβ‖2 +

p∑
j=1

Pλ(|βj|)}, (5)

where ξ(β) = {i : βi 6= 0} denotes the model corresponding to the vector β, |ξ(β)| denote the

size of the model ξ(β), and each column of X has been standardized such that ‖xi‖ =
√
n for

i = 1, . . . , p. Suppose that the following conditions are satisfied

(a) |t| ≤ r < n− |t|;

(b) for any subset model ζ,

nl∗ ≤ min
|ζ|≤|t|+r

ch1(XT
ζXζ) ≤ max

|ζ|≤|t|+r
ch′1(XT

ζXζ) ≤ nl∗;

(c) Pλ

(
2
√

2σ2(|t|+1) log(p/e1)
nl2∗

+ |t|aλ
nl∗

)
≥ σ2(2 log(p/e2) + 1 + 2

√
log(p/e2)) + |t|aλ;

(d)
√
nl∗β

2 − σ
√

2 log(rpr/e3) ≥
√
σ2(2r log p

e2
+ r + 2r

√
log(p/e2)) + |t|(cλ + aλ);

(e) bλ ≤ β − σ
√

2 log(1/e4)

nl∗
;

where t denotes the true model, |t| denotes the size of t, e1, e2, e3 and e4 are sufficiently small

numbers, β = mini∈t β
∗
i , and β∗ = (β∗1 , . . . , β

∗
p) denotes the true regression coefficient vector.

Then

Pr
(
ξ(β̂) = t, ‖β̂ − β̂

o
‖ ≤

√
|t|aλ/nl∗

)
> 1− 2e1 − 4e2 − 2e3 − 2|t|e4, (6)
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where β̂
o

is equal to β̂
o

t for the components corresponding to the model t and 0 otherwise, and

β̂
o

t is the OLS estimator of βt. Furthermore, we have the following upper bound for the mean

estimation error,

E(‖β̂ − β∗‖2) ≤ 2|t|aλ
nl∗

+
2|t|σ2

nl∗
+ (2e1 − 4e2 − 2e3 − 2|t|e4)∗(

3‖β∗‖2 + 3
nσ2 +

∑
Pλ(β

∗
j )

nl∗
+

6rl∗‖β∗‖2

l2∗
+

6rnσ2

n2l2∗

)
.

Proof. Define

Lλ(β) = ‖y −Xβ‖2 +

p∑
j=1

Pλ(|βj|).

Let ξ(β) = {i : βi 6= 0} be the model extractor of β, and let

Rξ = yT (I −Xξ(XT
ξXξ)

−1Xξ)y

denote the residual sum of squares of the OLS estimator of the model ξ = ξ(β), whereXξ denotes

the submatrix of X with columns corresponding to the predictors selected by ξ. Therefore,

Lλ(β̂
o
) = Rt +

p∑
j=1

Pλ(|β̂oj |),

where β̂oj denotes the jth element of β̂
o
. Since β̂

o

t ∼ N(β∗t , σ
2(XT

tXt)
−1), by Theorem 2.1 of

Inglot (2010), condition (b) and (e), we have

P
{
Lλ(β̂

o
) < Rt + |t|(cλ + aλ)

}
≥ 1− 2|t|e4. (7)

Next, we show that for all β with ξ(β) strictly including the true model t,

P

{
min

β:ξ(β)⊃t,|t|<|ξ(β)|≤r
Lλ(β) > Rt + |t|(cλ + aλ)

}
≥ 1− 2e1 − 2e2. (8)

Since X has been standardized such that each column has a norm of
√
n, XTε is a p-vector

with each entry following the Gaussian distribution N(0, nσ2). Then, by Theorem 2.1 of Inglot

(2010),

P
{
|(XTε)j| ≤

√
nσ
√

2 log(p/e1), for all j = 1, . . . , p
}
≥ 1− 2e1,

where (z)j denotes the jth element of the vector z.

If ξ ⊃ t, then

‖y −Xβ‖2 = ‖Xξβ
∗ + ε−Xξβξ‖2

= εT (I − Pξ)ε+ (uξ − (XT
ξXξ)

−1XT
ξ ε)

TXT
ξXξ(uξ − (XT

ξXξ)
−1XT

ξ ε),
(9)

5



where β∗ξ denotes the subvector of β∗ corresponding to the model ξ, uξ = βξ − β∗ξ, and Pξ =

Xξ(X
T
ξXξ)

−1XT
ξ is the projection matrix. If β is outside the ellipse {β : ‖y − Xβ‖2 =

‖y −Xβ∗‖2 + |t|aλ = ‖ε‖2 + |t|aλ}, then

Lλ(β) > ‖ε‖2 + |t|aλ +

p∑
j=1

pλ(|βj|) ≥ Rt + |t|(aλ + cλ),

by the property of the OLS estimator and the conditions (A1) and (A5).

If β is inside the ellipse, it follows from (9) that

εT (I − Pξ)ε+ (uξ − (XT
ξXξ)

−1XT
ξ ε)

TXT
ξXξ(uξ − (XT

ξXξ)
−1XT

ξ ε) ≤ ‖ε‖2 + |t|aλ,

which implies by condition (b) that

‖uξ‖ ≤ ‖(XT
ξXξ)

−1XT
ξ ε‖+

1√
nl∗

√
εTPξε+ |t|aλ. (10)

When all entries of XTε are bounded by
√
nσ
√

2 log(p/e1), we have

‖uξ‖ ≤ 2

√
2σ2|ξ| log(p/e1)

nl2∗
+
|t|aλ
nl∗

. (11)

It is easy to show that Pλ(
√
· ) is convex and thus

|ξ|∑
j=1

Pλ(|βξ,j|) ≥
|ξ|∑
j=1

Pλ(|β∗ξ,j|+ |uξ,j|) ≥ |t|cλ +
∑

{j:β∗ξ,j=0}

Pλ(
√
|uξ,j|2)

≥ |t|cλ + (|ξ| − |t|)Pλ

(
2

√
2σ2|ξ| log(p/e1)

(|ξ| − |t|)nl2∗
+

|t|aλ
(|ξ| − |t|)nl∗

)

≥ |t|cλ + (|ξ| − |t|)Pλ

(
2

√
2σ2(|t|+ 1) log(p/e1)

nl2∗
+
|t|aλ
nl∗

)
,

(12)

where βξ,j, β
∗
ξ,j and uξ,j denote the jth elements of βξ, β

∗
ξ and uξ, respectively; the third

inequality follows from (11) and the convexity of Pλ(
√
· ); and the last inequality follows from

the facts that both |ξ|/(|ξ| − |t|) and |t|/(|ξ| − |t|) are decreasing functions of |ξ|.
In addition, we have

‖y −Xξβξ‖2 ≥ Rt − (Rt −Rξ) = Rt − σ2Z2
|ξ|−|t|(ξ), (13)

where Z2
|ξ|−|t|(ξ) follows a χ2-distribution of degree of freedom |ξ|− |t|. By Theorem 4.1 of Inglot

(2010) and Bonferroni inequality, with probability greater than 1 −
∑r−|t|

i=1 ei2 (which is greater

than 1− 2e2), for all ξ with ξ ⊃ t,

Z2
|ξ|−|t|(ξ) ≤ 2(|ξ| − |t|) log(p/e2) + |ξ| − |t|+ 2(|ξ| − |t|)

√
log(p/e2). (14)
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Combining (12), (13), (14) and condition (c), one can show (8) by Bonferroni inequality.

Third, we show that for all β with ξ(β) + t,

P

{
min

β:ξ(β)+t,|ξ(β)|≤r
Lλ(β) > Rt + |t|(cλ + aλ)

}
≥ 1− 2e2 − 2e3. (15)

If ξ + t, let ζ = t ∪ ξ, then

Lλ(β) > Rξ = (Rξ −Rζ)− (Rt −Rζ) +Rt, (16)

where (Rξ −Rζ)/σ2 is noncentral χ2
|ζ|−|ξ|(C) distribution with noncentral parameter

C = β∗tX
T
t (Pζ − Pξ)Xtβ

∗
t/σ

2 ≥ nl∗β
2/σ2.

If
√
nl∗β

2/σ2 >
√

2 log(rpr/e3), then by Theorem 2.1 of Inglot (2010), with probability greater

then 1− 2e3, for all possible ξ with t * ξ,

Rξ −Rζ >
{√

nl∗β
2 − σ

√
2 log(rpr/e3)

}2

≥ σ2(2r log(p/e2) + r + 2r
√

log(p/e2)) + |t|(cλ + aλ).

(17)

Combining (16), (17) and(14), one can show (15) by Bonferroni inequality.

Finally, we combine (7), (8) and (15), and conclude that

P
{
ξ(β̂) = t

}
≥ P

{
Lλ(β̂

o
) < Rt + |t|(cλ + aλ)

}
+ P

{
min

β:ξ(β)⊃t,|t|<|ξ(β)|≤r
Lλ(β) > Rt + |t|(cλ + aλ)

}
+ P

{
min

β:ξ(β)+t,|ξ(β)|≤r
Lλ(β) > Rt + |t|(cλ + aλ)

}
− 2

≥ 1− 2e1 − 4e2 − 2e3 − 2|t|e4,

by Bonferroni inequality.

Suppose that ξ(β̂) = t. Let β̂t = min{β:ξ(β)=t} Lλ(β). Then,

‖y −Xtβ̂t‖2 + |t|cλ < Rt + |t|(aλ + cλ).

It follows from the decomposition ‖y −Xtβ̂t‖2 = Rt + ‖Xtβ̂
o

t −Xtβ̂t‖2 that

(β̂t − β̂
o

t)
TXT

tXt(β̂t − β̂
o

t) ≤ |t|aλ,

which, by condition (b), implies

‖β̂ − β̂
o
‖ = ‖β̂t − β̂

o

t‖ ≤
√
|t|aλ/nl∗.
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This concludes (6).

Let ξ = ξ(β̂) for some ‖ξ‖ ≤ r, and let β̂ξ = min{β:ξ(β)=ξ} Lλ(β). Consider the case that

ξ 6= t, then

(β̂ξ − (XT
ξXξ)

−1XT
ξ y)T (XT

ξXξ)(β̂ξ − (XT
ξXξ)

−1XT
ξ y)

≤ ‖y −Xξβ̂ξ‖2 < Lλ(β̂ξ) ≤ Lλ(β
∗) = εTε+

∑
Pλ(β

∗
j ),

(18)

where the first inequality follows from the decomposition

‖y −Xξβ̂ξ‖2 = Rξ + ‖Xξβ̂ξ −Xξβ̂
o

ξ‖2,

and β̂
o

ξ = (XT
ξXξ)

−1XT
ξ y denotes the OLS estimator of βξ. Thus, ‖β̂ξ − (XT

ξXξ)
−1XT

ξ y‖2

≤ (εTε+
∑
Pλ(β

∗
j ))/nl∗ and XT

ξ y = XT
ξXβ

∗ +XT
ξ ε, where ‖Xβ∗‖2 ≤ nl∗‖β∗‖2 and each row

of XT
ξ has been standardized to have a norm of

√
n. It follows that (XT

ξXβ
∗)j ≤ n

√
l∗‖β∗‖ for

j = 1, . . . , |ξ|. Furthermore,

‖(XT
ξXξ)

−1XT
ξ y‖2 ≤ 1

n2l2∗
‖XT

ξ y‖2 ≤ 2

n2l2∗
(‖XT

ξXβ
∗‖2 + ‖XT

ξ ε‖2)

≤ 2rn2l∗‖β∗‖2

n2l2∗
+

2εTXξX
T
ξ ε

n2l2∗
.

(19)

Following from (19),

‖β̂ξ − β∗‖2 ≤ 3‖β∗‖2 + 3‖β̂ξ − (XT
ξXξ)

−1XT
ξ y‖2 + 3‖(XT

ξXξ)
−1XT

ξ y‖2

≤ 3‖β∗‖2 + 3
εTε+

∑
Pλ(β

∗
j )

nl∗
+

6rn2l∗‖β∗‖2

n2l2∗
+

6εTXξX
T
ξ ε

n2l2∗
.

(20)

Combining (6) and (20), we have

E(‖β̂ − β∗‖2) ≤ 2|t|aλ
nl∗

+ 2E(‖β̂
o
− β∗‖2) + (2e1 − 4e2 − 2e3 − 2|t|e4)

× E

(
3‖β∗‖2 + 3

εTε+
∑
Pλ(β

∗
j )

nl∗
+

6rn2l∗‖β∗‖2

n2l2∗
+

6εTXξX
T
ξ ε

n2l2∗

)

≤ 2|t|aλ
nl∗

+
2|t|σ2

nl∗
+ (2e1 − 4e2 − 2e3 − 2|t|e4)

×
(

3‖β∗‖2 + 3
nσ2 +

∑
Pλ(β

∗
j )

nl∗
+

6rl∗‖β∗‖2

l2∗
+

6rnσ2

n2l2∗

)
.

This concludes the proof of the lemma.

Remark:
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1. The conditions (c) and (d) look very technical, but can be interpreted intuitively. In order

to bring sparsity into the model, the shape of the penalty function around zero is crucial.

Traditional penalty functions, such as those used in Lasso, SCAD or MCP, are singular at

zero and have the largest derivative at zero, such that the coefficients of false predictors

can shrink faster than those of true predictors. rLasso brings sparsity into the model in

a different way: By giving a very large penalty around zero (i.e. condition (c)) such that

the model cannot afford a small coefficient for the false predictor. Condition (d) restricts

the dimensionality and eigen-structure of the design matrix. An arbitrarily large p or an

arbitrarily small l∗ increases the probability that the linear effect of a true predictor can

be almost totally replaced by some combination of false predictors.

2. If, furthermore, there exists a sufficient small number e5 and the following condition holds

(f) (r − |t|)cλ > |t|aλ + σ2(n− |t|+ 2 log(1/e5) +
√

(n− |t|) log(1/e5)),

then in probability greater than 1− e5, the following inequality holds

(r + 1)cλ > |t|(cλ + aλ) +Rt,

which implies that for any β with |ξ(β)| > r, Lλ(β) > Lλ(β̂
o
) holds. Hence the constraint

|ξ(β)| ≤ r is automatically satisfied in minimization of Lλ(β). In this case, (5) is equivalent

to

β̂ = arg min
β
{‖y −Xβ‖2 +

p∑
j=1

Pλ(βj)}

without the model size constraint.

To prove Theorem 3.1, we let e1 = e2 = e3 = e4 = exp(−Kn). Thus, the conditions of

Lemma 1 are satisfied when n is sufficiently large, and this concludes the consistency of rLasso

for variable selection and parameter estimation.

3 Proof of Equation (16) of the Main Text

If λ is sufficiently large, then β̂n(λ) = 0. As λ decreases to some threshold value λm, β̂n will

jump away from zero. Consider the case that only the predictor xk has the largest absolute

marginal correlation with the response variable y, i.e., |cor(y,xk)| > maxj 6=k|cor(y,xj)|. Then,

only xk will be included into the model, i.e. β̂n(λm) = (0, . . . , 0, β̂k, 0, . . . , 0)T . At this critical
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jump point, we have
n∑
i=1

y2
i =

n∑
i=1

(yi − xikβ̂k)2 + λm/|β̂k|. (21)

Since the rLasso objective function is convex given the signs of β, hence we have

−2
n∑
i=1

(yi − xikβ̂k)xik − sign(β̂k)
λm

|β̂k|2
= 0. (22)

Combined (21) and (22) with the fact sign(β̂k) = sign(cor(y,xk)), it is easy to derive that

β̂k =
4
∑
xikyi

3
∑
x2
ik

, λm =

∑
x2
ik|β̂k|3

2
, (23)

which concludes the proof.

4 A Brief Review of the SAMC and SAA Algorithm

Suppose that we want to draw samples from the distribution

f(x, τ) =
1

Z
exp(−U(x)/τ), x ∈ X , (24)

where Z is the normalizing constant, τ is called the temperature, U(x) is called the energy

function, and X is the sample space. Furthermore, suppose that the sample space X has been

partitioned according to the energy function into m disjoint subregions denoted by E1 = {x :

U(x) ≤ u1}, E2 = {x : u1 < U(x) ≤ u2}, . . ., Em−1 = {x : um−2 < U(x) ≤ um−1} and

Em = {x : U(x) > um−1}, where u1 < u2 < . . . < um−1 are pre-specified numbers.

Let ψ(x, τ) = exp(−U(x)/τ) and let ωi(τ) =
∫
Ei
ψ(x, τ)dx for i = 1, . . . ,m. Without loss

of generality, we assume ωi > 0 for all i = 1, . . . ,m. As shown in (30), the case for ωi = 0 is

trivial with the estimates of log(wi) simply going to −∞. SAMC seeks to sample from the trial

distribution

fω(x) ∝
m∑
i=1

πiψ(x, τ)

ωi(τ)
I(x ∈ Ei), (25)

where πi’s are pre-specified frequency values such that πi > 0 for all i and
∑m

i=1 πi = 1. In Liang

et al. (2007), π = (π1, . . . , πm)T is called the desired sampling distribution of the subregions.

It is easy to see that if ω1(τ), . . . , ωm(τ) can be well estimated, sampling from fω(x) will result

in a “random walk” in the space of subregions (by regarding each subregion as a “point”) with

each subregion being sampled with a frequency proportional to πi. Hence, the local-trap problem

can be avoided essentially, provided that the sample space has been partitioned appropriately.
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SAMC provides a systematic means, as described below, to estimate ω1(τ), . . . , ωm(τ) under the

framework of stochastic approximation (Robbins and Monro, 1951; Benveniste et al., 1990).

Let θti denote the working estimate of log(ωi/πi) obtained at iteration t, let θt = (θt1, . . . , θtm)T ,

and let {at} denote a positive, non-increasing sequence satisfying the conditions

(i)
∞∑
t=1

at =∞, (ii)
∞∑
t=1

aζt <∞, (26)

for some ζ ∈ (1, 2). Since fω(x) is invariant with respect to a scale change of ω(τ) = (ω1(τ), . . . , ωm(τ))T ,

i.e., fcω(x) = fω(x) for any number c > 0, the domain of θt can be restricted to a compact set Θ

by adjusting θt with a constant vector. As in Liang et al. (2007), we set Θ = [−10100, 10100]m in

this paper, although, as a practical matter, this is equivalent to setting Θ = Rm. It follows from

(30) (presented below) that

lim
t→∞

[θti − θtj] = log(ωi(τ))− log(ωj(τ))− log(πi) + log(πj). (27)

Hence, the range of Θ also represents the maximum resolution allowed for the estimates of

ω1, . . . , ωm, when π is uniform over the subregions.

The SAMC algorithm iterates between the following two steps:

(a) (Sampling) Simulate a sample xt by a single MH update with the target distribution

fθt(x) ∝
m∑
i=1

ψ(x, τ)

eθti
I(x ∈ Ei). (28)

(b) (Weight updating) Set

θ∗ = θt + at+1(ẽt − π), (29)

where ẽt = (ẽt,1, . . . , ẽt,m) and ẽt,i = 1 if xt ∈ Ei and 0 otherwise. If θ∗ ∈ Θ, set θt+1 = θ∗;

otherwise, set θt+1 = θ∗ + c∗, where c∗ = (c∗, . . . , c∗) can be an arbitrary constant vector

satisfying the condition θ∗ + c∗ ∈ Θ.

Under mild conditions, Liang et al. (2007) showed that as t→∞,

θti →

Const + log(ωi(τ))− log(πi + π̄0), if Ei 6= ∅,

−∞. if Ei = ∅,
(30)

where π̄0 =
∑

j∈{i:Ei=∅} πj/(m − m0) and m0 is the number of empty subregions, and Const

represents an arbitrary constant. The subregion Ei is called an empty subregion if ωi = 0.
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Furthermore, Liang (2009) showed that SAMC is invariant with respect to an importance

weight. Mathematically, this can be explained as follows. Let (x1, w1), . . . , (xN , wN) denote a set

of samples collected at the sampling step of SAMC, where

wt =
m∑
i=1

eθtiI(xt ∈ Ei). (31)

Let y1, . . . , yN ′ denote the distinct samples among x1, . . . , xN . If we generate a random sample

Y such that

P (Y = y) =

∑N
t=1 wtI(xt = y)∑N

t=1 wt
, y ∈ {y1, . . . , yN ′},

then Y is asymptotically distributed with respect to the density f(y, τ). This property implies

that SAMC can be used as a usual importance sampling algorithm. For any integrable function

h(x), the expectation Efh(x) =
∫
h(x)f(x, τ)dx can be estimated by

Êfh(x) =

∑N
t=1wth(xt)∑N

t=1wt
, (32)

and, as n→∞, Êfh(x)→ Efh(x) almost surely for the same reason that the usual importance

sampling estimate converges.

Compared to conventional MCMC algorithms, such as the Metropolis-Hastings algorithm,

SAMC has a significant advantage in sample space exploration. This is due to its self-adjusting

mechanism: If a subregion is visited at iteration t, θt will be updated accordingly such that

this subregion has a smaller probability to be revisited in the next iteration. Mathematically, if

xt ∈ Ei, then θt+1,i ← θt,i + at+1(1 − πi) and θt+1,j ← θt,i − at+1πj for j 6= i. This mechanism

makes SAMC essentially immune to the local trap problem and particularly suitable for sampling

of high dimensional space.

Asymptotically, SAMC can be used for minimizing the energy function U(x), because SAMC

is ergodic. However, when τ is large, f(x, τ) is quite flat on X , the search for global energy

minima will be very inefficient. To serve the purpose of optimization, Liang et al. (2014)

proposed the SAA algorithm, which combines SAMC and the simulated annealing algorithm.

The SAA algorithm allows τ to be decreasing in a square-root cooling schedule, i.e.,

τt = τ∗ + C/
√
t,

where τ∗ is a tiny value such that
∫
O(x̂)

f(x, τ∗) ≈ 1, and O(x̂) is a small open set around

x̂ = arg minU(x). SAA can be run in the same way as SAMC except that the temperature is
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decreasing with iterations in SAA, but fixed in SAMC. Liang et al. (2014) showed that

θti →

Const + log(ωi(τ∗))− log(πi + π̄0), if Ei 6= ∅,

−∞. if Ei = ∅,
(33)

and the SAA algorithm is able to locate the global minima if τ∗ is sufficiently close to zero.

5 Proposal setup for High dimensional rLasso

To minimize the function L(ω), ω ∈ W = {−1, 0, 1}p, SAA works by sampling from a sequence

of distributions given by

f(ω, τt) ∝ exp(−L(ω)/τt)I(
∑
|ωi| < r), ω ∈ W = {−1, 0, 1}p,

where τt = τ∗ + C/
√
t for some constants τ∗ > 0 and C > 0. To sample from the sequence of

distributions, we specify four types of moves, birth, death, sign-change and exchange, which are

described in sequel as follows.

Let ωt denote the current state at iteration t. Let ξt = {i : ωt,i 6= 0} denote the set

of predictors selected by ωt, and let ξct = {i : i /∈ ξt} denote the set of predictors excluded

from the set ξt. In what follows, we will also refer ξt as a model simulated at iteration t. Let

ω∗ = (ω∗1, . . . , ω∗p) denote the proposed state.

In the birth step, we randomly select a predictor, say xi, from the set ξct and assign ω∗,i a

value 1 or -1 with equal probability, and set ω∗,j = ωt,j for all j 6= i. The corresponding proposal

probability is

P (ω∗,i = ±1, ω∗,j = ωt,j, for i ∈ ξct , j 6= i|birth,ωt) =
1

2|ξct |
. (34)

In the death step, we randomly select a predictor, say xi, from the set ξt and set ω∗,i = 0,

and set ω∗,j = ωt,j for all j 6= i. The corresponding proposal probability is

P (ω∗,i = 0, ω∗,j = ωt,j, for i ∈ ξt, j 6= i|death,ωt) =
1

|ξt|
. (35)

In the exchange step, we randomly select a predictor, say xi, from the set ξct , and randomly

select another predictor, say xj, from the set ξt, and then form ω∗ by exchanging the values of

ωt,i and ωt,j. The corresponding proposal probability is

P (ω∗,i = ωt,j, ω∗,j = ωt,i, ω∗,k = ωt,k, for i ∈ ξt, j ∈ ξct , k 6= i, k 6= j|exchange,ωt) =
1

|ξt||ξct |
.

(36)
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In the sign-change step, we randomly select a predictor, say xi, from the set ξt and change

the sign of ωt,i (from −1 to 1 or from 1 to −1), and remains other values of ωt,j unchanged. The

corresponding proposal probability is

P (ω∗,i = −ωt,i, ω∗,j = ωt,j, for i ∈ ξt, j 6= i|sign-change,ωt) =
1

|ξt|
. (37)

Since the death move cannot be performed for the minimal size model, and the birth move

cannot be performed for the maximum size models, we specify the following proposal probabilities

for the four operators conditioned on |ξt|, the number of predictors included in the model ξt:

P (birth
∣∣|ξt| = 1) = P (sign-change

∣∣|ξt| = 1) = 1/2,

P (birth
∣∣1 < |ξt| < r) = P (death

∣∣1 < |ξt| < r) = (exchange
∣∣1 < |ξt| < r)

= P (sign-change
∣∣1 < |ξ| < r) = 1/4,

P (death
∣∣|ξt| = r) = P (sign-change

∣∣|ξt| = r) = 1/2,

(38)

where r < p denotes the maximum model size considered by the user. Given (34), (35), (36),

(37) and (38), the transition probability ratio can be compute accordingly.

6 Implementation Issues of SAA for rLasso

For an efficient implementation of SAA for optimization of rLasso, several issues need to be taken

care.

• Sample space partitioning. The sample space is partitioned according to the energy func-

tion. Given the energy function L(ω), the sample space can be partitioned as follows: E1 =

{ω : L(ω) ≤ u1}, E2 = {ω : u1 < L(ω) ≤ u2}, . . ., Em−1 = {ω : um−2 < L(ω) ≤ um−1},
Em = {ω : L(ω) > um−1}, where ui = u1 + (i− 1)∆u for i = 1, . . . ,m− 1, are pre-specified

numbers. Generally, we recommend that u1 to be a small number such that E1 is empty,

and set m to be a large number such that the models falling into the subregion Em are not

of interest at all. In the simulations of this paper, we set ∆u = 20, u1 = 0 and m = 51.

We note that the choice of ∆u is not as crucial to SAA as to SAMC.

• Desired sampling distribution. For the choice of πi’s, if only very small probabilities are

assigned to high energy regions, it will reduce the motivation of SAA to escape from

local traps. On the other hand, if very high probabilities are assigned to high energy

regions, the resulting sampling will not focus on low energy regions. A balanced choice is

π1 = π2 = · · · = πm = 1/m.
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• Gain factor sequence. In this paper, we choose the gain factor sequence in the form

at =

(
t0

max{t, t0}

)0.75

, t ≥ 1,

where t0 > 0 is a pre-specified number. The choice of t0 can depend on the complexity of

the sample space. In general, a large value of m should associate with a large value of t0.

• Cooling schedule. In the simulation studies of this paper, τt is set to be decreasing according

to a square-root cooling schedule with τ∗ = 0.005 and C = 0.05.
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