Appendix K



Quantitative approaches: recognized disadvantages

This appendix presents a synthesis of the disadvantages of quantitative approaches, as drawn uncritically from the literature. They come from an exhaustive listing of advantages and disadvantages provided by the authors in the papers we reviewed. These statements are not ours, but those of the paper authors.

In this section, the paragraphs marked with * refer to disadvantages that were addressed elsewhere in the literature, by authors who proposed methods for overcoming them in full or only partly. The methods proposed for overcoming these disadvantages are listed in the Appendix L on “ongoing methodological improvements”.

Benchmark Dose Modeling

1. The level of conservativeness of BMD remains debated. With increasing sample sizes, BMD tends to increase and hence produce less conservative threshold values (Sand et al., 2008; Sand et al., 2011), but the opposite is true for NOAELs. 
2. The BMD depends on sample size (Sand et al., 2011). 
3. There is still no standardized method for applying BMDs, no uniform definition for it (Crump and Teeguarden, 2009; Öberg, 2010) and no standardized requirements for the BMD software available (Öberg, 2010). As highlighted by Crump and Teeguarden (2009), different definitions of BMD may include:
· specified increase in the probability of an adverse response (additional risk)
· specified increase in the probability of an adverse response relative to the probability of a non-adverse response in unexposed subjects (extra risk)
· specified change in the mean response
· specified change in the mean response relative to the standard deviation
· specified percent change in mean response.
4. BMD is often calculated from published data, and therefore the definition of BMD used depends on the form of these data (Crump and Teeguarden, 2009; Davis et al., 2011). 
5. Currently available studies use a mixture of different, generally incompatible, definitions of BMD (Sand et al., 2008; Crump and Teeguarden, 2009), which makes it difficult to compare results from different studies and to provide coherent advice for regulatory decisions (Crump and Teeguarden, 2009; Li et al., 2012). However, this point is debated in the literature, as Davis et al. (2011), for example, suggests that BMD corresponds to a consistent response level and can be used to compare results across chemicals and studies. Similarly, Sand et al. (2008) suggests that BMD makes it possible to compare between dose-response characteristics of different sub-populations, animal strains or species, and chemicals. These authors note that two BMD are comparable if they have the same definition. 
6. There is no standardized method for setting the threshold value. Thus, different values are used in different studies, such as the mean BMD as a summary value for the biological effects (Thomas et al., 2007), the BMD95% lower confidence limit (BMDL) can be fixed at BMDL10 (Foronda et al., 2007b; Louisse et al., 2010), BMDL1, BMDL5 or BMDL10 (Sand et al., 2008). Depending on the sensitivity of the endpoint considered—which is defined as the slope of the dose-response curve—the benchmark response (BMR) chosen can dramatically influence the BMD obtained (Izadi et al., 2012). 
7. BMD methods are time consuming (Davis et al., 2011).
8. BMD methods complicate the decision-making process (Davis et al., 2011).
9. BMD is a complicated analytical procedure that can be difficult to understand by toxicologists or risk managers (Burgoon and Zacharewski, 2008; Sand et al., 2008; Öberg, 2010; Davis et al., 2011). Furthermore, the BMD approach depends more heavily on scientific judgment to make certain statistical assumptions than does the NOAEL (Davis et al., 2011).
10. The results of the BMD approach depend on the choice of the modeling approach (Sand et al., 2008). Foronda et al. (2007b) have shown as much as a three-fold difference between BMDL10 estimates from three different models, except for one endpoint. The authors suggest that a three-fold difference can be interpreted to indicate similar results and therefore the model does not depend on the BMDL10, but a three-fold difference in a regulatory safe level can also be interpreted as a very significant difference. 
11. *BMD demands more data than does NOAEL. Thus, a sufficient number of dose groups is needed to characterize the shape of the dose-response curve (Butterworth et al., 2007; Stern et al., 2007; Öberg, 2010). The optimal number of dose groups for BMD calculation has been estimated by Öberg (2010) to be between five and ten, rather than the four recommended in testing guidelines. This can lead to increased use of laboratory animals (Öberg, 2010). Furthermore, many existing studies are performed with a lower number of dose groups (two to four) than needed to establish the dose-response relationship (Butterworth et al., 2007; Öberg, 2010). Improvements in current testing guidelines and academic experimental protocols are needed to provide good quality data for use in BMD (Butterworth et al., 2007; Sand et al., 2008).
12. BMD can use results from different studies, but these studies differ significantly, even for the same substance. Differences include the animal model, study objectives, study design, test protocol, statistical analysis, and degree of detail in the experimental and results reporting (Stern et al., 2007). Interpretation of the BMDL can be complicated by differences in the experimental protocol; for example by study designs that include oral gavage vs continuous dietary exposure, which result in different internal exposures of the compound over time (Tonk et al., 2011). 
13. Software available for BMD are often black boxes and might be used without proper knowledge of their range and conditions of applicability (Yang et al., 2007).
14. BMD is not uniformly suitable for all studies (Izadi et al., 2012). 

Distributions of Toxicity Indicators (NOAELs, CTDs, CEDs)

1. The amount and type of data available directly influence the CTDs (Dobbins et al., 2008; Williams et al., 2011). The minimum number of data needed to get a reliable estimate is not standardized and varies between sources; for example, some recommend five, others eight (Dobbins et al., 2008). 

Probabilistic Effect (Safety / Assessment) Factors

1. Uncertainty effect factors cannot account for all uncertainties; for example, in sampling methods (Van der Voet and Slob, 2007).

Species Sensitivity Distributions

1. One of the most important disadvantages of SSD—as for all other quantitative methods that account for uncertainty in effects or exposure—is that it cannot account for all sources of uncertainty that might potentially influence the results. Such sources include:
· epistemic uncertainties (Vijver et al., 2008; Wang et al., 2011); for example, those related to the importance of a given species to an ecosystem’s structure and function (Wang et al., 2008, Wang et al., 2009)
· variability in time-dependency of toxicity for different species. SSD can account for this uncertainty source only if similarly reacting groups are used (Rubach et al., 2011). This can limit the inclusion of species present in real conditions
· interlaboratory differences in measurement (Wang et al., 2008; Wang et al., 2009; Olsen et al., 2011) and in the experimental conditions used in each test that produced the toxicity data used in SSDs (Jager et al., 2007). According to Jager et al. (2007), differences in experimental protocols can lead to differences in toxicity of three to ten orders of magnitude, even for the same species, the same chemical, and standardized protocols. 
· extrapolation of toxicity endpoints (Wang et al., 2008; Wang et al., 2009)
· the assumption that the limited toxicity data available represents the complete range of effects of chemicals on all organisms in an ecosystem (Wang et al., 2008, Wang et al., 2009)
· extrapolation from lab data to field (Wang et al., 2008)
· errors from copying data in the database 
2. * SSDs—and in particular the statistical frequentist approaches—demand relatively large amounts of good quality data to derive reliable predictions (Carriger and Rand, 2008; Dom et al., 2010; Craig et al., 2012; Jin et al., 2012a; Caquet et al., 2013; Ciffroy et al., 2013). Limited data may focus the SSD on a certain group of organisms in an ecosystem for which data are available, but, for example, do not allow comparison with other groups of organisms in the same ecosystem (Liu et al., 2009).
3. There are still no standardized rules for assessing the adequacy and quality of data, in order to exclude inappropriate data from the set used to generate SSDs (e.g., acceptable life stages, ranges of temperature, etc.) (Barron et al., 2012). 
4. A disadvantage shared by deterministic indicators-based and SSD-based effect thresholds is that they cannot account for extreme conditions in natural situations (e.g., extreme droughts and low water discharges or extreme rainfall and high runoff (Vijver et al., 2008))
5. There is still no standard method to develop SSDs and calculate hazardous concentrations (Carriger and Rand, 2008; Staples et al., 2008; Wang et al., 2008, Dom et al., 2010; Barron et al., 2012). Many approaches can be used, including parametric and non-parametric methods (Wang et al., 2008)
6. * SSDs can represent variation in inter-species sensitivities, but cannot explain what causes these differences (Rubach et al., 2011). The main assumption of SSD is that they essentially represent the “natural” difference in the sensitivity of species to chemicals. 
7. The number of species and data points used to derive SSDs influences their accuracy (Semenzin et al., 2007; Olsen et al., 2011). However, there is still no consensus on how much data is sufficient. Some authors feel the sample size should be “reasonably high” (Tsushima et al., 2010), while others suggest a range of sample sizes on which to base SSDs: at least 10 to 15 species (Jin et al., 2012a), at least four species (Carriger and Rand, 2008; Schuler and Rand, 2008; Dom et al., 2010), at least eight species (Jager et al., 2007; Vijver et al., 2008), species from at least eight families (Jin et al., 2012a), at least 15 species (Awkerman et al., 2008; Awkerman et al., 2009), at least eight major taxa (Staples et al., 2008) or at least ten species (Raimondo et al., 2008; Faggiano et al., 2010). 
For Qin et al. (2013), at least five or eight data points are needed, for Jin et al. (2011) and Jager et al. (2007) the minimum is ten data points, Caquet et al., 2013 fit SSD only beyond six data points, Jin et al. (2012b) demands eight data points, while De Laender et al. (2013) found that 10 to 15 data points were necessary to obtain a significant fit with a log normal SSDs if NOECs or EC10s from all trophic levels were included. When chronic data were used, fewer data were needed to obtain a significant fit. Literature reported by De Laender et al. (2013) stipulates that a minimum of 10 to 30 data points are needed for reliable SSDs. Caquet et al. (2013) suggest this number can vary from as low as 10 to 15, to as high as 55, depending on data quality, even though some authors used as few as six data points. 
8. The accuracy of SSDs is influenced by the taxonomic groups included (Olsen et al., 2011), which might not be representative of the ecosystem concerned (Craig et al., 2012; Fox and Billoir, 2013; Ciffroy et al., 2013). 
9. Data used to derive SSDs is often obtained in laboratory. The sensitivity of laboratory strains of model species compared to wild species is not well known (Awkerman et al., 2009; Ciffroy et al., 2013). For example, laboratory strains of rodents are inbred, with minimal genetic diversity and they are selected more by human intervention than by natural selection (Awkerman et al., 2009). 
10. Data used to derive SSDs usually represent a mixture of end points (e.g., growth, reproduction, mortality) that are not equally relevant for protecting the target (Ciffroy et al., 2013). 
11. Laboratory data, used to derive SSDs, is produced in ideal conditions, without knowledge of how well they represent real conditions (Semenzin et al., 2007; Kwok et al., 2008; Schmitt-Jansen et al., 2008; Staples et al., 2008; Wang et al., 2008; Tsushima et al., 2010). In natural ecosystems, species’ susceptibility to chemicals depends on additional factors that are usually not considered in lab experiments, such as food availability and other stressors. Therefore, threshold concentrations for effects might be lower (Kwok et al., 2008; Tsushima et al., 2010; Wang et al., 2011). In addition, laboratory experiments do not account for interactions between species or for migrations (De Vries et al., 2010; Tsushima et al., 2010; Ciffroy et al., 2013; Fox and Billoir, 2013) and usually consider low exposure times (30 days or less) (Van Sprang et al., 2009). However, Awkerman et al. (2009) stated that estimates using SSD based on laboratory toxicity data are relevant to field-based populations. Based on a comparison with effect thresholds found in micro- and mesocosm experiments, De Laender et al. (2013) concluded that the accuracy of SSD predictions differed according to the type of data used to generate them. SSDs based on acute data produced HC5-50 that were accurate or higher than the observed community-level NOECs. SSDs based on chronic data gave HC5-50s that were 2 to 50 times lower than the observed community-level NOECs. 
12. * SSD cannot account for differences in physico-chemical characteristics of water courses, among countries and continents (Van Sprang et al., 2009; Tsushima et al., 2010) for different compositions of communities in the same ecosystem type, e.g., freshwater, across biogeographical regions, climatic zones and habitat types (Kwok et al., 2008; Schmitt-Jansen et al., 2008; Olsen et al., 2011), and usually do not account for intra-species variability (Wang et al., 2008) 
13. SSD does not provide information about the proportion of individuals that show effects in the species affected, which prevents straight calculations of indicators of biodiversity affected by a toxicant. Indeed, biodiversity indicators depend both on the number of species and on the number of individuals in each species (abundance) (De Vries et al., 2010). 
14. * SSD cannot account for possible recovery of communities after exposure (Van Sprang et al., 2009; Kefford et al., 2012) or for the different compensatory mechanisms that different species can use that help maintaining ecosystem functions (De Vries et al., 2010).
15. The species used in SSDs are not local species and may not be representative of the communities of the studied area (Carriger and Rand, 2008; Schmitt-Jansen et al., 2008; Van Sprang et al., 2009; Wang et al., 2009; Jin et al., 2011; Jin et al., 2012b; Kefford et al., 2012). More generally, SSD assumes that the available toxicity data for a chemical represents a random sample for all species in an ecosystem (Jager et al., 2007; Carafa et al., 2011)
16. The degree of conservativeness of the SSD and its efficacy in protecting ecosystems cannot be easily estimated by comparing with measured data (Van Sprang et al., 2009). In practice, it is very difficult to observe the effects of low levels of toxicants on biodiversity, due to natural variations in ecosystem structure (De Vries et al., 2010). Therefore, HC5 protectiveness for 95% of the species in an ecosystem remains an untested assumption (Wong et al., 2009). Existing literature is contradictory about the relevance of HC5 as effect threshold. Some tests have found effects both below and largely above its value (Van Sprang et al., 2009). Threshold values derived from SSDs can be overprotective or underprotective, depending on the quality of the data used to generate them (Sánchez-Bayo and Goka, 2012). According to Rand and Schuler (2009), the 10th percentile from the SSD of any metal might not be protective for endangered, threatened, commercially or recreationally important species in an ecosystem. This point remains controversial in the literature, as some authors (Staples et al., 2008; Jin et al., 2011; Jin et al., 2012a) state that, so far, PNECs derived from SSDs have proven to be protective for ecosystems. Similarly, the study by Raimondo et al. (2008) concluded that HC5s protect endangered species from acute toxicity. De Laender et al.’s (2013) study showed that PNEC derived from SSDs are protective for aquatic ecosystems. 

Probabilistic Exposure Assessment: Frequentist methods

1. Parameters that are fixed but unknown can never be assigned probability distributions. But, confidence intervals are used to express random variation in parameters (Kennedy and Hart, 2009).
2. According to Kennedy and Hart (2009), some authors propagate uncertainty when data is lacking by simulating concentration values directly from the reported sample data, as though they constitute the actual discrete distribution of concentrations. This practice can severely underestimate the true upper tail of the distribution, and consequently the risk. With small samples, extreme concentrations are unlikely to appear in the data, and therefore will not be represented in the simulation. 
3. Frequentist approaches rely expert judgment for many aspects of the assessment; for example, in deciding whether the data meets the assumption that the sample is random and representative (Bogen et al., 2009; Kennedy, 2010; Mesa-Frias et al., 2013), in selecting probability models, and in choosing the diagnostic checks for goodness-for-fit. Furthermore, unlike Bayesian methods, these subjective choices are not explicit (Bogen et al., 2009) in separating variability from uncertainty in second-order Monte Carlo (Mesa-Frias et al., 2013). The degree of subjectivity in probabilistic techniques may lead to criticism about how sound, subjective and reproducible they are. Because of the inherent involvement of expert judgment, probabilistic judgments retain a certain level of uncertainty, which might differ from one assessment to another. This leads to criticism about the potential for results that are either too conservative, or not conservative enough (Bogen et al., 2009). 
4. Frequentist approaches might not incorporate correlations between parameters. This can lead to significant errors in the results. Furthermore, the impact of neglecting correlations can be exacerbated by the use of lognormal distributions for metabolic parameters. Indeed, the lognormal distribution has a significant ‘‘tail’’, which may include physiologically improbable values (Clewell and Clewell, 2008). According to Arnot et al. (2008), uncertainty analyses provide useful information in screening the general quality of the data, but should not be over-interpreted as statistically rigorous or as a clear indicator of biological significance.
5. Using historical data (e.g., of contamination) to obtain distributions may not be a good reflection of current realities (e.g., exposures have increased or reduced) (Vestergren et al., 2008)
6. Probabilistic models tend to require more data than do deterministic ones (Vitrac and Leblanc, 2007; Boobis et al., 2008; McKinlay et al., 2008; Chowdhury, S. et al., 2009). Probabilistic exposure assessment depends on the quantity and quality of data available. But, too much data can also lead to cumbersome and unpractical procedures (Tsushima et al., 2010). If algorithms for reconstructing missing data are used, they will still have to be tested with measured data (Vitrac and Leblanc, 2007).
7. Most available probabilistic models of human exposure were developed in the United States (U.S.). For application elsewhere, they need to be adapted to account for cultural and geographical differences between the U.S. and other countries. These differences might include room sizes or the proportion of people living in rural environments. However, datasets equivalent to those used to create and apply U.S. models have no equivalents elsewhere (McKinlay et al., 2008). 
8. Probabilistic models are more susceptible to compound errors if data included in the model are inaccurate, or there has been an error in the structure of the model (McKinlay et al., 2008). 
9. Probabilistic models should be used with care, to avoid skewing decisions on risk management because of extreme but highly unlikely exposure events (McKinlay et al., 2008).
10. Like all other quantitative methods, frequentist probabilistic techniques cannot account for all sources of uncertainty (Blanset et al., 2007; Van der Voet and Slob, 2007; Verdonck et al., 2007; McKinlay et al., 2008; Kennedy and Hart, 2009; Schenker et al., 2009; Martinez et al., 2010; Judson et al., 2011; Valcke and Krishnan, 2011a). This underestimates the overall uncertainty. Several examples of uncertainty not included in an assessment include 
· sampling uncertainty due to small and unrepresentative samples (Blanset et al., 2007; McKinlay et al., 2008; Kennedy and Hart, 2009); 
· measurement uncertainty, which is generally not accounted for in probabilistic exposure assessments (McKinlay et al., 2008; Kennedy and Hart, 2009); 
· uncertainty due to non-detects (Kennedy and Hart, 2009); 
· inadequate use of values for input data collected under different spatial or temporal conditions than those that are modeled (Sioen et al., 2008); 
· conceptual errors; 
· other assumptions (Vitrac et al., 2007; McKinlay et al., 2008; Valcke and Krishnan, 2011a; Mesa-Frias et al., 2013); 
· variability in ecosystem stressors; 
· epistemic uncertainty (lack of knowledge) (Arnot et al., 2008; Wang et al., 2011); 
· uncertainty related to the use of surrogate values (Blanset et al., 2007); 
· uncertainty in model structure (Schenker et al., 2009; Zhang, 2010; Mesa-Frias et al., 2013); and
· missing data that can lead to exclusion of certain parameters from the model because no distribution can be attributed (Schenker et al., 2009). 
For example, a study by Bosgra et al. (2009) could not account for several sources of uncertainty: uncertainties in relative potency factors, uncertainties in age or gender differences in sensitivity to the chemicals addressed, sampling uncertainty, bias in data measurement methods such as self-reporting, heterogeneity in sampling methods used to collect the different datasets, and co-exposure to chemicals that could lead to cumulative effects. A study by Sioen et al. (2008) did not account for uncertainty related to differences in the data collection methodologies, sampling plans and analytical methods, in the different studies used to derive parameter distributions.
11. More skill is needed to apply and interpret probabilistic models than deterministic models (Erdal et Carollo, 2007; McKinlay et al., 2008). If probabilistic exposure assessment were used in toxic tort litigations, for example, it might be too complicated to be understood by a lay jury (Bogen et al., 2009). More generally, probabilistic results seem more difficult for decision-makers to understand (Erdal et Carollo, 2007; Cao et al., 2011).
12. Usually the 95th percentile is chosen as the relevant threshold, but other statistics could be used (99th percentile, mean, etc.) (Valcke and Krishnan, 2011b).
13. * Probabilistic approaches do not account for unique events or surprises—events for which no data exist and hence distributions cannot be derived (Bogen et al., 2009). 
14. Uncertainty analysis creates a greater workload for expert panels (Verger and Fabiansson, 2008).
15. Implementation of uncertainty analyses in the work of expert panels will require practices to be harmonized and guidelines developed (Verger and Fabiansson, 2008).
16. Managers and consumers need communications to include a positive description of uncertainty. The message should focus on transparency, to avoid feelings that the current approach is not robust (Verger and Fabiansson, 2008).
17. Probabilistic methods—in particular Monte Carlo methods—that focus on critical exposures, can require an unrealistically large number of iterations if the critical exposure occurs rarely (Sidorenko, 2011).
18. Probabilistic methods can produce unacceptable results. Sidorenko (2011) notes that these approaches focus on estimating reference percentiles of dietary exposure, i.e. the 95th (p95) and the 99.9th (p99.9) percentiles. A risk is recognized as acceptable if the reference percentile of exposure falls below the reference percentile—that is, the level of exposure is below the cumulative effective dose (CED) for at least 99.9% of the considered population. That means that the probability that the CED will be exceeded is 0.001. But, this means that an adverse health effect can be expected in an unacceptable number of European consumers—about 500 000).
19. Certain assumptions are hidden in numbers that appear to be certain and therefore create a false sense of certainty and protectiveness. Consequently, decision makers and risk managers overestimate the reliability of the outcomes of the risk analysis (Verdonck et al., 2007).
20. Policy instruments are not always available for risk managers to implement uncertainty-based assessments (Verdonck et al., 2007).
21. There is still no common understanding across disciplines of uncertainty assessment terminology (Barton et al., 2007).
22. Probability-based approaches typically combine natural variability with uncertainty arising from lack of knowledge about the system in a single probability distribution. However, some uncertainty is epistemic rather than random. Representing epistemic uncertainty using some standard (for example, normal) distribution with larger variance may misrepresent the actual pattern of uncertainty and lead to incorrect conclusions. Methods for separating variability from uncertainty exist, but they are rarely applied (Chowdhury, S. et al., 2009).

Probabilistic Exposure Assessment: Bayesian methods

1. Like all other quantitative methods, Bayesian techniques cannot account for all sources of uncertainty. Several examples of uncertainty that has not been accounted for in an assessment include: 
· inter-individual and inter-dose variability (Evans et al., 2009), 
· model uncertainty (Chen, C-C. et al., 2012), 
· variation in parameters over time (Chen, C-C. et al., 2012), 
· correlations between certain parameters (Allen et al., 2007; Covington et al., 2007), 
· differentiation between model uncertainty and measurement error, which can only be represented as total error (Convington et al., 2007), 
· the choice of the prior (Kennedy, 2010), 
· missing data (Schenker et al., 2009; Chen, R. et al., 2012; Hoque et al., 2012), 
· framing of assumptions (Mesa-Frias et al., 2013), 
· simplification in model structure (Schenker et al., 2009; Mesa-Frias et al., 2013), or 
· uncertainties related to the effects of risk management options (Saloranta et al., 2008).
2. * The relative contribution of variability and uncertainty is not easy to highlight in the final results (Chiu and Ginsberg, 2011).
3. The people who use Bayesian methods must have certain skills to ensure biological consistency (Chiu et al., 2009)
4. Bayesian probabilistic analyses still depend on deterministic testing of alternative model structures (Chiu et al., 2009)
5. * Bayesian methods depend heavily on expert subjectivity (Mutshida et al., 2008; Bogen et al., 2009; Kennedy and Hart, 2009; Kennedy, 2010). Different experts can produce different priors, which will lead to different results (Mutshida et al., 2008; Georgoupoulos et al., 2009; Kennedy, 2010). 
6. The choice of the shape of the distributions can have a substantial effect on the final results (Mörk et al., 2009; Kennedy, 2010).
7. Specific skills are required to use Bayesian techniques (Mutshida et al., 2008).
8. Markov chain Monte Carlo (MCMC) methods are more time-consuming than regression methods (Görlitz et al., 2011)
9. In some cases, it is hard to estimate whether the MCMC chain has already reached its stationary phase or whether it is still in a “burning-in” phase (Görlitz et al., 2011)
10. In some cases, applying Bayesian techniques can lead to intensive data requirements; for example, to include time patterns in exposure reconstruction (Georgoupoulos et al., 2009).
11. Software for Bayesian techniques is not always adapted to the practical analysis needs. Thus, Qiu et al. (2009) highlight that posterior distributions are sensitive to parameter values of the gamma prior, if small population variance values are possible for some data sets. Even if Half-Cauchy prior distributions would have been more appropriate, they are not defined in MCSim 5.0. used in this study.

Fuzzy methods for uncertainty in exposure or effects

1. As with all of the other quantitative uncertainty assessment methods, fuzzy methods cannot account for all sources of uncertainty. For example, the fuzzy method used by Ocampo-Duque et al. (2012) could not account for synergies among pollutants. 
2. The results of computations using fuzzy quantities may not be mathematically precise (Chowdhury, S. et al., 2009).
3. The computation can become cumbersome if the distributions used to develop membership functions need to be complex (such as quadratic, trigonometric) (Chowdhury, S. et al., 2009).
4. Fuzzy set theory is based on ill-defined sets of data where the bounds are not precise. Evaluation of these sets imparts subjective uncertainties and leads to predictions that tend to deviate from exact values (Chowdhury, S. et al., 2009).
5. The use of fuzzy methods demand specific competence and experience with their application in a specific field (Chowdhury, S. et al., 2009).
6. Fuzzy approaches require input from experts in the relevant fields, but it may be difficult or costly to select such experts. Differing views between experts complexify the computations because an interval is generated instead of a single value. Consequently, complex mathematical approaches may be required to solve such problems (Chowdhury, S. et al., 2009).
7. Constructing fuzzy membership functions remains subjective, as decisions must be made about the shape and limits of the parameter values with non-zero membership (Chowdhury, S. et al., 2009).

Multi-criteria decision analysis (MCDA)

1. Criteria identification requires very clear information decision-makers to easily understand the results (Zhang et al., 2009).

Sensitivity analysis applied to exposure or effects

1. Global sensitivity analysis approaches can be computationally demanding (Vezzaro et al., 2011; Malaguerra et al., 2013), especially with a high number of parameters in a model. 
2. In current practice, sensitivity analyses are typically univariate and local, in that they individually vary parameters by a small amount from ‘‘baseline’’ values and assess the impact on the results. However, such analyses do not allow investigation of covariances or interactions, which can only be addressed by global sensitivity analyses (GSA). GSA examines the impact of varying all parameters simultaneously throughout a range of values that might be expected (Barton et al., 2007).
3. Due to computational demands and to the data available on the parameters, some sources of uncertainty and some parameters cannot be included in sensitivity analyses (Malaguerra et al., 2013).
4. All uncertainties cannot be addressed with sensitivity analysis, as shown for epistemic uncertainties and extrapolation methods (Vijver et al., 2008), and geographical correlations between variables (Passuello et al., 2012).
5. Deterministic and probabilistic sensitivity analyses have differing abilities to account for uncertainty. Deterministic sensitivity analysis is not as good when dealing with a large number of parameters, because it does not account for the statistical likelihood of each parameter (Mesa-Frias et al., 2013). 
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