
Proof of Theorem 1

Consider the information matrix I(θ, ξt) for a single design time t. Then the set {1, e−2α2/t, 1t e
−2α2/t}

forms a Tchebycheff system on any fixed interval. Then it follows from the results of Karlin and

Studden (1966, p.333) and of Fedorov(1972, pp.85-86) that, for any fixed parameters, the D-optimal

design is based on exactly two points of support.

As observed by Mukhopadhyay and Haines (1995), a necessary and sufficient condition for a

design ξ to be locally D-optimal is

dθ(ξ, t) = tr[I(θ, ξt)I(θ, ξ)
−1]− 2 ≤ 0, (1)

for all t in the design space.

For any design point t in the design space, it is easy to see that
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and we want dθ(ξ, t) ≤ 0 for all points between tmin and tmax. Taking the derivative with respect

to t, we have
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Plugging in t2 in (3), we find d
′

θ(ξ, t2) ≥ 0, which implies t2 = tmax.

Next, note that ξ will be a locally D-optimal design if dθ(ξ, t) has a local maximum value at

t1. Setting d′θ(ξ, t) = 0, we find t1 = α2t2
α2+t2

. If α2t2
α2+t2

< tmin, then d
′
θ(ξ, t) < 0 for t ∈ [tmin, tmax). It

follows that dθ(ξ, t) is a decreasing function in [tmin, tmax]; thus dθ(ξ, t) will have its local maximum

at tmin. Consequently, t∗1 = max( α2t2
α2+t2

, tmin).

Also, by the definition of D-optimal design, the above design identifies an ellipsoid which

contains all points on v1(t), t ∈ [tmin, tmax] with minimum volume. There will be two points,

α2tmax
α2+tmax

, tmax at the boundary of the above ellipsoid.
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