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1 Introduction

This is supplementary material to the article ”Dimension-reduced modeling of spatio-

temporal processes with an application to statistical downscaling”. In section 2 we

provide details regarding the application found in Section 4 in that article. We show

exploratory data analysis (Section 2.1), a detailed description of the Bayesian model

and prior selection in (Section 2.2) and address model the issue of model adequacy

(Section 2.3). Section 3 outlines the Gibbs sampler.
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2 Statistical downscaling of temperatures over the

Antarctic

2.1 Exploratory data analysis

Let Yl,t,i be the (temporally) centered 2-meter temperature model output of the Polar

MM5 from season l, year t and location i and let Xm,t,j be the centered ERA-40

2-meter temperatures for month m, year t and location j. The number of spatial

locations are NY = 14641 for the Polar MM5 data and NX = 2736 for the ERA-40

data.

We have data from the fall season (March) of 1979 through the fall season (May) of

2002; a total of 93 seasons (279 months). We leave out the last year of data so that

we can compare them to our predictions for that period. We therefore obtain the

basis vectors using only the first 89 seasons (267 months), i.e. through fall (May) of

2001.

Note that seasons and months start and end at different years since we have no

summer data for the first year (1979) and no winter or spring data the 23rd year

(2001). Let τl and Tl be the the first and last year we have available data for season

l, l = s, f, w, p. For example, we have summer data for years t = 1980, . . . , 2001 so

τs = 1980 and Ts = 2001. Similarly, let τm and Tm be the first and last year we have

data for month m, m = 1, . . . , 12.

We define data vectors and data matrices as follows:

Yl,t is an NY -dimensional vector of centered seasonal Polar MM5 2-meter surface

temperatures, indexed by year t = τl, . . . , Tl and season l = s, f, w, p.
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Yl is a NY × (Tl − τl + 1) dimensional data matrix with columns Yl,τl , . . . ,Yl,Tl .

Xm,t is an NX-dimensional vector of centered monthly ERA 2-meter surface temper-

atures, indexed by year t = τm, . . . , Tm and month m = 1, . . . , 12.

Xm is a NX×(Tm−τm+1) dimensional data matrix with columns Xm,τm , . . . ,Xm,Tm .

Centered data are obtained by subtracting the seasonal (Polar MM5) or monthly

(ERA-40) means at each location. This means that

Tl∑
t=τl

Yl,t,i = 0 and
Tm∑
t=τm

Xm,t,j = 0 for all l,m, i, j . (1)

Figure 1 shows the centered temperature fields for fall and winter 1986. Examining

these maps for all 23 years (not shown) we noticed that most centered temperatures

over the ocean are close to 0K, indicating that temperatures at these locations do not

vary much over time. Locations on land/permanent ice vary more, especially those

close to the coast of Antarctica. Furthermore, the spatial patterns in the centered

data seem to be more alike within seasons and within months (i.e. across years) than

across seasons and months.

To allow for different spatial structures between seasons in the centered Polar MM5

data, we construct EOF basis vectors for the centered Polar MM5 data separately

for each season. This means that for each season the 22 years (23 for fall season) are

treated as repeated measurements as opposed to treating all 89 seasons as repetitions

of one single process. We obtain matrices of four EOFs, Ul, by performing singular

value decomposition (SVD) on the data matrices Ys, Yf , Yw and Yp.

We have three months of centered ERA-40 data for every season. We obtain OMCPs

separately for each month, using EOFs from the corresponding season. For example,
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Figure 1: Centered temperature fields, ERA-40 (circles) and Polar MM5 (squares) in
Kelvin, fall and winter season 1986. The color palettes are separate for the ERA-40
and Polar MM5 data.

the first OMCPs for March, April and May are

v3,1 =
X3Y

′
fuf,1

||X3Y ′fuf,1||
, v4,1 =

X4Y
′
fuf,1

||X4Y ′fuf,1||
and v5,1 =

X5Y
′
fuf,1

||X5Y ′fuf,1||
(2)

where uf,1 is the first EOF for the fall season. The patterns v3,k, v4,k, v5,k and

uf,k are referred to as group k for fall season. The rationale for modeling each month

separately as opposed to using seasonally averaged ERA-40 data was twofold. Firstly,

there are stronger relationship between monthly temperatures than seasonal, that

hopefully would result in a better model of the temporal evolution. Secondly, this

way one could do downscaling (prediction) of the Polar MM5 seasonal data even if

only one or two of the ERA-40 months had been observed.

Figure 2 shows the proportion of the sample covariance between the amplitudes is

lost by orthogonalizing the MCPs. For most of the first three patterns we lose less

than 20% of the sample covariance while some of the 4th and 5th patterns lose as
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Figure 2: Proportion of the sample covariance between amplitudes lost by orthogo-
nalizing the MCPs.

much as 60%.

2.1.1 Exploratory analysis of amplitudes

Before we build a model of the amplitudes we perform some exploratory data analysis.

We estimate amplitude vectors using regular least squares estimates. Let Ul be a

matrix that contains the first KY EOFs and let Vm be a matrix that contains the first

KX OMCPs. Note that since the basis vectors are orthonormal, we have U ′lUl = I

and V ′mVm = I. The estimated amplitude vectors are calculated as follows:

âl,t = (U ′lUl)
−1U ′lYl,t = U ′lYl,t and b̂m,t = (V ′mVm)−1V ′mXm,t = V ′mXm,t (3)

We have 23 estimates of each amplitude vector and we can explore the relationships

between them via simple scatterplots.

First, we consider the relationship between an amplitude vector âl,t and each of the

three b̂m,t amplitude vectors from the same season. The goal here is to examine
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possible models of the form

al,t = Hl

[
bml1,t

bml2,t

bml3,t

]
+ eY (4)

where ml1, ml2 and ml3 are the three months in season l. We plotted each of the

seasonal âl,t against each of the three monthly b̂mli,t. Since we chose to use four basis

vectors we plotted the four amplitudes âl,t,k, k = 1, . . . , 4, against each of the four

b̂mli,j, j = 1, . . . , 4, amplitudes (192 scatterplots in total). Examples of these plots

are shown in Figure 3. In general we concluded that amplitudes from the same group

i.e., when k = j, have strong linear relationships (e.g. first row in Figure 3). This

is not surprising since OMCP basis vectors are designed so that these amplitudes

would have high covariance. When we plotted higher order EOFs versus lower order

OMCPs (k < j), we detected virtually no relationships (e.g. k = 1, j = 2 and k = 2,

j = 3 in Figure 3). In some cases the lower order EOFs versus higher order OMCPs

(k > j) show linear relationships but most are weaker than the ones on the diagonal

(e.g. k = 2, j = 3 in Figure 3). These exploratory analyses indicate that when we

model the amplitude al,t,kY conditional on the three amplitude vectors bm1,t, bm2,t and

bm3,t we can make do with only the amplitudes within the same group, i.e. k = j.

We also examined multiple linear regression of the estimated amplitudes EOF âl,t,k

on estimated OMCP amplitudes from the same group. For example, for fall season

and fixed k we fitted the following regression model:

âf,k,t = H3,kb̂3,k,t +H4,kb̂4,k,t +H5,kb̂5,k,t + εt (5)

The b̂m,t,k amplitudes explain a big part of the variation in âl,t,k, R
2 of these regressions

range from about 56% to 86%. Furthermore, in many cases the last month of the

season is the most significant month. The estimated coefficients, Ĥm,k, where mostly
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Figure 3: Estimated Polar MM5 EOF amplitudes for summer, âs,t,k, plotted against

estimated ERA-40 OMCP amplitudes for December, b̂12,t,j. Each point on the graphs
represents one year t (22 years). The lines show the simple regression line though the
points.

between 0 and 1.

Next we consider the relationship between the OMCP amplitudes and the OMCP

amplitude vectors from the previous month. The goal here is to explore the tempo-

ral aspect, i.e. the distribution
[
bm,t|bm−1,t,θ

]
. Figure 4 shows examples of OMCP

amplitudes plotted against OMCP amplitudes for the month before. A few of these

graphs showed a moderately strong linear relationship between amplitudes b̂m,t,k and

b̂m−1,t,j, but we did not detect any pattern of some combinations of k and j consis-

tently showing stronger linear relationships than others. It therefore seems that when

modeling amplitudes b̂m,t,k given amplitudes the month before that there is reason to

include all the b̂m−1,t,j, j = 1, . . . , 4, amplitudes.

We also considered multiple linear regression of the estimated OMCP amplitudes

b̂m,t,k on the first four OMCP amplitudes from the month before, i.e. b̂m−1,t,1, b̂m−1,t,2,

b̂m−1,t,3 and b̂m−1,t,4. There seem to be some predictive potential in the previous

month’s amplitudes, although in seems rather weak in some cases. The range of R2
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Figure 4: Estimated December OMCP amplitudes,b̂12,t,k, plotted against estimated

November OMCP amplitudes, b̂11,t,j. The lines show the simple regression line though
the points.

is quite wide, from 4% to 73%, and most of the R2 values are under 50%.

Finally, in an effort to improve prediction of OMCP amplitudes, we investigate

whether there could be an autoregressive relationship within the same month but

between years. We regressed estimated OMCP amplitudes b̂m,t,k on both the whole

OMCP amplitude vector from the month before (b̂m−1,t,1, b̂m−1,t,2, b̂m−1,t,3 and b̂m−1,t,4)

and the same amplitude one year earlier (b̂m,t−1,k). Only in few cases is the added

(previous year) amplitude significant, most notably for March amplitudes. Note that

March is a beginning of a new season and so this suggests that prediction of March

amplitudes from February amplitudes (different season) could be improved by also

including March amplitudes form the year before.

2.2 Bayesian hierarchical model

We discuss separately the three layers of the hierarchical model: data model, process

model and parameter model.
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2.2.1 Data model

The data model defines the distribution of the centered temperature vectors given the

basis vectors and their amplitudes. We chose to model only the centered data. We

could include a parametric function to model the mean, e.g. by using the elevation

data. However, our focus in this paper is on the dimension reduction techniques so

we leave that part for future work. We assume that the observations are conditionally

independent given the amplitude vectors al,t and bm,t and that

Yl,t|al,t, Rl,t ∼ N (Ulal,t, Rl,t) for l ∈ {s, f, w, p}, t = τl, . . . , Tl and

Xm,t|bm,t, Sm,t ∼ N (Vmbm,t, Sm,t) for m = 1, . . . , 12, t = τm, . . . , Tm + 1 . (6)

Note that we include the last year of ERA-40 data but not the last year of the Polar

MM5 data, since we wish to obtain predictions of the Polar MM5 fields for that time

period. The covariance matrices Rl,t and Sm,t are unknown and Ul and Vm are the

first four EOFs and OMCPs for season l and month m.

2.2.2 Process model

The process model defines the joint distribution of the amplitude vectors al,t and bm,t.

We assume that the Polar MM5 amplitude vectors, al,t, are conditionally independent

given the ERA amplitude vectors, bml1,t, bml2,t and bml3,t, where the indexmlk denotes

the kth month within season l. For all seasons we assume a normal distribution for

the Polar MM5 amplitudes given the ERA amplitudes:

al,t|bml1,t,bml2,t,bml3,tHl, Cl ∼ N

(
Hl

[
bml1,t

bml2,t

bml3,t

]
, Cl

)
(7)
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for l ∈ {s, f, w, p} and t = τl, . . . , Tl + 1, where Cl are unknown 4 × 4 dimensional

covariance matrices and

Hl =

(
Hml1

Hml2
Hml3

)
. (8)

Each of the Hm matrices are 4 × 4 dimensional. Based on the preliminary data

analysis in Section 2.1 we make the Hm matrices diagonal. Note that we include the

amplitude vectors for the last year al,Tl+1 to facilitate prediction of the Polar MM5

process of the last year.

The bm,t amplitude vectors are modeled by a first order Markov process with normally

distributed errors:

bm,t|bm−1,t, Bm, Dm ∼ N
(
Bmbm−1,t, Dm

)
(9)

for m = 1, . . . , 12 and t = τm, . . . , Tm + 1 where Dm is an unknown 4× 4 dimensional

covariance matrix. Note that here we use the notation b0,t for b12,t−1. We let the Bm

matrices have full structure, that is we have K2
X unknowns for each Bm matrix.

Exploratory analysis of estimated amplitudes (see Section 2.1) indicated that, at least

for some months, it might be beneficial to model each bm,t amplitude vector dependent

on both the month before and also the same month one year earlier. However, this

only applied for a few months and amplitudes, so for the sake of parsimony, we do

not include such dependence structure here.

Finally, we use a normal prior on the first (i.e. February 1979) ERA-40 amplitude

vector, [
b2,1979

]
= N

(
µb,Σb

)
. (10)

We actually have ERA-40 data from this month and we set the prior mean equal to
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the estimated amplitudes,

µb = V2X2,1979 = b̂2,1979 = (−26.784, 12.094,−5.186, 5.562)′ . (11)

The estimated standard error of b̂2,1979 is 0.72 (same for all k). In order to avoid

being too concentrated in our prior selection, we use the considerably larger prior

standard deviation and se Σb = 102IKX
.

2.2.3 Parameter model

The parameter model defines prior distributions on unknown parameters introduced

in the data and process models. There are three groups of parameters we need to

consider: (1) the transition matrices Hm and Bm; (2) the process model covariance

matrices Cl and Dm; and (3) the data model covariance matrices Rl,t and Sm,t.

We do not have apriori information about hyperparameters so we use the exploratory

analysis in Section 2.1 to guide our selection. The situation where hyperparameters

are estimated from data is referred to as empirical Bayes (Berger (1985); Section 4.5)

and is not strictly a fully Bayesian approach. Applying Bayes theorem with hyper-

parameters that are estimated from data ignores errors introduced in the estimation.

These errors will therefore not be reflected in the posterior distribution. To partially

mitigate this problem we selected prior densities wider than what estimated hyper-

parameters would have suggested. Ideally we should perform sensitivity analysis on

the selected hyperparameters, i.e. examine how sensitive our conclusions are to the

values of the hyperparameters.
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(1) Transition matrices Hm and Bm: Let hm = (Hm,1, . . . , Hm,KY
)′ be a vector

that contains the diagonal elements of Hm (the non-zero elements). Let vec(Bm) be

the vectorization of Bm, i.e. vec(Bm) is a column vector with the columns of Bm

stacked on top of each other. We assume that the Hm and Bm matrices are apriori

independent and we use the following prior distributions for the elements of the Hm

and Bm matrices:

[
hm
]

= N(µ1,m,Σ1,m), m = 1, . . . , 12 and[
vec(Bm)

]
= N(µ2,m,Σ2,m), m = 1, . . . , 12 . (12)

The parameters µ1,m, Σ1,m, µ2,m and Σ2,m are constant hyperparameters and need

to be specified. There is no prior information available on the Hm,k parameters and

without seeing any examples of the af,k,t and bm,k,t amplitudes, it is difficult to even

postulate about the scale of Hm,k. We therefore allow ourselves a peak at the data

to guide the selection of µ1,m and Σ1,m. We saw in Section 2.1 that estimates of the

elements of H were almost all between 0 and 1. With that in mind we set the prior

mean equal to 0.5 for all m and k and the prior standard deviation equal to 4, i.e.

µ1,m = 0.51KY
and Σ1,m = 42IKY

for all m. We note that the prior is concentrated

on a considerably wider than the range of Hm,k values than was indicated in the EDA

in Section 2.1. Similar considerations led us to set µ2,m = 0KX
and Σ2,m = 42IKX

for

all m.

(2) Process model covariance matrices Cl and Dm: We use Inverse-Wishart

priors for Cl and Dm:

Cl ∼ IWνl(Wl), l = s, f, w, p, and Dm ∼ IWνm(Wm), m = 1, . . . , 12 (13)

12



The expected value of an IWν(W ) distributed, k×k matrix is 1
ν−k−1W . Furthermore,

the larger ν is the tighter the distribution is around its mean. To select a vague prior,

we select νm = KX + 2 and νl = KY + 2 which means that the mean of the inverse-

Wishart distributions will be Wl and Wm. From the regressions in Section 2.1 we

found that the residual errors are no larger than 60 so we select Wl = 602IKY
for all

seasons l. For same reasons we select Wm = 702IKY
for all seasons m.

(3) Data model covariances Rl,t and Sm,t: The covariance matrices in the data

model are very large; Rl,t are (NY × NY )-dimensional and Sm,t are (NX × NX)-

dimensional. They account for many sources of variation that arise when modeling

the observations given the coefficient vectors al,t and bm,t. These include measurement

error, small non-time-varying variation in the processes and error due to the dimension

reduction itself. One way to avoid the high dimensional covariance matrices is to

assume (conditional) independence and take Rl,t and Sm,t as diagonal matrices. But

in light of the many complex sources of variation in Rl,t and Sm,t that seems too

simplistic. Instead we apply an approach used in Berliner et al. (2000) which is both

computationally appealing and attempts to account for some of the structure left over

after the dimension reduction. The idea is to form Rl,t and Sm,t by using a few of the

next basis vectors to capture some of what is left of the spatial structure in Yl,t and

Xm,t. In principle Rl,t and Sm,t could be time-varying (different for each year t), but

here we assume that they only vary between seasons or months and can therefore be

denoted as Rl and Sm.

Let Ũl be a matrix that contains columns KY +1, . . . , LY of Ul and let D̃l be a diagonal

matrix containing the corresponding eigenvalues, dl,j (i.e. the variances associated
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with these EOFs). As in Berliner et al. (2000) we set

Rl = rl

(
clINY

+

LY∑
k=KY +1

dl,kul,ku
′
l,k

)
= rl

(
clINY

+ ŨlD̃lŨ
′
l

)
≡ rlR̃w . (14)

Here, cl is a constant set to be the total sample variance left after accounting for the

first LY EOFs. That is,

cl =

NY∑
k=LY +1

dl,k for l = s, f, w, p . (15)

where dl,k are the eigenvalues of SY = 1
Tl−1

YlY
′
l . Note that, although ŨlD̃lŨ

′
l is not of

full rank, by adding the diagonal matrix clINY
the covariance matrix Rl is guaranteed

to be non-singular. Using this approach we have reduced the unknown NY × NY

covariance matrix Rl down to a single unknown scalar rl while still capturing extra

spatial structure through the extra basis vectors. Furthermore, computations never

require one to actually store or do calculations with Rl, we only need to work with Ũ

and the dl,k scalars.

We use a similar approach for Sm. Let Ṽm be a matrix that contains columns KX + 1

through LY of Vm. The Vm are not eigenvectors but we can still obtain the variance

explained by each basis vector vm,k which we call dm,k. With that in mind we set the

diagonal elements of D̃m equal to the sample variance explained by the corresponding

basis vector and cm to be the total variance left in X after accounting for the first

LX basis vectors. We then we set

Sm = sm

(
cmINX

+

LX∑
j=KX+1

dm,jvm,jv
′
m,,j

)

= sm

(
cmINX

+ ṼmD̃mṼ
′
m

)
≡ smS̃m . (16)

This approach reduces the NX ×NX dimensional matrix Sm down to one scalar, sm.
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The unknown scalars rl and sm are assumed to be apriori independent and are assigned

conjugate inverse gamma priors:

[
rl
]

= IG(α1, β1) for l = s, f, w, p and[
sm
]

= IG(α2, β2) for m = 1, . . . , 12 . (17)

We set proper, but vague priors on rl and sm. In particular we select α1 = α2 = 2

and β1 = β2 = 1 which means that the prior mean is 1 but the prior distribution has

an infinite variance. The reason for picking the mean as 1 is that we have included

the total variance of the data within the data model (through the cl and cm in Rl and

Sm).

The computational advantages of this approach, stems from the basis vectors being

orthogonal and the inverses of Rl and Sm can be easily obtained. For example,

R−1l =
1

rl

(
1

cl
INY
− ŨlΛlŨ

′
l

)
(18)

where Λl is a diagonal matrices with diagonal elements

dl,k
cl(cl + dl,k)

for k = KY + 1, . . . , LY . (19)

Furthermore, we note that Rl appear in the Gibbs sampler as U ′lR
−1
l Yl,t, U

′
lR
−1
l Ul

which can be written as

U ′lR
−1
l Yl,t = U ′l

1

rl

(
1

cl
INY
− ŨlΛlŨ

′
l

)
Yl,t =

1

rlcl
U ′lYt,l, and (20)

U ′lR
−1
l Ul = U ′l

1

rl

(
1

cl
INY
− ŨlΛlŨ

′
l

)
Ul =

1

rlcl
IKY

. (21)

In the calculations above we used the fact that U ′l Ũl is a matrix with all elements
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Figure 5:

equal to zero due to the orthogonality of the basis vectors.

2.3 Model Adequacy

In the paper we address the issue of model adequacy by obtaining point wise credible

intervals for each Yl,t,i and compared to the observations, i.e. for observations that

were use to fit the model. To shine a light on how much uncertainty reduction happens

from the prior to the posterior we look at the lengths of the 95% point-wise credible

intervals and compare to the prior standard deviation. A histogram of the lengths of

the 95% point-wise credible intervals is shown in Figure 5. We note that the lengths

of the point-wise prediction intervals are all less than about 0.14 K.

To find the prior covariance matrix of Yl,t implied by the hierarchical model we can
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utilize iterative expectations:

Cov(Yl,t) = Cov (E(Yl,t|θ)) + E (Cov(Yl,t|θ))

= Cov (Ulal,t|C) + E (Rl,t|rl)

= UlCU
′
l + rlR̃l,t

if C and rl are known. Note that Ul and R̃l,t are constant. Plugging in the prior

means for C and rl:

C = 602I4 and rl = 1

we can obtain the diagonal of Cov(Yl,t). The average implied prior standard devia-

tions for the four season are

34.96, 27.93, 25.91, and 35.79 Kelvin.

So clearly the posterior intervals are much smaller than the prior intervals showing

that reduction of uncertainty from prior to posterior is substantial.

3 Gibbs Sampler

We provide full conditional distributions for Gibbs samplers used to obtain MCMC

samples for inference for the models in Section 2.2. Table 1 gives an overview of the

unknown parameters in the model in Section 2.2. In the following use the notation

“
[
X|rest

]
” to denote the conditional distribution of a random variable X given both

the data and all other unknown parameters in the model.
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Parameter Dimension

al,t seasonal Polar MM5 amplitude vectors 93×KY = 372
bm,t monthly ERA amplitude vectors 93× 3×KX = 1116
b2,1 Initial ERA amplitude vector KX = 4
hm Diagonal of Hm, from the process model 12×KY = 48
Bm Transition matrices of the process model 12×K2

X = 192
Cl variances for al,t vectors 4×KY (KY + 1)/2 = 49
Dl variances for bm,t vectors 12×KX(KY + 1)/2 = 120
rl Parameters the data model covariance matrices 4 = 4
sm Parameters the data model covariance matrices 12 = 12

Total = 1908

Table 1: List of unknown parameters in the model. The last column shows the
number of parameters for the chosen number of basis vectors, KY = 4 and KX = 4.
Note that, in comparison, the total number of observations is 14641*89 + 2736*93*3
= 2,066,393.

Polar MM5 amplitudes al,t:

Let bl,t denote the three ERA amplitude vectors that correspond to season l. The

full conditional distribution
[
al,t|rest

]
for each year and season is N(A−1d, A−1) with

A = U ′lR
−1
l Ul + C−1l =

1

rlcl
IKY

+ C−1l and

d = U ′lR
−1
l Yl,t + C−1l Hlbl,t =

1

rlcl
U ′lYl,t + C−1l Hlbl,t (22)

where Ul, cl and Yl,t are constants and 1
cl
U ′lYl,t can be calculated (and stored) outside

of the MCMC iterations.

Polar MM5 amplitudes al,t, the last year:

The full conditional distribution of al,t for timepoints where we do not have Polar

MM5 data is simply the process model for al,t:

[
al,t|rest

]
=
[
al,t|bl,t, Hl, Cl

]
= N(Hlbl,t, Cl) . (23)

ERA amplitudes bm,t:
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The full conditional distribution
[
bm,t|rest

]
is N(A−1d, A−1) with

A = V ′mS
−1
m Vm +B′m+1D

−1
m+1Bm+1 +H ′mC

−1
l Hm +D−1m

d = V ′mS
−1
m Xm,t +B′m+1D

−1
m+1bm+1,t +H ′mC

−1
l (al,t − b) +D−1m Bmbm−1,t . (24)

Some of the calculations can be simplified by noting that we have

V ′mS
−1
m Vm =

1

smcm
IKX

and V ′mS
−1
m Xm,t =

1

smcm
V ′mXl,t . (25)

Vm, cm and Xm,t are constants and 1
cm
V ′mXm,t can be calculated (and stored) outside

of the MCMC iterations.

The last ERA amplitude bm,t:

The full conditional distribution of the last bm,t amplitude vector is different from

others because there is no bm+1,t amplitude after it. Hence we get that
[
bm,t|rest

]
is

N(A−1d, A−1) with

A = V ′mS
−1
m Vm +H ′mC

−1
l Hm +D−1m

d = V ′mS
−1
m Xm,t +H ′mC

−1
l (al,t − b) +D−1m Bmbm−1,t (26)

The first ERA amplitude b2,1:

The full conditional distribution of the first ERA amplitude is different from the

others because there is neither data, nor a al,t amplitude at that timepoint and no

bm−1,1 amplitude before it. Hence we get that
[
b2,1|rest

]
is N(A−1d, A−1) with

A = B′3D
−1
3 B3 + Σ−1b and d = B′3D

−1
3 b3,1 + Σ−1b µb (27)
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Transition matrices Hm:

Recall that the transition matricesHm are diagonal matrices and that hm = (Hm,1, . . . , Hm,KY
)′

is a vector of the diagonal elements of Hm. Also recall the KY × 3KX dimensional

matrices Hl from (8). Let hl be the 3KY dimensional vector of non-zero elements of

Hl:

hl = (h′ml1
,h′ml2

,h′ml3
)′ (28)

where mli, i = 1, 2, 3 indicate the three months of season l. We note that we can

write Hlbl,t as a linear function of hl:

Hlbl,t =

(
bml1,t,1

bml2,t,1
bml3,t,1

... ... ...
bml1,t,KX

bml2,t,KX
bml1,t,KX

)
hl ≡ Jl,thl (29)

We then get that
[
hl|rest

]
is N(A−1d, A−1) with

A = Σ−1l,1 +

Tl+1∑
t=τl

J ′l,tC
−1
l Jl,t and

d =

Tl+1∑
t=τl

J ′l,tC
−1
l al,t + Σ−1l,1µl,1 (30)

Transition matrices Bm:

We note that

Bmbm−1,t = (b′m−1,t ⊗ IKX
)vec(Bm) ≡ Jm,t−1 vec(Bm) (31)

The full conditional distribution of theK2
X dimensional vector vec(Bm),

[
vec(Bm)|rest

]
,
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is N(A−1d, A−1) with

A =
Tm+1∑
t=τm

J ′m,t−1D
−1
m Jm,t−1 + Σ−12,m

d =
Tm+1∑
t=τm

J ′m,t−1D
−1
m bm,t + Σ−12,mµ2,m (32)

Covariance Matrices of the data model (rl and sm):

Recall that R−1l = 1
rl
El and S−1m = 1

sm
Em where El =

(
1
cl
INY
− ŨlΛlŨ

′
l

)
and Em =(

1
cm
INX
− ṼmΛmṼ

′
m

)
[
rl|rest

]
= IG

(
TlNY /2 + α1, β1 +

1

2

Tl∑
t=τl

(Yl,t − Ulal,t)′El(Yl,t − Ulal,t)

)
(33)

[
sm|rest

]
= IG (TmNX/2 + α2,

β2 +
1

2

Tm∑
t=τm

(Xm,t − Vmbm,t)
′Em(Xm,t − Vmbm,t)

)
. (34)

Covariance Matrices of the process model (Cl and Dm):

The full conditional distributions of Cl and Dm are

[
Cl|rest

]
= IW

(
νY + Tl − τl + 1,Wl +

Tl∑
t=τl

(al,t −Hlbl,t)(al,t −Hlbl,t)
′

)
(35)

[
Dm|rest

]
= IW (νX + Tm − τm + 1,

Wm +
Tm∑
t=τm

(bm,t −Bmbm−1,t)(bm,t −Bmbm−1,t)
′

)
(36)
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