A. Candidate genes for language dysfunction in the proband as resulted from in silico analyses

· EDARADD. This gene encodes an interactor of EDAR, involved in the development of hair, teeth and other ectodermal derivatives. Mutations in EDARADD usually result in ectodermal dysplasia (OMIM# 614940; OMIM# 614941) (Headon et al., 2001; Bal et al., 2007; Cluzeau et al., 2019). The gene has been recently associated to a biomarker of ageing, namely, ‘epigenetic age acceleration’, which is predictive of morbidity and mortality (Gibson et al., 2019). It is not known whether the gene plays any significant role at the brain level, where it is expressed at very low levels. 
· ACTN2. This gene encodes a bundling protein that anchors actin to different intracellular structures and which contributes to regulate spine morphology and the assembly of the post-synaptic density in neurons (Hodges et al. 2014), as well as the assembly and function of N-methyl-D-aspartate (NMDA) glutamate receptors, particularly in the striatum (Dunah et al., 2000; Bouhamdan et al., 2006). 
· GRIN2A and GRIN2B. These two genes encode two components of the subunit NR2 of the NMDA receptor channel, important for long-term potentiation, and ultimately, for memory and learning, and both are candidates for SLI, SZ, and ASD (Murphy and Benítez-Burraco, 2018). Additionally, mutations in GRIN2A give rise to epilepsy-aphasia spectrum disorders, including rolandic epilepsies, Landau-Kleffner syndrome, and continuous spike and waves during slow-wave sleep syndrome (CSWSS), which entail speech impairment and language regression (Carvill et al., 2013; Lesca et al., 2013). Speech problems associated to mutations in the gene include imprecise articulation, alteration of pitch and prosody, and dysarthria or dyspraxia (Turner et al., 2015). Likewise, mutations in GRIN2B have been also found in individuals with cognitive dysfunction and EEG anomalies (Freunscht et al., 2013; Hu et al., 2016). 
· HRAS. This gene encodes a GTPase important for neural growth and differentiation, long-term potentiation, and synaptic plasticity; the gene is a candidate for Costello syndrome (OMIM# # 218040,) a condition entailing developmental delay and mild to moderate intellectual impairment, with relatively impaired language, particularly in the expressive domain (Axelrad et al., 2011; Schwartz et al. 2013). 
· PVALB. This gene encodes parvalbumin, a high affinity calcium ion-binding protein with an important role in brain function. Inhibition of parvalbumin-expressing interneurons results in complex behavioral changes, including altered sensorimotor gating, reduced fear extinction, and increased novelty-seeking (Brown et al., 2015). Additionally, the parvalbumin system might represent a convergent downstream endpoint for some forms of ASD, with reduced paravalbumin-expressing neurons resulting in shifting the excitation/inhibition balance towards enhanced inhibition (Filice et al., 2016). 
· ITGB4. This gene interacts with FLNA (Travis et al, 2004), an actin-binding protein involved in actin cytoskeleton remodeling and neuronal migration (Fox et al., 1998), which in turn binds CMIP (Fox et al., 1998), a candidate for SLI (Newbury et al., 2009). 
· NOP9. This gene is a candidate for language impairment (Pettigrew et al., 2016).
· LYST. This gene has been associated to cognitive decline (Kaplan et al., 2008; Introne et al., 2017). 
· GABARAP. This gene is a candidate for DD and encodes a GABAA receptor-associated protein, which contributes to the clustering of neurotransmitter receptors and to inhibitory neural transmission (Veerappa et al., 2013). 



B. Candidate genes for language dysfunction in the proband as resulted from in vitro analyses

· IL5RA. This gene encodes a subunit of a cytokine receptor and it has been associated to physical activity levels (Letsinger et al., 2019)
· DDIT4. This gene encodes a stress-response protein that functions as negative regulator of mTOR, a kinase that regulates cell growth and proliferation, and autophagy, as well as synaptic plasticity. Increased DDIT4 levels are involved in aspects of neuronal damage, whereas knockdown of DDIT4 seems to inhibit neuronal apoptosis (Su et al., 2019). More specifically, in rats, overexpression of the gene in the prefrontal cortex results in anxiety- and depressive-like behaviors and neuronal atrophy, whereas mutant mice with a deletion of DDIT4 are resilient to the behavioral and neuronal consequences of chronic stress (Ota et al., 2014). Abnormally high levels of the gene have been found in the prefrontal cortex of patients with major depressive disorder (MDD) (Ota et al., 2014). The molecular mechanism underlying depressant response in the prefrontal cortex also involves CACNA1C. In mice, knockout of CACNA1C in this brain region results in antidepressant-like behaviors, whereas overexpression of DDIT4 reverses this effect (Kabir et al., 2017). 
· CACNA1C. This gene is a candidate for multiple neuropsychiatric disorders including SZ, BD, and MDD (Ferreira et al., 2008; Green et al., 2010; Curtis et al., 2011; Cross-Disorder Group of the Psychiatric Genomics Consortium, 2013; Kabir et al., 2016). Variants of CACNA1C have been associated to deficits in reversal learning (Sykes et al., 2019), whereas some polymorphisms have been associated to decreased semantic verbal fluency in healthy subjects (Krug et al., 2010), as well as to decreased executive function in people with BD (Soeiro‐de‐Souza et al., 2013). CACNA1C expression has been found modulated during associative learning (Sykes et al., 2018). In mice, deletion of Cacna1c in glutamatergic neurons gives rise to reduced synaptic plasticity, sociability, and cognition (Dedic et al., 2018). Specifically, haploinsufficiency in the gene results in deficits in prosocial ultrasonic vocalization (Kisko et al., 2018; Redecker et al., 2019). In humans, haploinsufficiency in CACNA1C has been related to learning difficulties, expressive language impairment, and motor-skills delay (Mio et al., 2020). By contrast, in humans, CACNA1C gain-of-function mutations cause Timothy syndrome (OMIM# 601005), which is featured by syndactyly, autism-like behavior, and language and social delays among other features (Splawski et al., 2004; Napolitano et al., 2015). 
· SLC29A1. This gene encodes a nucleoside transporter that localizes to the plasma and mitochondrial membranes, and that is involved in both nucleotide synthesis and cytotoxic nucleoside uptake. The gene contributes to basal synaptic transmission, long-term potentiation, neuronal plasticity, and spatial memory (Lee et al., 2018). More specifically, it is involved in glutamatergic neurotransmission (Xu et al., 2015) and the acquisition of goal-directed behavior (Nam et al., 2013). In mice, overexpression of the gene results in changes in dependent behavior, including a greater response to ethanol and a reduced response to caffeine (Kost et al., 2011). 
· WLS. This gene contributes to regulate the secretion of Wnt signaling molecules, which are involved in different developmental and homeostatic processes (Petko et al., 2019). WLS is specifically involved in the assembly of the neuromuscular junction between motoneurons and skeletal muscles to control motor behaviour, with mutations in the gene resulting in muscle weakness and neurotransmission impairment (Shen et al., 2018). Interestingly too, WLS is also involved in the embryonic development of the cerebellum (Yeung and Goldowitz, 2017). 
· CNTNAP3. This gene encodes a type of neurexin involved in cell recognition within the nervous system. This gene is found upregulated in the leukocytes of patients with SZ (Okita et al., 2017). The gene is expressed abundantly in many subcortical regions of the mouse brain, including the striatum, the globus pallidus and the subthalamic nucleus, which are crucially involved in speech and language processing, but also in many other cognitive and emotional functions (Booth et al., 2007; Kotz et al., 2009; Viñas-Guasch and Wu, 2017). In mice, the knockout of CNTNAP3 results in a delay in motor learning (Hirata et al., 2016), as well as repetitive behaviors, deficits in social interaction, and problems for spatial learning, which recapitulate many ASD-features (Tong et al., 2019). Interestingly too, CNTNAP3 interacts with the synaptic adhesion protein NRLG1, which is also a candidate for ASD and whose mutation results as well in repetitive behaviors and abnormal corticostriatal synapses (Blundell et al., 2010). 
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