
Supplement to “Instrumental Variables Estimation with

Some Invalid Instruments and its Application to

Mendelian Randomization”

Abstract

In this supplement we provide additional discussions, extended simulations, numer-

ical results, and present all the technical details, including the proofs of Theorems 1,

2, and 3.

1 Additional Discussion About Theorem 1

1.1 Numerical Example

In Section 3.1 of the main manuscript, we discussed the identification result and illustrated

it with a numerical example where L = 4, γ∗ = (1, 2, 3, 4), Γ∗ = (1, 2, 6, 8), and s < U

where U = 3. We showed that there are two sets C1 = {1, 2} and C2 = {3, 4} with q1 = 1

and q2 = 2. Since q1 6= q2, by Theorem 1, identification is not possible with this numerical

example.

One of the reviewers, however, mentioned an interesting numerical example where the

setup is identical to our numerical example above, except Γ∗ is perturbed by ε > 0 such that

Γ̃∗ = (1, 2, 6, 8 + ε). With Γ̃∗, there is only one set C1 = {1, 2} where q1 = 1 and we have
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identification for any ε. However, we can shrink ε to be arbitrary small such that Γ∗ and

Γ̃∗ = (1, 2, 6, 8 + ε), are arbitrarily close to each other. As the reviewer stated “As a result,

in any finite sample, it will be impossible to distinguish between the two cases, and hence

no estimation or inference results that rely on Theorem 1 can be uniformly valid.”

However, consider the identical setup as before, except Γ∗ = (1, 2, 7, 9). Then, there is

only one subset C1 = {1, 2} where q1 = 1 and identification is achieved. Furthermore, any

small perturbation of Γ∗ by δ > 0 and ε > 0, i.e. Γ̃∗ = (1, 2, 7 + δ, 9 + ε), will still produce

only subset C1 = {1, 2} and identification is maintained.

The two numerical examples with Γ∗ = (1, 2, 6, 8) and Γ∗ = (1, 2, 7, 9) illustrate what

we call the identification boundary. The vector Γ∗ = (1, 2, 6, 8) lies just at the identification

boundary where any small perturbation can render the model unidentified or identified. In

contrast, for Γ∗ = (1, 2, 7, 9), the vector Γ∗ lies far from the identification boundary and any

small perturbation can still make the model identifiable. Exploration of the identification

boundary for different values of Γ∗ and γ∗ is a topic for future research.

1.2 Normality Assumption and Identification

We consider two additional modeling assumptions which are not needed for identification,

but are part of the classical linear simultaneous/structural equations model (Koopmans et al.

1950) and discuss the identification result in Section 3.1 of the main manuscript. First, we

assume that the relationship between Di and Zi. is assumed to be linear

Di = ZT
i.γ
∗ + ξi, E(ξi|Zi.) = 0 (16)

where γ∗ relates the instruments to the exposure and the error terms are bivariate Normal

(εi, ξi)
iid∼ N(0,Σ) (17)
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Under these assumptions in (16) and (17), the distributions of Yi and Di conditional on

Zi. are fully characterized by finite-dimensional parameters α∗, β∗,γ∗, and Σ known as

“structural” parameters in econometrics (Wooldridge 2010). Let ε′i = β∗ξi + εi. Then, we

have the “reduced forms” (Wooldridge 2010)

Yi = ZT
i.Γ
∗ + ε′i

Di = ZT
i.γ
∗ + ξi

where Γ∗ = α∗ + β∗γ∗ and the covariance matrix of (ε′i, ξi) is Σ′ = MΣMT with

M =

1 β∗

0 1


We see that the distribution of Yi and Di are also fully characterized by the reduced form

parameters Γ∗,γ∗ and Σ′. By Rothenberg (1971), the reduced form parameters, Γ∗,γ∗, and

Σ′, are globally identified. Also, by Rothenberg (1971), the structural parameters, α∗, β∗,

γ∗, and Σ, are identified if and only if the mapping between the reduced form parameters,

Γ∗,γ∗,Σ′, and the structural parameters, α∗, β∗, γ∗,Σ, represented by equations Σ′ =

MΣMT , γ∗ = γ∗, and Γ∗ = α∗ + β∗γ∗, is bijective. We see that M is an invertible matrix

for any β∗ and hence there is a bijective map between Σ and Σ′. For γ∗, it maps onto

itself between the structural and reduced form parameters. Consequently, whether there is

a bijection between the structural parameters and reduced form parameters is determined

only by whether there is a unique solution α∗ and β∗ to the equation

Γ∗ = α∗ + γ∗β∗ (18)

given γ∗ and Γ∗. Theorem 1 in the main manuscript states that a unique solution α∗ and

β∗ of (18) exists if and only if the consistency criterion holds, that qm = qm′ for all m,m′ ∈

3



{1, . . . ,M}. Hence, with the modeling assumptions (16) and (17), we have identification of

the structural parameters if and only if the consistency criterion holds.

2 Simulation

2.1 Values of ρ and µ

In Section 4 of the main manuscript, we conduct a simulation study to study the performance

of sisVIVE compared to other competitors such as two stage least squares. In addition, in

Section 3.4 of the main manuscript, Corollary 2 characterizes the performance of sisVIVE

theoretically if certain conditions based on constants ρ and µ are satisfied. In this section,

we check whether these theoretical conditions are met for the simulation setup we considered

in the main manuscript.

We first computed ρ from each simulated data set and take the median value of it after

1000 simulations. To compute µ, we use the true values of the correlation of Zi., specifically

µ = 0, 0.25, 0.5, and 0.75. Table 1 shows the value for µ and ρ for the simulation setup

in the main manuscript. Second, based on the values of µ and ρ in Table 1, we check the

Table 1. Values of ρ defined in Corollary 2 for the Simulation Study

Instrument
Corr. (µ)

Strong Instrument,
Equal Strength

Strong Instrument,
Variable Strength

Weak Instrument,
Equal Strength

Weak Instrument,
Variable Strength

0 0.31 0.39 0.20 0.22
0.25 0.54 0.58 0.36 0.37
0.5 0.72 0.73 0.53 0.53
0.75 0.87 0.87 0.73 0.73

condition required in Corollary 2, specifically the upper bound on s, min(1/(12µ), 1/(10ρ2)),

in equation (14) of the main manuscript. These upper bounds are evaluated in Table 2.

Table 2 shows that in most settings, the condition for Corollary 2 is only satisfied when

s = 0, i.e. when there are no invalid instruments. For example, when instrument are

correlated and µ > 0, Corollary 2 cannot be used to characterize the performance of sisVIVE
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Table 2. Condition on s in Corollary 2 for the Simulation Study

Instrument
Corr. (µ)

Strong Instrument,
Equal Strength

Strong Instrument,
Variable Strength

Weak Instrument,
Equal Strength

Weak Instrument,
Variable Strength

0 1.04 0.66 2.50 2.07
0.25 0.33 0.33 0.33 0.33
0.5 0.17 0.17 0.17 0.17
0.75 0.11 0.11 0.11 0.11

if invalid instruments are present. Table 2 also illustrates the point we illustrated in the main

manuscript, that the condition for Corollary 2, even though it’s interpretable, are strict. In

the main manuscript, we provide a generalization of Corollary 2 in Theorem 2 at the expense

of interpretability.

2.2 Varying Correlation Structure

In this section, we extend the simulation study in Section 4 of the main manuscript by

considering other correlation structures between the instruments beyond those considered in

the main manuscript. First, Figures 1 and 2 of the Supplementary Materials represent the

setting where the pairwise correlation between valid instruments is set to µ and the pairwise

correlation between invalid instruments is also set to µ. However, there is no correlation

between any pair consisting of one valid and one invalid instrument. The new setup differs

from the main manuscript where all the pairwise correlation between any two instruments is

set to µ. Second, Figures 3 and 4 represent the setting where the pairwise correlation between

a valid instrument and an invalid instrument is set to µ. However, there is no pairwise

correlation between any pair of valid instruments or any pair of invalid instruments. Under

the two new correlation structures, we rerun the simulation study in the main manuscript

except we reduce the simulation number from 1000 to 500 and we only vary s with values

s = 1, 3, 4, 5, 7, and 9 for computational reasons. Also, note that as a result of repeating the

same simulation, the conditions for Corollary 2 in the main manuscript are similar to those

in Tables 1 and 2 of Section 2.1 in the Supplementary Materials.
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In both Figures 1 and 3 of the Supplementary Materials where we vary endogeneity, but

the number of invalid instruments is fixed at s = 3, the behavior of all the estimators are

similar to each other and to those in the main manuscript. OLS dominates naive TSLS, oracle

TSLS, and sisVIVE when the endogeneity is small and close to zero, with the dominance

being greater for weaker instruments. Once there is a sufficient amount of endogeneity, oracle

TSLS, which knows exactly which instruments are valid and invalid, does best. sisVIVE

also resembles the oracle in terms of performance. Naive TSLS, which assumes all the L

instruments are valid, does worst since it assumes that all the L instruments are valid.

Similarly, in Figures 2 and 4 of the Supplementary Materials where we vary the number

of invalid instruments, s, but fix the endogeneity to 0.8, the estimators behave similarly

across the two Figures and to those in the main manuscript. We first see that at s = 0, i.e.

when there are no invalid instruments, sisVIVE’s performance is nearly identical to naive

and oracle TSLS, although it degrades slightly for instruments with weak absolute strength.

Also, when s < L/2 = 5, sisVIVE’s performance is comparable to oracle TSLS and better

than naive TSLS. Once we reach the identification boundary, s < L/2 = 5, sisVIVE’s

performance becomes similar to naive TSLS. This is the case regardless of the instruments’

absolute and relative strength.

2.3 Performance of Estimate of α̂λ

In this section, we extend the simulation study in Section 4 of the main manuscript by ex-

amining the estimation performance of α∗ for sisVIVE. As we noted in the main manuscript,

in Mendelian randomization, the target of estimation is β∗, the causal effect of the exposure

on the outcome, and our procedure, sisVIVE, was designed to estimate β∗. However, in the

process of estimating β∗, sisVIVE does produce an estimate for α∗. This section explores

the relationship between this intermediate estimate for α∗, α̂λ, and our desired estimate for

β∗, β̂λ.
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To evaluate the estimate α̂λ, we consider two metrics for error, the proportion of correctly

selected valid instruments and the proportion of correctly selected invalid instruments. To

illustrate these proportion-based error metrics, consider the following numerical example.

Suppose there are L = 10 instruments of which the first three instruments are invalid,

α∗j 6= 0 for j = 1, 2, 3 and the last seven instruments are valid, α∗j = 0 for j = 4, 5, . . . , 10.

If sisVIVE estimates the first two instruments to be invalid, α̂j 6= 0 for j = 1, 2 and the

last eight to be valid, α̂j = 0 for j = 3, 4, . . . , 10, the proportion of correctly selected valid

instruments is 7/7 = 1 and sisVIVE makes no error in estimating the valid instruments.

However, the proportion of correctly selected invalid instruments is 2/3 and sisVIVE makes

an error in estimating the invalid instruments.

We rerun the simulation setup in Section 4 of the main manuscript and in Section 2.2 in

the Supplementary Materials. However, instead of measuring the median absolute deviation,

|β̂λ − β∗|, we instead measure the two proportion-based error metrics. Similar to Section

2.2 in the Supplementary Materials, we reduce the simulation from 1000 to 500 and only

consider s = 1, 3, 4, 5, 7, and 9 for computational reasons. The results are in Figures 5 to 10.

When we vary endogeneity but fix the number of invalid instruments to be s = 3 (Figures

5, 7, and 9), the proportion of correctly selected invalid instruments is 1 and sisVIVE never

makes a mistake in selecting the invalid instruments. However, sisVIVE does make mistakes

in selecting the valid instruments as the proportion of correctly selected valid instruments is

mostly below 1. Also, depending on the correlation structure between instruments, we get

different behaviors for the proportion of correctly selected valid instruments. For example,

when every pair of instruments has non-zero pairwise correlation (Figure 5), the propor-

tion of correctly selected valid instruments remains roughly the same for different values of

endogeneity. When there is only pairwise correlation within valid and invalid instruments

(Figure 7), the proportion of correctly selected valid instruments decreases as endogeneity

increases, most notably among weak instruments. Finally, when there is only pairwise corre-
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lation between valid and invalid instruments (Figure 9), the proportion of correctly selected

valid instruments increases as endogeneity increases. Despite these differences in the pro-

portion of correctly selected valid instruments between different correlation structures, as

the simulations in Section 4 of the main manuscript and Section 2.2 of the Supplementary

Materials showed, sisVIVE’s median absolute deviation from the truth, |β̂λ − β∗|, remains

relatively small and constant for all values of the endogeneity. This constant behavior is

also present in the proportion of correctly selected invalid instruments, which remains at

1 for all correlation structures. This suggests that there is a strong relationship between

correctly selecting the invalid instruments and sisVIVE’s median absolute deviation from β∗

while there is at most a weak relationship between correctly selecting valid instruments and

sisVIVE’s median absolute deviation from β∗. In fact, it appears that correctly selecting

invalid instruments is more important than valid instruments if a small median absolute

deviation is desired.

When we vary the number of invalid instruments s, but fix the endogeneity (Figures 6, 8,

and 10), the proportion of correctly selected invalid instrument decreases significantly at the

s = 5 boundary, regardless of the correlation structure between instruments. For example,

for strong instruments in the three Figures, when s < 5, the proportion of correctly selected

invalid instruments remain at 1. However, when s ≥ 5, the proportion of correctly selected

invalid instruments moves sharply away from 1. For weak instruments in the three Figures,

when s < 5, the proportion of correctly selected invalid instruments remains close to 1,

although there is a slightly decrease in the proportion when s moves from s = 3 to s = 4

and when µ is away from zero. However, similar to the strong instruments, when s ≥ 5,

the proportion of correctly selected invalid instruments moves away from 1. In contrast, the

proportion of correctly selected valid instruments decreases steadily as s increases, regardless

of the type of correlation structure between instruments. For strong instruments in the

three Figures, the decrease in the proportion of correctly selected valid instruments begins

8



immediately after s = 1. For weak instruments in the three Figures, there is considerable

fluctuation of the proportion of correctly selected valid instruments. For Figures 6 and

Figures 8, the proportion of correctly selected valid instruments generally decreases as s

increase, with the notable exception in the first row, third column of both Figures. For

Figure 10, the proportion of correctly selected valid instruments decreases when s < 5, but

increases again after s ≥ 5.

The behaviors of the proportions of correctly selected invalid and valid instruments from

Figures 6, 8, and 10 reaffirms our previous observation that there is a strong association

between the proportion of correctly selected invalid instruments and the median absolute

deviation of β̂λ, |β̂λ−β∗|. In particular, from Figure 3 of the main manuscript and Figures 2

and 4 of the Supplementary Materials, when s < 5, sisVIVE’s median absolute deviation is

just as small as the oracle two stage least squares. However, when s ≥ 5, sisVIVE’s median

absolute deviation is just as large as the naive two stage least squares. The proportion of

correctly selected invalid instruments in Figures 6, 8, and 10 closely corresponds to this

sharp change in behavior between s < 5 and s ≥ 5. In contrast, the proportion of correctly

selected valid instruments does not have this sharp behavior at s = 5 across all the figures.

Overall, by measuring the estimation performance of α̂λ using the two proportion-based

error metrics, we notice a strong relationship between the proportion of correctly selected

invalid instruments and the median absolute deviation of β̂λ. For any type of correlation

structure between instruments and different variations on endogeneity and s, sisVIVE de-

viates far from the truth if we incorrectly select the invalid instruments. Hence, it is much

more important to correctly select invalid instruments at the expense of incorrectly select-

ing valid instruments for better estimation of β∗. This relationship makes sense since using

invalid instruments creates bias whereas using at least one valid instrument and not using

other valid instruments does not create bias, but just reduces efficiency. The relationship

also suggests that when we choose the tuning parameter λ, which controls the number of
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non-zero α̂λ and consequently, controls the proportion of correctly selected valid and invalid

instruments, we should choose λ that correctly selects the invalid instruments, even if some

valid instruments are selected as invalid. In particular, λ should generally be small so that

there is less `1 penalty on ‖α‖1, but not too small so that the penalty has no effect. As a

result, few elements of α̂λ will be zero and more instruments will be selected as invalid. We

discuss the choice of λ in more detail in Section 2.6.

2.4 Varying Instrument Strength

In this section, we extend the simulation study in Section 4 of the main manuscript by con-

sidering other types of instrument strength beyond those considered in the main manuscript.

Specifically, we look at two cases where the invalid instruments are “stronger” than the valid

instruments and the valid instruments are “stronger” than the invalid instruments. To sim-

ulate these two new cases, we first fix the concentration parameter, a global/overall measure

of instrument strength, similar to the simulation setup in the main manuscript. Second,

given a concentration parameter, for the case when the invalid instruments are stronger

than the valid instruments, we find γ∗ where γ∗j = 2 ∗ γ∗k for j ∈supp(α∗) (i.e. set of invalid

instruments) and k ∈supp(α∗)C (i.e. set of invalid instruments). In other words, the γ∗j s

associated with invalid instruments have twice the magnitude of the γ∗j s associated with the

valid instruments. For the case when the valid instruments are stronger than the invalid

instruments, we flip the roles of j and k where j now belongs to supp(α∗)C and k belongs

to supp(α∗)C . Finally, we rerun the simulation setup in Section 4 of the main manuscript

and Sections 2.2 and 2.3 of the Supplementary Materials, except we replace the “Equal” and

“Variable” strengths with the two new types of instrument strength introduced in this Sec-

tion, denoted as “Stronger Invalid” (i.e. the case when the invalid instruments are stronger

than the valid instruments) and ”Stronger Valid” (i.e. the case when the valid instruments

are stronger than the invalid instruments). We also reduce the number of simulations 1000
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to 500 for computational reasons.

In addition, for each of the simulation setups, we repeat the exercise we did in Section 2.1

of the Supplementary Materials where we compute ρ and µ that appear in Corollary 2 of the

main manuscript. Table 3 and 4 show the results when the instruments have the identical

pairwise correlation; for other correlation structures, the condition on s is similar and hence,

they are not presented (see Section 2.2 of the Supplementary Materials for discussion on this).

The column and row labels in the two tables are identical as those found in Section 2.2 of the

Supplementary Materials, except the new headings “Stronger Invalid” and “Stronger Valid.”

Table 3. Values of ρ defined in Corollary 2 for the Simulation Study

Instrument
Corr. (µ)

Strong Instrument,
Stronger Invalid

Strong Instrument,
Stronger Valid

Weak Instrument,
Stronger Invalid

Weak Instrument,
Stronger Valid

0 0.41 0.33 0.28 0.18
0.25 0.60 0.54 0.47 0.33
0.5 0.75 0.71 0.64 0.49
0.75 0.88 0.86 0.81 0.70

Table 4. Condition on s in Corollary 2 for the Simulation Study

Instrument
Corr. (µ)

Strong Instrument,
Stronger Invalid

Strong Instrument,
Stronger Valid

Weak Instrument,
Stronger Invalid

Weak Instrument,
Stronger Valid

0 0.60 0.90 1.27 3.02
0.25 0.28 0.33 0.33 0.33
0.5 0.17 0.17 0.17 0.17
0.75 0.11 0.11 0.11 0.11

Figures 11 to 14 represent the cases where the instruments have identical pairwise corre-

lation µ. When we vary endogeneity, but fix s = 3 (Figure 11), sisVIVE performs as well as

the oracle for strong instruments. For weak instruments, sisVIVE does better when the valid

instruments are stronger than the invalid instruments (i.e. “Stronger Valid”) than when the

invalid instruments are stronger than the valid instruments (i.e. “Stronger Invalid”). In

both the strong and weak cases, sisVIVE does much better than the next best alternative,

naive two stage least squares.
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When we vary s, but fix endogeneity to 0.8 (Figure 12), sisVIVE deviates from the oracle

at s = 4 for the case when the invalid instruments are stronger than the valid instruments

(i.e. “Stronger Invalid”) and at s = 7 for the case when the valid instruments are stronger

than the invalid instruments (i.e. “Stronger Valid”). When sisVIVE deviates from oracle

TSLS, sisVIVE’s performance is no worse than naive two stage least squares.

When we look at the proportion-based error metrics for estimating α∗λ (Figures 13 and

14), the behavior of the two curves are similar to what we observed in Section 2.3. That

is, whenever sisVIVE performs badly, there is a large decrease in the proportion of correctly

selected invalid instruments. Also, there is no relationship between sisVIVE’s median ab-

solute bias of β̂λ and the proportion of correctly selected valid instruments. When we vary

endogeneity (Figure 13), the proportion of correctly selected invalid instruments remain at

1 except when the overall strength of the instruments is weak and the invalid instruments

are stronger than the valid instruments (i.e. “Stronger Invalid”). However, in all cases, a

smaller median absolute deviation in Figure 11 corresponds with having a high proportion of

correctly selected invalid instruments in Figure 13. In contrast, the proportion of correctly

selected valid instruments remains below 1 if the invalid instruments are stronger than the

valid instruments (i.e. “Stronger Invalid”) and close to 1 if the valid instruments are stronger

than the invalid instruments (i.e. “Stronger Valid”).

Similarly, when we vary s (Figure 14) and are under the case where the invalid instruments

are stronger than the valid instruments (i.e. “Stronger Invalid”), the proportion of correctly

selected invalid instruments move away from 1 at s = 4 when the overall strength of the

instruments is strong and at s = 3 when the overall strength of the instruments is weak.

When the valid instruments are stronger than the invalid instruments (i.e. “Stronger Valid”),

the proportion of correctly selected invalid instruments move away from 1 at s = 7 for strong

instruments and s = 6 for weak instruments. Again, similar to what we observed in Section

2.3 of the Supplementary Materials, these points of s correspond to sisVIVE’s deviation from
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the oracle in Figure 12. In contrast, the proportion of correctly selected valid instruments

vary widely in Figure 14 and there does not seem to be any relationship between it and

sisVIVE’s deviation from the oracle.

For other correlation structures, specifically when (i) there is only correlation within

valid and invalid instruments, and (ii) there is only correlation between valid and invalid

instruments, we observe the same phenomena as the case where all the instruments are

correlated. This is in alignment with Sections 2.2 and 2.3. The result from the two correlation

structures under the different types of instrument strengths considered in this Section are in

Figures 15 to 22.

The simulation study in this Section showed that in vast majority of cases, sisVIVE esti-

mates the causal effect of interest better than the next best alternative, naive two stage least

squares and in many cases, sisSIVE’s performance is similar to the oracle. However, when

the invalid instruments are stronger than the valid instruments (i.e. “Stronger Invalid”),

sisVIVE’s performance does not do as well relative to the oracle, even though by the identi-

fication result in Corollary 1 of the main manuscript, at s = 4, identification is guaranteed.

The degradation in performance of sisVIVE may be due to a number of reasons. It may

follow from the fact that the condition in Corollary 2 are not met since Table 4 shows that

in the “Stronger Invalid” case, s has to be less than 1 or 2. It may be that we chose a

bad tuning parameter λ; based on the results on the proportion of correctly selected invalid

instruments, we may need a smaller λ than what we used was chosen by cross validation. A

closer analysis of this particular case more closely is a topic for future research. Regardless,

even when sisVIVE’s performance degrades, it does no worse than the next best alternative,

naive two stage least squares.

In addition, the simulation study reaffirmed the points mentioned in Sections 2.2 and

2.3 of the Supplementary Materials that (i) sisVIVE seems to do well under different cor-

relation structures, and (ii) β̂λ’s deviation from β∗ depends heavily on the proportion of
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correctly selected invalid instruments more so than the proportion of correctly selected valid

instruments.

2.5 Number of potential instruments

In this section, we extend the simulation study in Section 4 of the main manuscript by

increasing the potential number of instruments from L = 10 to L = 100. We note that in

Mendelian randomization settings, it is rare to have 100 potential genetic instruments since

all 100 of the genetic instruments must affect the exposure (see the Introduction and Section

3.1 of the main manuscript for details). Usually, the number of potential instruments is

far less than 100 (see citations in the Introduction of our main manuscript for examples).

However, for completeness, we demonstrate sisVIVE’s performance when L = 100 potential

instruments are present.

We rerun the simulation setup in Section 4 of the main manuscript and Section 2.3 in the

Supplementary Materials except L = 100 and when we vary endogeneity, we fix the number

of invalid instruments to be 30 (instead of 3); note that based on the simulation results in

Section 2.2 where other correlation structures did not impact the performance of sisVIVE,

we only consider the correlation structure in the main manuscript, specifically where all the

instruments are correlated to each other with pairwise correlation µ. Also, for computational

reasons, we reduce the simulation number from 1000 to 500. Finally, we repeat the exercise

in Section 2.1 by computing ρ and µ defined in Corollary 2. Table 5 and 6 show the results.

Table 5. Values of ρ defined in Corollary 2 for the Simulation Study

Instrument
Corr. (µ)

Strong Instrument,
Equal Strength

Strong Instrument,
Variable Strength

Weak Instrument,
Equal Strength

Weak Instrument,
Variable Strength

0 0.15 0.17 0.16 0.17
0.25 0.54 0.54 0.53 0.53
0.5 0.73 0.73 0.53 0.73
0.75 0.87 0.87 0.88 0.87
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Table 6. Condition on s in Corollary 2 for the Simulation Study

Instrument
Corr. (µ)

Strong Instrument,
Equal Strength

Strong Instrument,
Variable Strength

Weak Instrument,
Equal Strength

Weak Instrument,
Variable Strength

0 4.2 3.3 4.0 3.4
0.25 0.33 0.33 0.33 0.33
0.5 0.17 0.17 0.17 0.17
0.75 0.11 0.11 0.11 0.11

Figures 23 and 24 represent the results from the simulation setup when we measure the

median of |β̂∗ − β∗| over 500 simulations; this setup is identical to Section 4 in the main

manuscript except for the exceptions mentioned in the previous paragraph. The behavior

of all four estimators are similar to Figures 2 and 3 in the main manuscript. For example,

when we vary endogeneity (Figure 23), sisVIVE tends to perform slightly worse when the

overall strength of the instruments is weak. Also, when the number of invalid instruments,

s, is varied (Figure 24), sisVIVE has a sharp peak at s = 50, similar to the sharp peak at

s = 5 in Figures 3 of the main manuscript.

Figures 25 and 26 represent the simulation setups in Section 2.3 of the Supplementary

Materials. Similar to what we observed in Section 2.3 when L = 10, when we vary endogene-

ity (Figure 25), but fix the number of invalid instruments to 30, we see that the proportion

of correctly selected invalid instruments are 1. When we vary s (Figure 26), we again notice

a sharp decrease in the proportion of correctly selected valid invalid instruments around

s = 50 for all instrument strength and magnitude of the correlation.

Overall, the simulation study suggests that sisVIVE does scale as L increases and that

its performance at large values of L is similar to its performance at smaller values of L, such

as L = 10.

2.6 Choice of λ

In this section, we look at different ways to select λ. As discussed in the main manuscript,

the choice of λ impacts the performance of sisVIVE where a high value of λ will push most
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elements of α̂λ to zero while a low value of λ will do the opposite. In Section 3.3 of the

main manuscript, we suggested cross-validation with the “one standard error” rule as a data-

driven method to choosing the tuning parameter. In addition, in Section 3.4, we provided

theoretical results which suggested choosing a λ that is greater than 3‖ZTPD̂⊥ε‖∞. We

explore these two possible choices of λ and their impact on estimation.

We begin with a simulation study similar to the one in the main manuscript. In particular,

we have L = 10 instruments of which the pairwise correlation between all instruments is 0.75

and the endogeneity is fixed at 0.8. We vary s, the number of invalid instruments and vary

instruments’ absolute strength, relative strength, and other strengths considered in Section

2.4 of the Supplementary Materials. In short, the simulation setups we consider correspond

to the last row of Figure 3 in the main manuscript and the last row of Figure 12 in the

Supplementary Materials. We do not simulate other correlation structures or different L

because the simulation results in Sections 2.2 and 2.5 of the Supplementary Materials showed

sisVIVE behaves similarly as the cases we consider in this Section.

Table 7 shows the different values of λ averaged across 500 simulations where the overall,

absolute instrument strength is strong (see Section 4 of the main manuscript for details on

the definition of an absolute instrument strength). We use the same column heading labels

in Figure 3 of the main manuscript and Figure 12 in the Supplementary Materials. We also

use the column labeled “CV” to denote the average λs based on cross validation laid out in

Section 3.3 of the main manuscript. Also, the column labeled “Theory” denotes the average

λs based on Theorem 2, specifically the average of 3‖ZTPD̂⊥ε‖∞ over 500 simulations. In

almost all cases, cross validation tends to choose a smaller λ than one prescribed by Theorem

2, with the exception of s = 9 in the “Equal” column and s = 7, 8, and 9 in the “Stronger

Valid” column. Except for these cases, cross validation tends to prefer a small λ, thereby

preferring α̂λ to have more non-zero entries than zero entries and more instruments selected

as invalid instruments than valid instruments.
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Table 7. Average λ from cross validation and Theorem 2 after 500
simulations for instruments whose overall strength is strong.

Equal Variable Stronger Invalid Stronger Valid
s CV Theory CV Theory CV Theory CV Theory
1 1.88 2.70 2.04 2.71 1.53 2.70 2.06 2.72
2 1.36 2.66 1.39 2.67 0.95 2.65 1.58 2.68
3 1.06 2.64 1.12 2.66 0.84 2.64 1.33 2.68
4 0.84 2.64 0.86 2.65 1.08 2.63 1.16 2.68
5 1.70 2.63 1.33 2.64 0.87 2.62 0.99 2.67
6 1.78 2.62 1.10 2.63 0.85 2.61 0.96 2.67
7 2.02 2.62 0.79 2.64 0.91 2.61 3.40 2.68
8 2.41 2.62 0.86 2.62 1.01 2.61 3.74 2.67
9 3.19 2.62 0.45 2.62 1.31 2.60 6.03 2.67

Table 8 shows the estimation performance of sisVIVE, the median of |β∗ − β̂λ| over

500 simulations, based on two different λs, one based on cross validation and one based

on Theorem 2. In most cases, sisVIVE with a cross validated λ performs just as well as

sisVIVE with a theory-based λ. For the “Equal” and ”Variable” case, when s < 5, sisVIVE

with a cross-validated λ performs better than sisVIVE with a theory-based λ. For the

“Stronger Invalid” case, when s < 3, sisVIVE with a cross validated λ performs better than

sisVIVE with a theory-based λ. However, when s ≥ 3, sisVIVE with a cross validated λ

performs worse than sisVIVE with a theory-based λ, although the differences between the

two decrease as s increases. For the “Stronger Valid” case, sisVIVE with a cross validated λ

always dominates sisVIVE with a theory-based λ, although the differences between the two

are slight when s ≥ 7.

Table 9 considers the same setup as Table 7, except we now look at instruments where

their overall, absolute strength is weak. Under this case, we see drastic differences between

λs chosen based on cross validation and Theorem 2. For example, for the “Equal” and

“Variable” cases, when s < 5, λ chosen based on cross validation is, on average, smaller

than λ chosen based on Theorem 2. When s ≥ 5, λ chosen based on cross validation is, on

average, bigger than λ chosen based on Theorem 2. For the “Stronger Invalid” case, when

s < 3, λ based on cross validation is, on average, smaller than λ based on Theorem 2. But,
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Table 8. Median absolute estimation error (|β∗ − β̂λ|) after 500
simulations from λ chosen by cross-validation and Theorem 2. The
table only considers instruments whose overall strength is strong.

Equal Variable Stronger Invalid Stronger Valid
s CV Theory CV Theory CV Theory CV Theory
1 0.13 0.17 0.14 0.16 0.13 0.19 0.14 0.16
2 0.16 0.27 0.16 0.27 0.16 0.34 0.16 0.24
3 0.18 0.39 0.18 0.37 0.24 0.54 0.18 0.32
4 0.21 0.53 0.22 0.53 1.57 1.34 0.20 0.41
5 0.71 1.15 0.76 1.43 1.43 1.25 0.23 0.55
6 2.43 2.34 2.05 1.93 1.35 1.23 0.28 0.71
7 2.42 2.37 1.83 1.95 1.28 1.21 3.83 3.95
8 2.35 2.34 1.98 2.05 1.22 1.18 4.24 4.39
9 2.29 3.01 1.23 1.37 1.17 1.16 4.34 4.51

when s ≥ 3, the opposite is the case. Finally, for the “Stronger Valid” case, this phenomena

occurs at s = 6.

Table 9. Average λ from cross validation and Theorem 2 after 500
simulations for instruments whose overall strength is weak.

Equal Variable Stronger Invalid Stronger Valid
s CV Theory CV Theory CV Theory CV Theory
1 1.36 3.20 1.56 3.23 1.05 3.13 1.52 3.24
2 1.25 3.00 1.22 3.01 0.93 2.92 1.47 3.07
3 1.12 2.91 1.11 2.94 3.67 2.81 1.26 3.00
4 2.06 2.86 1.83 2.89 9.47 2.75 1.13 2.97
5 6.30 2.80 4.34 2.84 10.52 2.71 1.20 2.92
6 11.99 2.78 7.48 2.80 10.74 2.69 3.36 2.93
7 14.14 2.76 5.92 2.77 10.58 2.67 7.79 2.93
8 14.04 2.75 5.94 2.75 9.92 2.66 9.70 2.93
9 13.16 2.74 2.02 2.68 9.47 2.64 7.09 2.96

Table 10 considers the same setup as Table 8, except we now look at instruments where

their overall, absolute strength is weak. Similar to Table 8, sisVIVE with a cross validated

λ performs better than sisVIVE with a theory-based λ, with the only exception at s = 5

under “Equal” column. In fact, sisVIVE with a cross validated λ performs drastically better

than sisVIVE based on Theorem 2 in the following cases: s < 5 (for “Equal” and “Variable”

cases), s < 3 (for “Stronger Invalid” case), and s < 7 (for “Stronger Valid” case).

Based on these simulations, sisVIVE based on cross-validation generally performs better
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Table 10. Median absolute estimation error (|β∗ − β̂λ|) after 500
simulations from λ chosen by cross-validation and Theorem 2. The
table only considers instruments whose overall strength is weak.

Equal Variable Stronger Invalid Stronger Valid
s CV Theory CV Theory CV Theory CV Theory
1 0.44 0.63 0.44 0.60 0.43 0.69 0.44 0.61
2 0.51 0.96 0.50 0.94 0.50 1.13 0.52 0.88
3 0.55 1.30 0.55 1.26 0.70 1.86 0.56 1.13
4 0.61 1.74 0.61 1.75 3.19 3.77 0.58 1.43
5 4.10 3.80 3.98 3.93 3.25 3.78 0.62 1.83
6 5.28 6.03 5.28 5.54 3.36 3.79 0.73 2.52
7 5.84 6.55 5.58 5.63 3.47 3.77 7.51 7.68
8 6.29 6.75 6.19 6.19 3.52 3.70 9.69 9.77
9 6.72 6.90 4.18 4.34 3.56 3.64 10.86 10.91

than sisVIVE based on Theorem 2, especially when the overall instrument strength is weak.

We also note that cross validation tends to choose a smaller λ than the one based on Theorem

2, suggesting that for better estimation, it is preferable to set only a few elements of α̂λ to

zero and declare more instruments to be invalid than valid. This observation was also seen

in our simulation in Section 2.3 where low median absolute error, |β∗ − β̂λ|, was tied to

high proportion of correctly chosen invalid instruments. We note that this observation is in

contrast with estimating sparse vectors in typical high dimensional regression settings where

many zeroed elements are desirable in the estimated sparse vector.

Despite the simulation evidence suggesting the use of cross validation to choose λ over

Theorem 2 to choose λ, unfortunately, there is little theory to justify the use of cross val-

idation in `1 penalization settings (Hastie et al. 2009; Bühlmann and van de Geer 2011).

However, Section 2.5.1 of Bühlmann and van de Geer (2011) does provide limited theoretical

results suggesting that λ based on cross validation tends to set few elements of α̂λ to zero,

a desirable property in our setting where we want to select more instruments to be invalid

than valid for better estimation performance of β̂λ.

Besides cross validation and Theorem 2, there is another way to choose λ if we assume

Corollary 1 holds for our data. That is, if we are in the always identified region where
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s < U ≤ L/2, one possible method of choosing λ would be to find the λ where exactly

U = L/2, say λL/2. From there, we grid the values of potential λs between 0 and λL/2 and

choose the λ that minimizes the estimating equation ||PZ(Y − Zα −Dβ)||2. It would be

interesting to investigate this method in future research.

3 Additional Discussion about Theorem 2

Theorem 2 is written in terms of the restricted isometry type (RIP) condition while its

corresponding Corollary 2 is written in terms of the mutual incoherence property (MIP)

condition. As the main text states, the RIP condition implies the MIP condition, but not

vice versa. We illustrate this relationship with the following simple example. Suppose the

matrix of instruments Z is an n by L matrix where each entry Zij are from i.i.d. standard

Normal. Based on Theorem 5.2 in Baraniuk et al. (2008), when n ≥ Cs log(L/s) for some

C not dependent on L and s, we are able to ensure the RIP condition 2δ−2s(Z) > 3δ+3s(Z)

with high probability. Here, 2δ−2s(Z) > 3δ+3s(Z) is a stronger condition than 2δ−2s(Z) >

δ+3s(Z) + 2δ+2s(PD̂Z), the RIP condition we need for Theorem 2. However, based on Theorem

8 in Cai et al. (2013), to guarantee our MIP condition µ < 1
12s

, we need n ≥ Cs2 logL for

some C not dependent on L and s. In short, when the order of n is between s log(L/s) and

s2 logL, Z meet the RIP condition but not the MIP condition, with high probability.

4 Wisconsin Longitudinal Data

4.1 Background of Data

This research uses data from the Wisconsin Longitudinal Study (WLS) of the University of

Wisconsin-Madison. Since 1991, the WLS has been supported principally by the National

Institute on Aging (AG-9775, AG-21079, AG-033285, and AG-041868), with additional sup-
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port from the Vilas Estate Trust, the National Science Foundation, the Spencer Foundation,

and the Graduate School of the University of Wisconsin-Madison. Since 1992, data have

been collected by the University of Wisconsin Survey Center. A public use file of data from

the Wisconsin Longitudinal Study is available from the Wisconsin Longitudinal Study, Uni-

versity of Wisconsin-Madison, 1180 Observatory Drive, Madison, Wisconsin 53706 and at

http://www.ssc.wisc.edu/wlsresearch/data/. The opinions expressed herein are those of the

authors.

4.2 Reduced form estimates

Tables 11 and 12 summarize the reduced form estimates for the data analysis in the main

manuscript. The reduced form estimates are computed by using ordinary least squares (OLS)

where the genetic instruments are the explanatory variables and the dependent variables is

the exposure variable used in Section 5 of the main manuscript and Health Utility Index

Mark 3 (HUI-3).

Table 11. Reduced Form Estimates for HUI-3 and BMI for Three Instruments

Instruments BMI (SE) HUI-3 (SE)
rs1421085 -0.05 (0.02) 0.0003 (0.004)
rs1501299 0.01 (0.02) 0.002 (0.005)
rs2241766 -0.0007 (0.03) -0.0001 (0.007)

Table 12. Reduced Form Estimates for HUI-3 and BMI for Four Instruments

Instruments BMI (SE) HUI-3 (SE)
rs1421085 -0.05 (0.02) 0.0004 (0.004)
rs1501299 0.01 (0.02) 0.002 (0.005)
rs2241766 -0.0006 (0.03) -0.0004 (0.007)
rs6265 -0.004 (0.02) -0.008 (0.005)

4.3 First stage F statistic and structural correlations

The first stage F statistic with three instruments and the binary exposure in Table 11 is

3.16. The first stage F statistic with four instruments and the exposure BMI in Table 12 is
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2.38. Based on the two F statistics, the instruments are generally weak.

We also estimate the implied structural correlation from our model, specifically the cor-

relation between Di, the exposure, and εi. We estimate εi by taking the residual from the

estimates of β∗ and α∗, ε̂i = Yi−Diβ̂λ−ZT
i. α̂λ where λ is chosen by cross-validation described

in Section 3.3 of the main manuscript. We find that our estimate of this correlation is −0.2,

suggesting a mild form of endogeneity.

4.4 Sargan overidentification test

For the data analysis with three SNPs, the Sargan overidentification test Sargan (1958),

which tests assumptions (A2) and (A3) in the presence of multiple instruments, gives a Chi-

squared value of 0.12 (p-value: 0.94), retaining the null hypothesis that the instruments are

all valid under the 0.05 significance level. For the data analysis with four SNPs, the Sargan

overidentification test gives a Chi-squared value of 2.53 (p-value: 0.47).

4.5 Quantifying obesity with BMI

To quantify obesity using BMI, we looked at BMI across several categories of obesity. The

categories were based on US National Institute of Health clinical guidelines (National Insti-

tute of Health 1998) and were also used in Trakas et al. (2001) and Sach et al. (2007) in

their analysis. Table 1 summarizes the different classes of obesity and their associations to

HUI-3.

Table 13. Relationship Between Obesity and Health Utility Index Mark 3 (HUI-3)

Health Utility Index Mark 3
Obesity Categories N 1st quartile Median 3rd quartile
Not obese (BMI < 30) 2581 0.84 0.92 0.97
Obese class I (30 ≤ BMI < 35) 777 0.73 0.91 0.97
Obese class II (35 ≤ BMI < 40) 246 0.66 0.85 0.97
Obese class III (40 ≤ BMI ) 108 0.51 0.72 0.91
All categories 3712 0.78 0.92 0.97
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We notice that among different obese classes, the median HUI-3 scores are different.

Hence, simply classifying individuals as obese vs. not obese ignores the variation of HUI-3

scores among different obese classes. To be comparable to prior literature, the method we

use in the main manuscript to quantify obesity is the closest equivalent to Trakas et al.

(2001), which also used our utility score measure HUI-3. We also explore different methods

of quantifying obesity through BMI. Specifically, we consider the following methods listed

below.

1. The binary BMI is takes a value of one if BMI is greater than or equal to 30 (i.e. obese)

and zero otherwise.

2. The exposure BMI A is what we use in the main manuscript.

3. The exposure BMI B is defined to be similar to Trakas et al. (2001), except the mag-

nitude of the BMIs is taken into consideration. Specifically, if an individual’s BMI is

less than 30, the individual’s exposure is assigned a value of zero. If an individual’s

BMI is between 30 and 35 (i.e. Obese Class I), the individual’s exposure is assigned

a value of one. If an individual’s BMI is between 35 and 40 (i.e. Obese Class II), the

individual’s exposure is assigned a value of three. If an individual’s BMI is above 40

(i.e. Obese Class III), the individual’s exposure is assigned a value of six.

4. The censored BMI takes into account the actual value of BMI at the obese range so

that it not only indicate obesity, but also to measure its severity. Specifically, the

censored BMI is defined the maximum of (BMI −30) and 0 (i.e. max(BMI−30, 0)).

For each method of quantifying obesity, we estimate β∗ by using ordinary least squares

(OLS), two stage least squares (TSLS) under the assumption that all the instruments are

valid, and sisVIVE. These results are reported in Tables 14 and 15 for the cases of three and

four instruments studied in Section 5 of the main manuscript. Overall, we notice that the

estimates of OLS, TSLS, and sisVIVE tend to be similar across different types of exposures.
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Granted, it is difficult to compare the estimates since each exposure variable measures slightly

different aspects about obesity and its impact on HUI-3. We also note that in the case of

four instruments where one of the instrument, rs6265, was suspect, sisVIVE correctly picks

rs6265 to be an invalid instrument in every method of quantifying obesity.

Table 14. Different Exposures and Their Estimates With Three Instruments

Exposure OLS (SE) TSLS (SE) sisVIVE, Invalid Instrument
Binary BMI -0.074 (SE: 0.0070) -0.012 (SE: 0.18) -0.012, None
BMI A -0.052 (SE: 0.0040) -0.00094 (SE: 0.081) -0.00094, None
BMI B -0.031 (SE: 0.0024) -0.0011 (SE: 0.051) -0.0011, None
Censored BMI -0.013 (SE: 0.0010) -0.00019 (SE: 0.022) -0.00019, None

Table 15. Different Exposures and Their Estimates With Four Instruments

Exposure OLS (SE) TSLS (SE) sisVIVE, Invalid Instrument
Binary BMI -0.074 (SE: 0.0070) -0.097 (SE: 0.17) -0.039, rs6265
BMI A -0.052 (SE: 0.0040) -0.0086 (SE: 0.080) -0.0037, rs6265
BMI B -0.031 (SE: 0.0024) -0.0012 (SE: 0.051) -0.0017, rs6265
Censored BMI -0.013 (SE: 0.0010) 0.00091 (SE: 0.022) -0.00011, rs6265

5 Proofs

We adopt the following notations for the proofs. For any sets A,B ⊆ {1, . . . , L}, denote

A ∩ B to be the intersection of sets A and B, A ∪ B to be the union of sets A and B, and

AC and BC to be the complement of sets A and B, respectively. If A ⊆ B, denote B \A to

be the set that comprises of all the elements of B except those that are in A. Let |A| and

|B| denote the cardinality of the sets A and B, respectively.

For any vector α ∈ RL and set A ⊆ {1, . . . , L}, denote αA ∈ RL to be the vector where

all the elements except whose indices are in A are zero. Also, denote the jth element as

αj. Let supp(α) ⊆ {1, . . . , L} to be the support of the vector α and supp(α)C be the

complement set. For any matrix M ∈ Rn×L and set A ⊆ {1, . . . , p}, let MA ∈ Rn×L be an

n by |A| matrix where the columns are specified by set A.
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5.1 Proof of Theorem 1

First, we prove that, β∗ is a unique solution if and only if α∗ is a unique solution. Suppose

β∗ has a unique solution; that is, for any two solutions α(1) β(1) and α(2), β(2), in equation

(7)

α(1) + γ∗β(1) = Γ∗ (19a)

α(2) + γ∗β(2) = Γ∗ (19b)

we have β(1) = β(2). Subtracting γ∗β(1) from equations (19) gives α(1) = α(2). Now, suppose

α∗ is unique, which implies α(1) = α(2). Again, subtracting α(1) from (19) reveals β(1) = β(2).

Second, we prove the necessary and sufficient conditions for Theorem 1. Suppose the

subspace conditions on γ∗ and Γ∗ hold, specifically qm = qm′ for any m 6= m′, but there are

two distinct sets of parameters, α(1), β(1) and α(2), β(2) that solve the moment equation in

equation (19). Let A(1) =supp(α(1)) and A(2) =supp(α(2)) be the sets of invalid instruments

for the two distinct parameter sets, not equal to each other; if the supports are equal to

each other, we have the degenerate case whereby from equation (19), for any j ∈ A(1) = A(2)

γ∗jβ
(1) = Γ∗j and γ∗jβ

(2) = Γ∗j , which implies that β(1) = β(2) and α(1) = α(2), a contradiction.

Because the number of invalid instruments, s, is less than U , s < U , the number of valid

instruments, L− s, must be greater than L−U , L− s > L−U . Thus, |(A(1))C |, |(A(2))C | >

L− U .

Now, pick any subsets, (A(1′))C and (A(2′))C , of (A(1))C and (A(2))C , respectively, where

|(A(1′))C | = |(A(2′))C | = L− U + 1. These subsets (A(1′))C and (A(2′))C inherit the following

property from their larger sets (A(1))C and (A(2))C , respectively.

α
(1)
j + γ∗jβ

(1) = γ∗jβ
(1) = Γ∗j , j ∈ (A(1′))C ⊆ (A(1))C

α
(2)
k + γ∗kβ

(2) = γ∗kβ
(2) = Γ∗k, k ∈ (A(2′))C ⊆ (A(2))C
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The subspace condition on γ∗ and Γ∗ in Theorem 1 state that for any sets Cm with size

|Cm| = L − U + 1 and with the property that γjqm = Γj, j ∈ Cm, we have qm = qm′

for any m,m′. The subsets we constructed, (A(1′))C and (A(2′))C , satisfy these subspace

condition with constants q1′ = β(1) and q2′ = β(2). Hence, β(1) = q1′ = q2′ = β(2), which is

a contradiction. Hence, the two sets of parameters α(1), β(1) and α(2), β(2) are identical to

each other and the solution is unique.

Now, suppose the solution is unique. Then, we show that the subspace conditions on γ∗

and Γ∗ must hold. Pick any two sets A(1), A(2) ⊆ {1, . . . , L} with their complements having

the size |(A(1))C | = |(A(2))C | = L−U+1 and corresponding constants q1 and q2, respectively,

defined in the Theorem. We have to show that q1 = q2 for any pair of two sets.

Note that at least one set of these sets and its corresponding constant q must exist

because at the true parameter values, α∗ and β∗, equation (7) is satisfied. Specifically, if

A∗ =supp(α∗) where, by s < U , |(A∗)C | = |supp(α∗)C | > L − U , we can take any subset

(A(∗′))C ⊆ (A∗)C of size |(A(∗′))C | = L − U + 1. For any j ∈ (A(∗′))C , by equation (7),

γ∗jβ
∗ = Γ∗j and thus, its corresponding constant q∗′ is q∗′ = β∗. If there is exactly one set

A(1), the subspace condition holds automatically.

Suppose there are two or more sets and let A(1) and (2) be any pair of the sets. Based on

the sets A(1) and A(2) and their corresponding constants q1 and q2, we construct the following

sets of parameters α(1), β(1) and α(2), β(2)

β(1) = q1, α
(1)
j =


0 j ∈ (A(1))C

Γ∗j − q1γ∗j j ∈ A(1)

β(2) = q2, α
(2)
j =


0 j ∈ (A(2))C

Γ∗j − q2γ∗j j ∈ A(2)

The cardinality of α(1) and α(2) are less than U . In addition, they satisfy the moment
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equation in equation (7).

α
(1)
j + γ∗jβ

(1) =


γ∗j q1 = Γ∗j j ∈ (A(1))C

Γ∗j − q1γ∗j + γ∗j q1 = Γ∗j j ∈ A(1)

α
(2)
j + γ∗jβ

(2) =


γ∗j q2 = Γ∗j j ∈ (A(2))C

Γ∗j − q2γ∗j + γ∗j q2 = Γ∗j j ∈ A(2)

Since the equation has only one unique solution, this implies that β(1) = β(2), or q1 = q2.

Since this holds for any two sets (A(1))C , (A(2))C with constants q1 and q2 and cardinality

L− U + 1, we arrive at the subspace condition qm = qm′ for any m,m′.

5.2 Proof of Corollary 1

Consider any two sets Cm and Cm′ with the constants qm and qm′ in Theorem 1. Take an

element j from the intersection Cm ∩ Cm′ ; this intersection is non-empty because |Cm| =

|Cm′ | = L−U + 1 ≥ L/2 + 1. At element j ∈ Cm ∩Cm′ , we have γ∗j qm = Γ∗j and γ∗j qm′ = Γ∗j ,

which implies qm = qm′ . Since this holds for any two sets Cm and Cm′ , qm = qm′ for m,m′,

the subspace restriction condition in Theorem 1 always holds whenever U ≥ L/2 and we

have identification.

5.3 Proof of Theorem 2

We begin by introducing some notations and terminologies. For α ∈ Rp and s ∈ {1, . . . , p},

αmax(s) is defined as the vector where all but the largest s elements set to zero and α−max(s)

is defined as α−αmax(s).

Definition 1. The restricted orthogonal constant (ROC) of single matrix of order k1 and

k2, denoted as θk1,k2(M), is the smallest θk1,k2(M) where for any k1-sparse vector α1 and
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k2-sparse vector α2 with non-overlapping support, we have

|〈Mα1,Mα2〉| ≤ θk1,k2(M)‖α1‖2‖α2‖2.

Next, we introduce two lemmas. The first Lemma relates the RIP and ROC constants.

Lemma 1. For any matrix M and positive integers s1 and s2,

θs1,s2(M) ≤ 1

2

(
δ+s1+s2(M)− δ−s1+s2(M)

)
.

Proof. For any vectors x and y with disjoint supports and ‖x‖2 = ‖y‖2 = 1, we must have

x+ y, x− y are both (s1 + s2)-sparse and ‖x+ y‖22 = ‖x− y‖22 = 2. Hence,

|〈Mx,My〉| =1

4

∣∣‖M(x+ y)‖22 − ‖M(x− y)‖22
∣∣

=
1

4
max

{
‖M(x+ y)‖22 − ‖M(x− y)‖22, ‖M(x− y)‖22 − ‖M(x+ y)‖22

}
≤1

4
max

{
δ+s1+s2(M)‖x+ y‖22 − δ−s1+s2(M)‖x− y‖22,

δ+s1+s2(M)‖x− y‖22 − δ−s1+s2(M)‖x+ y‖22
}

≤1

2

(
δ+s1+s2(M)− δ−s1+s2(M)

)
,

which implies θs1,s2(M) ≤ 1
2

(
δ+s1+s2(M)− δ−s1+s2(M)

)
.

The second Lemma proves a standard property of the Lasso.

Lemma 2. Suppose we have the model Yi = ZT
i.α
∗+εi where α∗ is s-sparse. Further suppose

that matrix Z has upper and lower RIP constants δ+s (Z) and δ−s (Z), respectively. Define α̂

as the Lasso estimator

α̂λ = argmin
α

1

2
‖Y − Zα‖22 + λ‖α‖1 (20)

and let h = α̂λ −α∗ measure the errors of the estimator.
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If r‖ZTε‖∞ ≤ λ for some r > 1, we have

‖h−max(s)‖1 ≤
r + 1

r − 1
‖hmax(s)‖1. (21)

Furthermore, if (r + 1)δ+2s(Z) < (3r − 1)δ−2s(Z),

‖hmax(s)‖2 ≤
2λ
√
s(r − 1)(r + 1)/r

(3r − 1)δ−2s(Z)− (r + 1)δ+2s(Z)
. (22)

Proof. Since α̂λ is the minimizer of (20) , we have

1

2
‖Y − Zα̂λ‖22 + λ‖α̂λ‖1 ≤

1

2
‖y − Zα∗‖22 + λ‖α∗‖1.

By the assumed model Yi = ZT
i α
∗ + εi, we have

1

2

(
‖ε− Zh‖22 − ‖ε‖22

)
≤ λ(‖α∗‖1 − ‖α̂λ‖1). (23)

For the upper bound of (23), the fact that α∗ is s-sparse gives a useful bound. Specifically,

‖α∗‖1 − ‖α̂λ‖1 = ‖α∗supp(α∗)‖1 − ‖α̂supp(α∗)‖1 − ‖α̂supp(α∗)c‖1

≤ ‖α∗supp(α∗) − α̂supp(α∗)‖1 − ‖hsupp(α∗)c‖1

≤ ‖hsupp(α∗)‖1 − ‖hsupp(α∗)c‖1

≤ ‖hmax(s)‖1 − ‖h−max(s)‖1.

For the lower bound of (23), ‖ε− Zh‖22 − ‖ε‖22, we can simplify as

1

2

(
‖ε− Zh‖22 − ‖ε‖22

)
= −1

2
(Zh)T (2ε− Zh) ≥ −hTZTε ≥ −‖ZTε‖∞‖h‖1

= −‖ZTε‖∞(‖hmax(s)‖1 + ‖h−max(s)‖1).
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Hence, by (23) and the condition r‖ZTε‖∞ ≤ λ where r > 1, we have

r(‖hmax(s)‖1 − ‖h−max(s)‖1) ≥ −(‖hmax(s)‖1 + ‖h−max(s)‖1).

which yields (21), the first part of the theorem.

For (22), the second part of the theorem, suppose (r + 1)δ+2s(Z) < (3r − 1)δ−2s(Z) holds.

By the Karush-Kuhn-Tucker (KKT) condition of the minimization problem in (20), we we

have ‖ZT (y − Zα̂)‖∞ ≤ λ and

‖ZTZh‖∞ ≤ ‖ZT (y − Zα̂)‖∞ + ‖ZT (y − Zα∗)‖∞ ≤ λ+ ‖ZTε‖∞.

Lemma 5.1 in Cai and Zhang (2013) with λ = max(‖h−max(s)‖∞, ‖h−max(s)‖1/s) implies

|〈Zhmax(s),Zh−max(s)〉| ≤ θs,s(Z)‖hmax(s)‖2 ·
√
s ·max(‖h−max(s)‖∞, ‖h−max(s)‖1/s)

≤
√
sθs,s(Z)‖hmax(s)‖2 ·

r + 1

r − 1
‖hmax(s)‖1/s

≤ θs,s(Z)
r + 1

r − 1
‖hmax(s)‖22,

where the last inequality uses (21). We then have

√
s(λ+ ‖ZTε‖∞)‖hmax(s)‖2 ≥ (λ+ ‖ZTε‖∞)‖hmax(s)‖1 ≥ 〈ZTZh, hmax(s)〉

= 〈Zhmax(s),Zhmax(s)〉+ 〈Zhmax(s),Zh−max(s)〉

≥ ‖Zhmax(s)‖22 − θs,s
r + 1

r − 1
‖hmax(s)‖22

=

(
δ−2s(Z)− θs,s(Z)

r + 1

r − 1

)
‖hmax(s)‖22

≥
(

3r − 1

2(r − 1)
δ−2s(Z)− r + 1

2(r − 1)
δ+2s

)
‖hmax(s)‖22,

where the last inequality uses Lemma 1. Moving ‖hmax(s)‖ to the right hand side and using

the condition r‖ZTε‖∞ ≤ λ where r > 1 yields (22).
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Now we move on to the proof of Theorem 2. Section 3.5 in the main paper states that

the original estimation method can be reinterpreted as a two-step method where the first

step is the Lasso step and the second step is a dot product. The proof will first analyze step

1 using the lemmas about Lasso performance and use it to analyze step 2.

First, in lieu of step 1, the model in equation (3) from the original paper can be modified

to

PD̂⊥PZY = PD̂⊥Zα∗ + PD̂⊥PZε. (24)

Here, PD̂⊥Z becomes the design matrix, PD̂⊥PZY becomes the outcome, and PD̂⊥PZε is

the new error term. In addition, from the condition 3‖ZTPD̂⊥ε‖ ≤ λ, we have

λ ≥ 3‖ZT (I−PD̂)ε‖∞ = 3‖ZT (PZ−PD̂)ε‖∞ = 3‖ZT (I−PD̂)PZε‖∞ = 3‖(PD̂⊥Z)TPZε‖∞.

Second, note that (27) is in terms of the RIP constants of PD̂⊥Z. To relate the RIP

constants of PD̂⊥Z with that of Z, we see that for any 2s-sparse vector x ∈ RL, ‖PD̂⊥Zx‖22 =

‖Zx‖22 − ‖PD̂Zx‖22 ≤ ‖Zx‖22 ≤ δ+2s(Z)‖x‖22. By the definition of δ+2s(PD̂⊥Z), this implies

δ+2s(PD̂⊥Z) ≤ δ+2s(Z). (25)

In addition, we have ‖PD̂⊥Zx‖22 = ‖Zx‖22−‖PD̂Zx‖22 ≥ δ−2s(Z)‖x‖22− δ+2s(PD̂Z)‖x‖22. By the

definition of δ−2s(PD̂⊥Z), this also implies

δ−2s(PD̂⊥Z) ≥ δ−2s(Z)− δ+2s(PD̂Z). (26)

Combining (25), (26) with assumption that 2δ−2s(Z) > δ+2s(Z) + 2δ+2s(PD̂Z), we know

2δ−2s(PD̂⊥Z) > δ−2s(PD̂⊥Z). By Lemma 2, where we set r = 3 in assumption r‖ZTε‖∞ ≤ λ
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and the model is rewritten as (24),

‖hmax(s)‖2 ≤
4/3λ

√
s

2δ−2s(PD̂⊥Z)− δ+2s(PD̂⊥Z)
(27)

and

‖h−max(s)‖1 ≤ 2‖hmax(s)‖1. (28)

Combining the RIP relations established by (25) and (26), we can rewrite (27) as

‖hmax(s)‖2 ≤
4/3λ

√
s

2δ−2s(Z)− δ+2s(Z)− 2δ+2s(PD̂Z)
. (29)

Third, we establish a bound for ‖PD̂Zh‖2. This bound is needed to bound step 2 in

Section 3.5 of the original paper because

β̂λ =
D̂TPD̂(Y − Zα̂λ)

‖D̂‖22
=

D̂TPD̂(Zα∗ + Dβ∗ + ε− Zα̂λ)

‖D̂‖22
= β∗ − D̂TPD̂Zh

‖D̂‖22
+

D̂TPD̂ε

‖D̂‖22
.

Rearranging terms and taking norms on both sides give

‖β̂λ − β∗‖2 ≤
‖D̂TPD̂Zh‖2
‖D̂‖22

+
‖D̂TPD̂ε‖2
‖D̂‖22

≤ ‖PD̂Zh‖2
‖D̂‖2

+
|D̂Tε|
‖D̂‖22

. (30)

Hence, a bound on ‖PD̂Zh‖2 is necessary to bound ‖β̂λ − β∗‖2. To start off, we apply

Lemma 1.1 in Cai and Zhang (2014) to represent h−max(s) as a weighted mean of s-sparse

vectors. This lemma allows us to convert the bound for hmax(s) in (29) to the bound for

‖PD̂Zh‖2. Specifically, the lemma states we can find λi ≥ 0 and s-sparse vi ∈ RL where i =

1, . . . , N such that
∑N

i=1 λi = 1 and h−max(s) =
∑N

i=1 λivi. Hence, h =
∑N

i=1 λi(hmax(s) + vi).

Furthermore, we have

supp(vi) ⊆ supp(h−max(s)), ‖vi‖∞ ≤ max

(
‖h−max(s)‖∞,

‖h−max(s)‖1
s

)
, ‖vi‖1 = ‖h−max(s)‖1,
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which yields

‖vi‖∞ ≤ max

(
‖hmax(s)‖1

s
,
2‖hmax(s)‖1

s

)
=

2‖hmax(s)‖1
s

, ‖vi‖1 ≤ 2‖hmax(s)‖1

and ‖hmax(s) + vi‖22 = ‖hmax(s)‖22 + ‖vi‖22 ≤ ‖hmax(s)‖22 + ‖vi‖1‖vi‖∞ ≤ 5‖hmax(s)‖22. Combining

all these together with (29), we have

‖PD̂Zh‖2 ≤
N∑
i=1

λi‖PD̂Z(hmax(s) + vi)‖2 ≤
N∑
i=1

λi

√
5δ+2s(PD̂Z)‖hmax(s)‖2

≤
√

5δ+2s(PD̂Z)
4/3λ

√
s

2δ−2s(Z)− δ+2s(Z)− 2δ+2s(PD̂Z)

=
4
√

5/3λ
√
sδ+2s(PD̂Z)

2δ−2s(Z)− δ+2s(Z)− 2δ+2s(PD̂Z)
.

Finally, using the relation (30) gives us the desired bound for Theorem 2.

Of independent interest is that the proof of Theorem 2 can be generalized to a matrix of

D instead of a vector of D. That is, the proof can consider models where there are more than

one endogenous variables in the data-generating model. However, for clarity of presentation,

we don’t explore this route.

5.4 Proof of Corollary 2

Now, we establish Corollary 2 as a Corollary to Theorem 2. Specifically, the task is to

convert the RIP constants δ+2s(Z), δ−2s(Z), δ+2s(PD̂Z) and the constraint of 2δ−2s(Z)− δ+2s(Z)−

2δ+2s(PD̂Z) > 0 into µ and a similar constraint on s. To do this, note that for any s-sparse

vector α

‖Zα‖22 =
∑

j∈supp(α)

‖Z.j‖22α2
j +

∑
i<j,i,j∈supp(α)

2αiαj〈Z.i,Z.j〉 ≤
∑

j∈supp(α)

α2
j +

∑
i<j,i,j∈supp(α)

(α2
i + α2

j)µ

= (1 + (s− 1)µ)
∑

j∈supp(α)

α2
j = (1 + (s− 1)µ)‖α‖22
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and

‖Zα‖22 =
∑

j∈supp(α)

‖Z.j‖22α2
j +

∑
i<j,i,j∈supp(α)

2αiαj〈Z.i,Z.j〉 ≥
∑

j∈supp(α)

α2
j −

∑
i<j,i,j∈supp(α)

(α2
i + α2

j)µ

= (1− (s− 1)µ)‖α‖22.

The upper and lower bounds on ‖Zα‖22 imply

δ+s (Z) ≤ (1 + (s− 1)µ), and δ−s (Z) ≥ (1− (s− 1)µ);

For PD̂⊥Z and all 2s-sparse vector x, we have

‖PD̂Zx‖22 ≤

 ∑
j∈supp(x)

‖PD̂Z.jxj‖2

2

≤ 2s
∑

j∈supp(x)

‖PD̂Z.jxj‖22

= 2s
∑

j∈supp(x)

‖PD̂Z.j‖22x2j = 2s
∑

j∈supp(x)

‖PD̂Z.j‖22
‖Z.j‖22

‖Z.jxj‖22

≤ 2sρ2δ+1 (Z)
∑

j∈supp(x)

x2j ≤ 2sρ2δ+2s(Z)‖x‖22.

Again, by the definition of δ+2s(PD̂Z), this implies that

δ+2s(PD̂Z) ≤ 2sρ2δ+2s(Z). (31)

Under the condition s < min
(

1
12µ
, 1
10ρ2

)
, the denominator of the bound in Theorem 2

34



becomes

2δ−2s(Z)− δ+2s(Z)− 2δ+2s(PD̂Z) ≥ 2δ−2s(Z)− (1 + 4sρ2)δ+2s(Z)

≥ 2(1− (2s− 1)µ)− (1 + 4sρ2)(1 + (2s− 1)µ)

= 1− 6sµ+ 3µ− 4sρ2 − 8s2ρ2µ+ 4sρ2µ

≥ 1− 6sµ− 5sρ2 > 0.

For the numerator of the bound in Theorem 2, we have

4
√

5

3
λ
√
sδ+2s(PD̂Z) ≤ 4

√
5

3
λ
√

2s2ρ2δ+2s(Z) ≤ 4
√

10

3
λsρ
√

1 + (2s− 1)µ

≤ 4
√

10

3
λsρ
√

1 + 2sµ ≤ 4
√

10

3
λsρ
√

1 + 1/6 =
4
√

105

9
λsρ.

Combining them together leads to the desired bound. Note that one can improve the con-

stants in the constraint of s with a bit more care on the above inequalities.

5.5 Proof of Theorem 3

The original estimation method can be rewritten as follows

α̂λ, β̂λ =argmin
α,β

1

2
‖PZ(Y − Zα−Dβ)‖22 + λ||α||1

=argmin
α,β

1

2
||(PD̂ + PD̂⊥)PZ(Y − Zα−Dβ)||22 + λ||α||1

=argmin
α,β

1

2
||PD̂PZ(Y − Zα−Dβ)||22 +

1

2
||PD̂⊥PZ(Y − Zα−Dβ)||22 + λ||α||1

=argmin
α,β

1

2
||PD̂(Y − Zα)− D̂β||22 +

1

2
||PD̂⊥PZY −PD̂⊥Zα||22 + λ||α||1.

The first term, 1
2
||PD̂(Y − Zα) − D̂β||22 is always zero for any given α ∈ RL because

PD̂(Y − Zα) lies in the span of D̂ and thus, we can pick β such that the first term is zero.
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The second term, 1
2
||PD̂⊥PZ(Y − Zα)||22 + λ||α||1, is the traditional Lasso problem where

the outcome is PD̂⊥PZY and the design matrix is PD̂⊥Z. Hence, the minimizer for this

Lasso problem is also the minimizer for the original method.
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Figure 1: Simulation Study of Estimation Performance Varying Endogeneity and Correlation
Only Exists Within Valid and Invalid Instruments. There are ten (L = 10) instruments.
Each line represents the median absolute estimation error (|β∗ − β̂|) after 500 simulations.
We fix the number of invalid instruments to s = 3. Each column in the plot corresponds
to different variation of instruments’ absolute and relative strength. There are two types of
absolute strengths, “Strong” and “Weak”, measured by the concentration parameter. There
are two types of relative strengths, “Equal” and “Variable”, measured by varying γ∗ while
holding the absolute strength (i.e. concentration parameter) fixed. Each row corresponds to
the maximum correlation between instruments, but correlation only exists within valid and
invalid instruments. 39
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Figure 2: Simulation Study of Estimation Performance Varying the Number of Invalid In-
struments (s) and Correlation Only Exists Within Valid and and Invalid Instruments. There
are ten (L = 10) instruments. Each line represents the median absolute estimation error
(|β∗ − β̂|) after 500 simulations. We fix the endogeneity σ∗εξ to σ∗εξ = 0.8. Each column in
the plot corresponds to a different variation of instruments’ absolute and relative strength.
There are two types of absolute strengths, “Strong” and “Weak”, measured by the con-
centration parameter. There are two types of relative strengths, “Equal” and “Variable”,
measured by varying γ∗ while holding the absolute strength fixed. Each row corresponds to
the maximum correlation between instruments, but correlation only exists within valid and
invalid instruments. 40
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Figure 3: Simulation Study of Estimation Performance Varying Endogeneity and Correlation
Only Exists Between Valid and Invalid Instruments. There are ten (L = 10) instruments.
Each line represents the median absolute estimation error (|β∗ − β̂|) after 500 simulations.
We fix the number of invalid instruments to s = 3. Each column in the plot corresponds to
a different variation of instruments’ absolute and relative strength. There are two types of
absolute strengths, “Strong” and “Weak”, measured by the concentration parameter. There
are two types of relative strengths, “Equal” and “Variable”, measured by varying γ∗ while
holding the absolute strength (i.e. concentration parameter) fixed. Each row corresponds
to the maximum correlation between instruments, but correlation only exists between valid
and invalid instruments. 41
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Figure 4: Simulation Study of Estimation Performance Varying the Number of Invalid Instru-
ments (s) and Correlation Only Exists Between Valid and and Invalid Instruments. There
are ten (L = 10) instruments. Each line represents the median absolute estimation error
(|β∗ − β̂|) after 500 simulations. We fix the endogeneity σ∗εξ to σ∗εξ = 0.8. Each column in
the plot corresponds to a different variation of instruments’ absolute and relative strength.
There are two types of absolute strengths, “Strong” and “Weak”, measured by the con-
centration parameter. There are two types of relative strengths, “Equal” and “Variable”,
measured by varying γ∗ while holding the absolute strength fixed. Each row corresponds
to the maximum correlation between instruments, but correlation only exists between valid
and invalid instruments. 42
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Figure 5: Simulation Study Varying Endogeneity and Correlation Exists Between All Instru-
ments. There are ten (L = 10) instruments. Each line represents the average proportions
of correctly selected valid instruments and correctly selected invalid instruments after 500
simulations. We fix the number of invalid instruments to s = 3. Each column in the plot
corresponds to a different variation of instruments’ absolute and relative strength. There
are two types of absolute strengths, “Strong” and “Weak”, measured by the concentration
parameter. There are two types of relative strengths, “Equal” and “Variable”, measured by
varying γ∗ while holding the absolute strength (i.e. concentration parameter) fixed. Each
row corresponds to the maximum correlation between all instruments.
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Figure 6: Simulation Study Varying the Number of Invalid Instruments (s) and Correlation
Exists Between All Instruments. There are ten (L = 10) instruments. Each line represents
the average proportions of correctly selected valid instruments and correctly selected invalid
instruments after 500 simulations. We fix the endogeneity σ∗εξ to σ∗εξ = 0.8. Each column in
the plot corresponds to a different variation of instruments’ absolute and relative strength.
There are two types of absolute strengths, “Strong” and “Weak”, measured by the con-
centration parameter. There are two types of relative strengths, “Equal” and “Variable”,
measured by varying γ∗ while holding the absolute strength fixed. Each row corresponds to
the maximum correlation between all instruments.
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Figure 7: Simulation Study Varying Endogeneity and Correlation Only Exists Within Valid
and Invalid Instruments. There are ten (L = 10) instruments. Each line represents the
average proportions of correctly selected valid instruments and correctly selected invalid
instruments after 500 simulations. We fix the number of invalid instruments to s = 3.
Each column in the plot corresponds to a different variation of instruments’ absolute and
relative strength. There are two types of absolute strengths, “Strong” and “Weak”, measured
by the concentration parameter. There are two types of relative strengths, “Equal” and
“Variable”, measured by varying γ∗ while holding the absolute strength (i.e. concentration
parameter) fixed. Each row corresponds to the maximum correlation between instruments,
but correlation only exists within valid and invalid instruments.45
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Figure 8: Simulation Study Varying the Number of Invalid Instruments (s) and Correlation
Only Exists Within Valid and and Invalid Instruments. There are ten (L = 10) instruments.
Each line represents the average proportions of correctly selected valid instruments and
correctly selected invalid instruments after 500 simulations. We fix the endogeneity σ∗εξ to
σ∗εξ = 0.8. Each column in the plot corresponds to a different variation of instruments’
absolute and relative strength. There are two types of absolute strengths, “Strong” and
“Weak”, measured by the concentration parameter. There are two types of relative strengths,
“Equal” and “Variable”, measured by varying γ∗ while holding the absolute strength fixed.
Each row corresponds to the maximum correlation between instruments, but correlation only
exists within valid and invalid instruments. 46
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Figure 9: Simulation Study Varying Endogeneity and Correlation Only Exists Between
Valid and Invalid Instruments. There are ten (L = 10) instruments. Each line represents
the average proportions of correctly selected valid instruments and correctly selected invalid
instruments after 500 simulations. We fix the number of invalid instruments to s = 3.
Each column in the plot corresponds to a different variation of instruments’ absolute and
relative strength. There are two types of absolute strengths, “Strong” and “Weak”, measured
by the concentration parameter. There are two types of relative strengths, “Equal” and
“Variable”, measured by varying γ∗ while holding the absolute strength (i.e. concentration
parameter) fixed. Each row corresponds to the maximum correlation between instruments,
but correlation only exists between valid and invalid instruments.47
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Figure 10: Simulation Study Varying the Number of Invalid Instruments (s) and Correlation
Only Exists Between Valid and and Invalid Instruments. There are ten (L = 10) instruments.
Each line represents the average proportions of correctly selected valid instruments and
correctly selected invalid instruments after 500 simulations. We fix the endogeneity σ∗εξ to
σ∗εξ = 0.8. Each column in the plot corresponds to a different variation of instruments’
absolute and relative strength. There are two types of absolute strengths, “Strong” and
“Weak”, measured by the concentration parameter. There are two types of relative strengths,
“Equal” and “Variable”, measured by varying γ∗ while holding the absolute strength fixed.
Each row corresponds to the maximum correlation between instruments, but correlation only
exists between valid and invalid instruments.48
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Figure 11: Simulation Study Varying Endogeneity and Correlation Exists Between All In-
struments. We also vary the instrument strength of valid and invalid instruments. There
are ten (L = 10) instruments. Each line represents the median absolute estimation error
(|β∗ − β̂|) after 500 simulations. We fix the number of invalid instruments to s = 3. Each
column in the plot corresponds to a different variation of instruments’ absolute and relative
strength. There are two types of absolute strengths, “Strong” and “Weak”, measured by
the concentration parameter. There are two types of strengths for valid and invalid instru-
ments, “Stronger Invalid” and “Stronger Valid”, determined by varying γ∗ while holding
the absolute strength fixed. Each row corresponds to the maximum correlation between
instruments. 49
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Figure 12: Simulation Study Varying the Number of Invalid Instruments (s) and Correlation
Exists Between All Instruments. We also vary the instrument strength of valid and invalid
instruments. There are ten (L = 10) instruments. Each line represents the median absolute
estimation error (|β∗ − β̂|) after 500 simulations. We fix the endogeneity σ∗εξ to σ∗εξ =
0.8. Each column in the plot corresponds to a different variation of instruments’ absolute
and relative strength. There are two types of absolute strengths, “Strong” and “Weak”,
measured by the concentration parameter. There are two types of strengths for valid and
invalid instruments, “Stronger Invalid” and “Stronger Valid”, determined by varying γ∗

while holding the absolute strength fixed. Each row corresponds to the maximum correlation
between instruments. 50
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Figure 13: Simulation Study Varying Endogeneity and Correlation Exists Between All In-
struments. We also vary the instrument strength of valid and invalid instruments. There are
ten (L = 10) instruments. Each line represents the average proportions of correctly selected
valid instruments and correctly selected invalid instruments after 500 simulations. We fix the
number of invalid instruments to s = 3. Each column in the plot corresponds to a different
variation of instruments’ absolute and relative strength. There are two types of absolute
strengths, “Strong” and “Weak”, measured by the concentration parameter. There are two
types of strengths for valid and invalid instruments, “Stronger Invalid” and “Stronger Valid”,
determined by varying γ∗ while holding the absolute strength fixed. Each row corresponds
to the maximum correlation between instruments.51
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Figure 14: Simulation Study Varying the Number of Invalid Instruments (s) and Correla-
tion Exists Between All Instruments. We also vary the instrument strength of valid and
invalid instruments. There are ten (L = 10) instruments. Each line represents the average
proportions of correctly selected valid instruments and correctly selected invalid instruments
after 500 simulations. We fix the endogeneity σ∗εξ to σ∗εξ = 0.8. Each column in the plot
corresponds to a different variation of instruments’ absolute and relative strength. There
are two types of absolute strengths, “Strong” and “Weak”, measured by the concentration
parameter. There are two types of strengths for valid and invalid instruments, “Stronger
Invalid” and “Stronger Valid”, determined by varying γ∗ while holding the absolute strength
fixed. Each row corresponds to the maximum correlation between instruments.52
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Figure 15: Simulation Study Varying Endogeneity and Correlation Only Exists Within Valid
and Invalid Instruments. We also vary the instrument strength of valid and invalid instru-
ments. There are ten (L = 10) instruments. Each line represents the median absolute
estimation error (|β∗ − β̂|) after 500 simulations. We fix the number of invalid instruments
to s = 3. Each column in the plot corresponds to a different variation of instruments’ abso-
lute and relative strength. There are two types of absolute strengths, “Strong” and “Weak”,
measured by the concentration parameter. There are two types of strengths for valid and in-
valid instruments, “Stronger Invalid” and “Stronger Valid”, determined by varying γ∗ while
holding the absolute strength fixed. Each row corresponds to the maximum correlation
between instruments, but correlation only exists within valid and invalid instruments.53
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Figure 16: Simulation Study Varying the Number of Invalid Instruments (s) and Correlation
Only Exists Within Valid and Invalid Instruments. We also vary the instrument strength of
valid and invalid instruments. There are ten (L = 10) instruments. Each line represents the
median absolute estimation error (|β∗ − β̂|) after 500 simulations. We fix the endogeneity
σ∗εξ to σ∗εξ = 0.8. Each column in the plot corresponds to a different variation of instruments’
absolute and relative strength. There are two types of absolute strengths, “Strong” and
“Weak”, measured by the concentration parameter. There are two types of strengths for valid
and invalid instruments, “Stronger Invalid” and “Stronger Valid”, determined by varying γ∗

while holding the absolute strength fixed. Each row corresponds to the maximum correlation
between instruments, but correlation only exists within valid and invalid instruments.54
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Figure 17: Simulation Study Varying Endogeneity and Correlation Only Exists Within Valid
and Invalid Instruments. We also vary the instrument strength of valid and invalid instru-
ments. There are ten (L = 10) instruments. Each line represents the average proportions
of correctly selected valid instruments and correctly selected invalid instruments after 500
simulations. We fix the number of invalid instruments to s = 3. Each column in the plot
corresponds to a different variation of instruments’ absolute and relative strength. There
are two types of absolute strengths, “Strong” and “Weak”, measured by the concentration
parameter. There are two types of strengths for valid and invalid instruments, “Stronger
Invalid” and “Stronger Valid”, determined by varying γ∗ while holding the absolute strength
fixed. Each row corresponds to the maximum correlation between instruments, but correla-
tion only exists within valid and invalid instruments.
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Figure 18: Simulation Study Varying the Number of Invalid Instruments (s) and Correlation
Only Exists Within Valid and Invalid Instruments. We also vary the instrument strength
of valid and invalid instruments. There are ten (L = 10) instruments. Each line represents
the average proportions of correctly selected valid instruments and correctly selected invalid
instruments after 500 simulations. We fix the endogeneity σ∗εξ to σ∗εξ = 0.8. Each column in
the plot corresponds to a different variation of instruments’ absolute and relative strength.
There are two types of absolute strengths, “Strong” and “Weak”, measured by the con-
centration parameter. There are two types of strengths for valid and invalid instruments,
“Stronger Invalid” and “Stronger Valid”, determined by varying γ∗ while holding the abso-
lute strength fixed. Each row corresponds to the maximum correlation between instruments,
but correlation only exists within valid and invalid instruments.
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Figure 19: Simulation Study Varying Endogeneity and Correlation Only Exists Between
Valid and Invalid Instruments. We also vary the instrument strength of valid and invalid
instruments. There are ten (L = 10) instruments. Each line represents the median absolute
estimation error (|β∗− β̂|) after 500 simulations. We fix the number of invalid instruments to
s = 3. Each column in the plot corresponds to a different variation of instruments’ absolute
and relative strength. There are two types of absolute strengths, “Strong” and “Weak”,
measured by the concentration parameter. There are two types of strengths for valid and
invalid instruments, “Stronger Invalid” and “Stronger Valid”, determined by varying γ∗

while holding the absolute strength fixed. Each row corresponds to the maximum correlation
between instruments, but correlation only exists between valid and invalid instruments.57
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Figure 20: Simulation Study Varying the Number of Invalid Instruments (s) and Correlation
Only Exists Between Valid and Invalid Instruments. We also vary the instrument strength
of valid and invalid instruments. There are ten (L = 10) instruments. Each line represents
median absolute estimation error (|β∗ − β̂|) after 500 simulations. We fix the endogeneity
σ∗εξ to σ∗εξ = 0.8. Each column in the plot corresponds to a different variation of instruments’
absolute and relative strength. There are two types of absolute strengths, “Strong” and
“Weak”, measured by the concentration parameter. There are two types of strengths for valid
and invalid instruments, “Stronger Invalid” and “Stronger Valid”, determined by varying γ∗

while holding the absolute strength fixed. Each row corresponds to the maximum correlation
between instruments, but correlation only exists between valid and invalid instruments.58
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Figure 21: Simulation Study Varying Endogeneity and Correlation Only Exists Between
Valid and Invalid Instruments. We also vary the instrument strength of valid and invalid
instruments. There are ten (L = 10) instruments. Each line represents the average propor-
tions of correctly selected valid instruments and correctly selected invalid instruments after
500 simulations. We fix the number of invalid instruments to s = 3. Each column in the plot
corresponds to a different variation of instruments’ absolute and relative strength. There
are two types of absolute strengths, “Strong” and “Weak”, measured by the concentration
parameter. There are two types of strengths for valid and invalid instruments, “Stronger
Invalid” and “Stronger Valid”, determined by varying γ∗ while holding the absolute strength
fixed. Each row corresponds to maximum correlation between instruments, but correlation
only exists between valid and invalid instruments.
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Figure 22: Simulation Study Varying the Number of Invalid Instruments (s) and Correlation
Only Exists Between Valid and Invalid Instruments. We also vary the instrument strength
of valid and invalid instruments. There are ten (L = 10) instruments. Each line represents
the average proportions of correctly selected valid instruments and correctly selected invalid
instruments after 500 simulations. We fix the endogeneity σ∗εξ to σ∗εξ = 0.8. Each column in
the plot corresponds to a different variation of instruments’ absolute and relative strength.
There are two types of absolute strengths, “Strong” and “Weak”, measured by the con-
centration parameter. There are two types of strengths for valid and invalid instruments,
“Stronger Invalid” and “Stronger Valid”, determined by varying γ∗ while holding the ab-
solute strength fixed. Each row corresponds to maximum correlation between instruments,
but correlation only exists between valid and invalid instruments.
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Figure 23: Simulation Study of Estimation Performance Varying Endogeneity and Corre-
lation Exists Between All Instruments. There are 100 (L = 100) instruments. Each line
represents the median absolute estimation error (|β∗ − β̂|) after 500 simulations. We fix the
number of invalid instruments to s = 30. Each column in the plot corresponds to a different
variation of instruments’ absolute and relative strength. There are two types of absolute
strengths, “Strong” and “Weak”, measured by the concentration parameter. There are two
types of relative strengths, “Equal” and “Variable”, measured by varying γ∗ while holding
the absolute strength (i.e. concentration parameter) fixed. Each row corresponds to the
maximum correlation between instruments.
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Figure 24: Simulation Study of Estimation Performance Varying the Number of Invalid
Instruments (s) and Correlation Exists Between All Instruments. There are 100 (L = 100)
instruments. Each line represents the median absolute estimation error (|β∗ − β̂|) after 500
simulations. We fix the endogeneity σ∗εξ to σ∗εξ = 0.8. Each column in the plot corresponds to
a different variation of instruments’ absolute and relative strength. There are two types of
absolute strengths, “Strong” and “Weak”, measured by the concentration parameter. There
are two types of relative strengths, “Equal” and “Variable”, measured by varying γ∗ while
holding the absolute strength fixed. Each row corresponds to maximum correlation between
instruments.
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Figure 25: Simulation Study Varying Endogeneity and Correlation Exists Between All Instru-
ments. There are ten (L = 100) instruments. Each line represents the average proportions
of correctly selected valid instruments and correctly selected invalid instruments after 500
simulations. We fix the number of invalid instruments to s = 30. Each column in the plot
corresponds to a different variation of instruments’ absolute and relative strength. There
are two types of absolute strengths, “Strong” and “Weak”, measured by the concentration
parameter. There are two types of relative strengths, “Equal” and “Variable”, measured by
varying γ∗ while holding the absolute strength (i.e. concentration parameter) fixed. Each
row corresponds to the maximum correlation between all instruments.
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Figure 26: Simulation Study Varying the Number of Invalid Instruments (s) and Correlation
Exists Between All Instruments. There are 100 (L = 100) instruments. Each line represents
the average proportions of correctly selected valid instruments and correctly selected invalid
instruments after 500 simulations. We fix the endogeneity σ∗εξ to σ∗εξ = 0.8. Each column in
the plot corresponds to a different variation of instruments’ absolute and relative strength.
There are two types of absolute strengths, “Strong” and “Weak”, measured by the con-
centration parameter. There are two types of relative strengths, “Equal” and “Variable”,
measured by varying γ∗ while holding the absolute strength fixed. Each row corresponds to
maximum correlation between all instruments.
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