Supplement to “Instrumental Variables Estimation with
Some Invalid Instruments and its Application to

Mendelian Randomization”

Abstract

In this supplement we provide additional discussions, extended simulations, numer-
ical results, and present all the technical details, including the proofs of Theorems 1,

2, and 3.

1 Additional Discussion About Theorem 1

1.1 Numerical Example

In Section 3.1 of the main manuscript, we discussed the identification result and illustrated
it with a numerical example where L = 4, v* = (1,2,3,4), I'* = (1,2,6,8), and s < U
where U = 3. We showed that there are two sets C; = {1,2} and Cy = {3,4} with ¢ =1
and g = 2. Since q; # ¢o, by Theorem 1, identification is not possible with this numerical
example.

One of the reviewers, however, mentioned an interesting numerical example where the
setup is identical to our numerical example above, except I'* is perturbed by ¢ > 0 such that

I* = (1,2,6,8 + ¢). With I'*, there is only one set C; = {1,2} where ¢; = 1 and we have



identification for any e. However, we can shrink € to be arbitrary small such that I'* and
I = (1,2,6,8 + €), are arbitrarily close to each other. As the reviewer stated “As a result,
in any finite sample, it will be impossible to distinguish between the two cases, and hence
no estimation or inference results that rely on Theorem 1 can be uniformly valid.”

However, consider the identical setup as before, except I'* = (1,2,7,9). Then, there is
only one subset Cy = {1,2} where ¢; = 1 and identification is achieved. Furthermore, any
small perturbation of T* by § > 0 and € > 0, i.e. T* = (1,2,7+ 6,9 + €), will still produce
only subset C} = {1, 2} and identification is maintained.

The two numerical examples with I'* = (1,2,6,8) and I'* = (1,2,7,9) illustrate what
we call the identification boundary. The vector I'* = (1,2, 6,8) lies just at the identification
boundary where any small perturbation can render the model unidentified or identified. In
contrast, for I'* = (1,2,7,9), the vector I'* lies far from the identification boundary and any

small perturbation can still make the model identifiable. Exploration of the identification

boundary for different values of I'* and ~* is a topic for future research.

1.2 Normality Assumption and Identification

We consider two additional modeling assumptions which are not needed for identification,
but are part of the classical linear simultaneous/structural equations model (Koopmans et al.
1950) and discuss the identification result in Section 3.1 of the main manuscript. First, we

assume that the relationship between D; and Z; is assumed to be linear
D; =27~ +&, E(&|Z.)=0 (16)
where v* relates the instruments to the exposure and the error terms are bivariate Normal

(€1,&) = N(0, %) (17)



Under these assumptions in (16) and (17), the distributions of Y; and D; conditional on
Z,; are fully characterized by finite-dimensional parameters a*, 5*,v*, and ¥ known as
“structural” parameters in econometrics (Wooldridge 2010). Let €, = 5*¢; + ¢;. Then, we

have the “reduced forms” (Wooldridge 2010)

Vi =Z[T" +¢

D, = Zg’)’* +&

where I'* = a* + $*v* and the covariance matrix of (¢, &;) is ¥’ = MEXM? with

We see that the distribution of Y; and D; are also fully characterized by the reduced form
parameters I'*, v* and ¥’. By Rothenberg (1971), the reduced form parameters, I'*, v*, and
3, are globally identified. Also, by Rothenberg (1971), the structural parameters, a*, 5,
~*, and X, are identified if and only if the mapping between the reduced form parameters,
I'*,~*, ¥, and the structural parameters, a*, f*, v*, X, represented by equations X' =
MXIXMT, v* = ~*, and I'* = o* + 3*v*, is bijective. We see that M is an invertible matrix
for any £* and hence there is a bijective map between X and X¥’. For ~*, it maps onto
itself between the structural and reduced form parameters. Consequently, whether there is
a bijection between the structural parameters and reduced form parameters is determined

only by whether there is a unique solution a* and S* to the equation

given v* and I'*. Theorem 1 in the main manuscript states that a unique solution a* and

B* of (18) exists if and only if the consistency criterion holds, that ¢,, = ¢, for all m,m’ €



{1,..., M}. Hence, with the modeling assumptions (16) and (17), we have identification of

the structural parameters if and only if the consistency criterion holds.

2 Simulation

2.1 Values of p and p

In Section 4 of the main manuscript, we conduct a simulation study to study the performance
of sisVIVE compared to other competitors such as two stage least squares. In addition, in
Section 3.4 of the main manuscript, Corollary 2 characterizes the performance of sisVIVE
theoretically if certain conditions based on constants p and p are satisfied. In this section,
we check whether these theoretical conditions are met for the simulation setup we considered
in the main manuscript.

We first computed p from each simulated data set and take the median value of it after
1000 simulations. To compute pu, we use the true values of the correlation of Z; , specifically
i = 0,0.25,0.5, and 0.75. Table 1 shows the value for y and p for the simulation setup

in the main manuscript. Second, based on the values of p and p in Table 1, we check the

Table 1. Values of p defined in Corollary 2 for the Simulation Study

Instrument Strong Instrument, Strong Instrument, Weak Instrument, Weak Instrument,
Corr. () Equal Strength Variable Strength ~ Equal Strength Variable Strength

0 0.31 0.39 0.20 0.22
0.25 0.54 0.58 0.36 0.37
0.5 0.72 0.73 0.53 0.53
0.75 0.87 0.87 0.73 0.73

condition required in Corollary 2, specifically the upper bound on s, min(1/(12u),1/(10p?)),
in equation (14) of the main manuscript. These upper bounds are evaluated in Table 2.
Table 2 shows that in most settings, the condition for Corollary 2 is only satisfied when
s = 0, i.e. when there are no invalid instruments. For example, when instrument are

correlated and p > 0, Corollary 2 cannot be used to characterize the performance of sisVIVE



Table 2. Condition on s in Corollary 2 for the Simulation Study

Instrument  Strong Instrument, Strong Instrument, Weak Instrument, Weak Instrument,
Corr. () Equal Strength Variable Strength ~ Equal Strength Variable Strength

0 1.04 0.66 2.50 2.07
0.25 0.33 0.33 0.33 0.33
0.5 0.17 0.17 0.17 0.17
0.75 0.11 0.11 0.11 0.11

if invalid instruments are present. Table 2 also illustrates the point we illustrated in the main
manuscript, that the condition for Corollary 2, even though it’s interpretable, are strict. In
the main manuscript, we provide a generalization of Corollary 2 in Theorem 2 at the expense

of interpretability.

2.2 Varying Correlation Structure

In this section, we extend the simulation study in Section 4 of the main manuscript by
considering other correlation structures between the instruments beyond those considered in
the main manuscript. First, Figures 1 and 2 of the Supplementary Materials represent the
setting where the pairwise correlation between valid instruments is set to @ and the pairwise
correlation between invalid instruments is also set to u. However, there is no correlation
between any pair consisting of one valid and one invalid instrument. The new setup differs
from the main manuscript where all the pairwise correlation between any two instruments is
set to . Second, Figures 3 and 4 represent the setting where the pairwise correlation between
a valid instrument and an invalid instrument is set to u. However, there is no pairwise
correlation between any pair of valid instruments or any pair of invalid instruments. Under
the two new correlation structures, we rerun the simulation study in the main manuscript
except we reduce the simulation number from 1000 to 500 and we only vary s with values
s=1,3,4,5,7, and 9 for computational reasons. Also, note that as a result of repeating the
same simulation, the conditions for Corollary 2 in the main manuscript are similar to those

in Tables 1 and 2 of Section 2.1 in the Supplementary Materials.



In both Figures 1 and 3 of the Supplementary Materials where we vary endogeneity, but
the number of invalid instruments is fixed at s = 3, the behavior of all the estimators are
similar to each other and to those in the main manuscript. OLS dominates naive TSLS, oracle
TSLS, and sisVIVE when the endogeneity is small and close to zero, with the dominance
being greater for weaker instruments. Once there is a sufficient amount of endogeneity, oracle
TSLS, which knows exactly which instruments are valid and invalid, does best. sisVIVE
also resembles the oracle in terms of performance. Naive TSLS, which assumes all the L
instruments are valid, does worst since it assumes that all the L instruments are valid.

Similarly, in Figures 2 and 4 of the Supplementary Materials where we vary the number
of invalid instruments, s, but fix the endogeneity to 0.8, the estimators behave similarly
across the two Figures and to those in the main manuscript. We first see that at s = 0, i.e.
when there are no invalid instruments, sisVIVE’s performance is nearly identical to naive
and oracle TSLS, although it degrades slightly for instruments with weak absolute strength.
Also, when s < L/2 = 5, sisVIVE’s performance is comparable to oracle TSLS and better
than naive TSLS. Once we reach the identification boundary, s < L/2 = 5, sisVIVE’s
performance becomes similar to naive TSLS. This is the case regardless of the instruments’

absolute and relative strength.

2.3 Performance of Estimate of &,

In this section, we extend the simulation study in Section 4 of the main manuscript by ex-
amining the estimation performance of a* for sisVIVE. As we noted in the main manuscript,
in Mendelian randomization, the target of estimation is 8*, the causal effect of the exposure
on the outcome, and our procedure, sisVIVE, was designed to estimate 8*. However, in the
process of estimating 5%, sisVIVE does produce an estimate for a*. This section explores

the relationship between this intermediate estimate for a*, &), and our desired estimate for

6*7 B)\-



To evaluate the estimate &, we consider two metrics for error, the proportion of correctly
selected valid instruments and the proportion of correctly selected invalid instruments. To
illustrate these proportion-based error metrics, consider the following numerical example.
Suppose there are L. = 10 instruments of which the first three instruments are invalid,
aj # 0 for j = 1,2,3 and the last seven instruments are valid, o = 0 for j = 4,5,...,10.
If sisVIVE estimates the first two instruments to be invalid, &; # 0 for j = 1,2 and the
last eight to be valid, &; = 0 for j = 3,4,...,10, the proportion of correctly selected valid
instruments is 7/7 = 1 and sisVIVE makes no error in estimating the valid instruments.
However, the proportion of correctly selected invalid instruments is 2/3 and sisVIVE makes
an error in estimating the invalid instruments.

We rerun the simulation setup in Section 4 of the main manuscript and in Section 2.2 in
the Supplementary Materials. However, instead of measuring the median absolute deviation,
| B,\ — [B*|, we instead measure the two proportion-based error metrics. Similar to Section
2.2 in the Supplementary Materials, we reduce the simulation from 1000 to 500 and only
consider s = 1,3,4,5,7, and 9 for computational reasons. The results are in Figures 5 to 10.

When we vary endogeneity but fix the number of invalid instruments to be s = 3 (Figures
5, 7, and 9), the proportion of correctly selected invalid instruments is 1 and sisVIVE never
makes a mistake in selecting the invalid instruments. However, sisVIVE does make mistakes
in selecting the valid instruments as the proportion of correctly selected valid instruments is
mostly below 1. Also, depending on the correlation structure between instruments, we get
different behaviors for the proportion of correctly selected valid instruments. For example,
when every pair of instruments has non-zero pairwise correlation (Figure 5), the propor-
tion of correctly selected valid instruments remains roughly the same for different values of
endogeneity. When there is only pairwise correlation within valid and invalid instruments
(Figure 7), the proportion of correctly selected valid instruments decreases as endogeneity

increases, most notably among weak instruments. Finally, when there is only pairwise corre-



lation between valid and invalid instruments (Figure 9), the proportion of correctly selected
valid instruments increases as endogeneity increases. Despite these differences in the pro-
portion of correctly selected valid instruments between different correlation structures, as
the simulations in Section 4 of the main manuscript and Section 2.2 of the Supplementary
Materials showed, sisVIVE’s median absolute deviation from the truth, | B,\ — [B*|, remains
relatively small and constant for all values of the endogeneity. This constant behavior is
also present in the proportion of correctly selected invalid instruments, which remains at
1 for all correlation structures. This suggests that there is a strong relationship between
correctly selecting the invalid instruments and sisVIVE’s median absolute deviation from (£*
while there is at most a weak relationship between correctly selecting valid instruments and
sisVIVE’s median absolute deviation from £*. In fact, it appears that correctly selecting
invalid instruments is more important than valid instruments if a small median absolute
deviation is desired.

When we vary the number of invalid instruments s, but fix the endogeneity (Figures 6, 8,
and 10), the proportion of correctly selected invalid instrument decreases significantly at the
s = 5 boundary, regardless of the correlation structure between instruments. For example,
for strong instruments in the three Figures, when s < 5, the proportion of correctly selected
invalid instruments remain at 1. However, when s > 5, the proportion of correctly selected
invalid instruments moves sharply away from 1. For weak instruments in the three Figures,
when s < 5, the proportion of correctly selected invalid instruments remains close to 1,
although there is a slightly decrease in the proportion when s moves from s = 3 to s = 4
and when p is away from zero. However, similar to the strong instruments, when s > 5,
the proportion of correctly selected invalid instruments moves away from 1. In contrast, the
proportion of correctly selected valid instruments decreases steadily as s increases, regardless
of the type of correlation structure between instruments. For strong instruments in the

three Figures, the decrease in the proportion of correctly selected valid instruments begins



immediately after s = 1. For weak instruments in the three Figures, there is considerable
fluctuation of the proportion of correctly selected valid instruments. For Figures 6 and
Figures 8, the proportion of correctly selected valid instruments generally decreases as s
increase, with the notable exception in the first row, third column of both Figures. For
Figure 10, the proportion of correctly selected valid instruments decreases when s < 5, but
increases again after s > 5.

The behaviors of the proportions of correctly selected invalid and valid instruments from
Figures 6, 8, and 10 reaffirms our previous observation that there is a strong association
between the proportion of correctly selected invalid instruments and the median absolute
deviation of 3, |B \— *]. In particular, from Figure 3 of the main manuscript and Figures 2
and 4 of the Supplementary Materials, when s < 5, sisVIVE’s median absolute deviation is
just as small as the oracle two stage least squares. However, when s > 5, sisVIVE’s median
absolute deviation is just as large as the naive two stage least squares. The proportion of
correctly selected invalid instruments in Figures 6, 8, and 10 closely corresponds to this
sharp change in behavior between s < 5 and s > 5. In contrast, the proportion of correctly
selected valid instruments does not have this sharp behavior at s = 5 across all the figures.

Overall, by measuring the estimation performance of &, using the two proportion-based
error metrics, we notice a strong relationship between the proportion of correctly selected
invalid instruments and the median absolute deviation of B,\. For any type of correlation
structure between instruments and different variations on endogeneity and s, sisVIVE de-
viates far from the truth if we incorrectly select the invalid instruments. Hence, it is much
more important to correctly select invalid instruments at the expense of incorrectly select-
ing valid instruments for better estimation of 5*. This relationship makes sense since using
invalid instruments creates bias whereas using at least one valid instrument and not using
other valid instruments does not create bias, but just reduces efficiency. The relationship

also suggests that when we choose the tuning parameter A\, which controls the number of



non-zero &) and consequently, controls the proportion of correctly selected valid and invalid
instruments, we should choose A that correctly selects the invalid instruments, even if some
valid instruments are selected as invalid. In particular, A should generally be small so that
there is less ¢; penalty on ||al|;, but not too small so that the penalty has no effect. As a
result, few elements of &, will be zero and more instruments will be selected as invalid. We

discuss the choice of \ in more detail in Section 2.6.

2.4 Varying Instrument Strength

In this section, we extend the simulation study in Section 4 of the main manuscript by con-
sidering other types of instrument strength beyond those considered in the main manuscript.
Specifically, we look at two cases where the invalid instruments are “stronger” than the valid
instruments and the valid instruments are “stronger” than the invalid instruments. To sim-
ulate these two new cases, we first fix the concentration parameter, a global /overall measure
of instrument strength, similar to the simulation setup in the main manuscript. Second,
given a concentration parameter, for the case when the invalid instruments are stronger
than the valid instruments, we find 4* where v} = 2 x 7} for j €supp(a”) (i.e. set of invalid

instruments) and k €supp(a*)©

(ie. set of invalid instruments). In other words, the 77s
associated with invalid instruments have twice the magnitude of the ;s associated with the
valid instruments. For the case when the valid instruments are stronger than the invalid
instruments, we flip the roles of j and k where j now belongs to supp(a*)® and k belongs
to supp(a*)®. Finally, we rerun the simulation setup in Section 4 of the main manuscript
and Sections 2.2 and 2.3 of the Supplementary Materials, except we replace the “Equal” and
“Variable” strengths with the two new types of instrument strength introduced in this Sec-
tion, denoted as “Stronger Invalid” (i.e. the case when the invalid instruments are stronger

than the valid instruments) and ”Stronger Valid” (i.e. the case when the valid instruments

are stronger than the invalid instruments). We also reduce the number of simulations 1000
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to 500 for computational reasons.

In addition, for each of the simulation setups, we repeat the exercise we did in Section 2.1
of the Supplementary Materials where we compute p and p that appear in Corollary 2 of the
main manuscript. Table 3 and 4 show the results when the instruments have the identical
pairwise correlation; for other correlation structures, the condition on s is similar and hence,
they are not presented (see Section 2.2 of the Supplementary Materials for discussion on this).
The column and row labels in the two tables are identical as those found in Section 2.2 of the

Supplementary Materials, except the new headings “Stronger Invalid” and “Stronger Valid.”

Table 3. Values of p defined in Corollary 2 for the Simulation Study

Instrument Strong Instrument, Strong Instrument, Weak Instrument, Weak Instrument,

Corr. ()  Stronger Invalid Stronger Valid Stronger Invalid Stronger Valid
0 0.41 0.33 0.28 0.18
0.25 0.60 0.54 0.47 0.33
0.5 0.75 0.71 0.64 0.49
0.75 0.88 0.86 0.81 0.70

Table 4. Condition on s in Corollary 2 for the Simulation Study

Instrument  Strong Instrument, Strong Instrument, Weak Instrument, Weak Instrument,

Corr. (u)  Stronger Invalid Stronger Valid Stronger Invalid Stronger Valid
0 0.60 0.90 1.27 3.02
0.25 0.28 0.33 0.33 0.33
0.5 0.17 0.17 0.17 0.17
0.75 0.11 0.11 0.11 0.11

Figures 11 to 14 represent the cases where the instruments have identical pairwise corre-
lation . When we vary endogeneity, but fix s = 3 (Figure 11), sisVIVE performs as well as
the oracle for strong instruments. For weak instruments, sisVIVE does better when the valid
instruments are stronger than the invalid instruments (i.e. “Stronger Valid”) than when the
invalid instruments are stronger than the valid instruments (i.e. “Stronger Invalid”). In
both the strong and weak cases, sisVIVE does much better than the next best alternative,

naive two stage least squares.
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When we vary s, but fix endogeneity to 0.8 (Figure 12), sisVIVE deviates from the oracle
at s = 4 for the case when the invalid instruments are stronger than the valid instruments
(i.e. “Stronger Invalid”) and at s = 7 for the case when the valid instruments are stronger
than the invalid instruments (i.e. “Stronger Valid”). When sisVIVE deviates from oracle
TSLS, sisVIVE’s performance is no worse than naive two stage least squares.

When we look at the proportion-based error metrics for estimating a (Figures 13 and
14), the behavior of the two curves are similar to what we observed in Section 2.3. That
is, whenever sisVIVE performs badly, there is a large decrease in the proportion of correctly
selected invalid instruments. Also, there is no relationship between sisVIVE’s median ab-
solute bias of BA,\ and the proportion of correctly selected valid instruments. When we vary
endogeneity (Figure 13), the proportion of correctly selected invalid instruments remain at
1 except when the overall strength of the instruments is weak and the invalid instruments
are stronger than the valid instruments (i.e. “Stronger Invalid”). However, in all cases, a
smaller median absolute deviation in Figure 11 corresponds with having a high proportion of
correctly selected invalid instruments in Figure 13. In contrast, the proportion of correctly
selected valid instruments remains below 1 if the invalid instruments are stronger than the
valid instruments (i.e. “Stronger Invalid”) and close to 1 if the valid instruments are stronger
than the invalid instruments (i.e. “Stronger Valid”).

Similarly, when we vary s (Figure 14) and are under the case where the invalid instruments
are stronger than the valid instruments (i.e. “Stronger Invalid”), the proportion of correctly
selected invalid instruments move away from 1 at s = 4 when the overall strength of the
instruments is strong and at s = 3 when the overall strength of the instruments is weak.
When the valid instruments are stronger than the invalid instruments (i.e. “Stronger Valid”),
the proportion of correctly selected invalid instruments move away from 1 at s = 7 for strong
instruments and s = 6 for weak instruments. Again, similar to what we observed in Section

2.3 of the Supplementary Materials, these points of s correspond to sisVIVE’s deviation from

12



the oracle in Figure 12. In contrast, the proportion of correctly selected valid instruments
vary widely in Figure 14 and there does not seem to be any relationship between it and
sisVIVE’s deviation from the oracle.

For other correlation structures, specifically when (i) there is only correlation within
valid and invalid instruments, and (ii) there is only correlation between valid and invalid
instruments, we observe the same phenomena as the case where all the instruments are
correlated. This is in alignment with Sections 2.2 and 2.3. The result from the two correlation
structures under the different types of instrument strengths considered in this Section are in
Figures 15 to 22.

The simulation study in this Section showed that in vast majority of cases, sisVIVE esti-
mates the causal effect of interest better than the next best alternative, naive two stage least
squares and in many cases, sisSIVE’s performance is similar to the oracle. However, when
the invalid instruments are stronger than the valid instruments (i.e. “Stronger Invalid”),
sisVIVE’s performance does not do as well relative to the oracle, even though by the identi-
fication result in Corollary 1 of the main manuscript, at s = 4, identification is guaranteed.
The degradation in performance of sisVIVE may be due to a number of reasons. It may
follow from the fact that the condition in Corollary 2 are not met since Table 4 shows that
in the “Stronger Invalid” case, s has to be less than 1 or 2. It may be that we chose a
bad tuning parameter \; based on the results on the proportion of correctly selected invalid
instruments, we may need a smaller A than what we used was chosen by cross validation. A
closer analysis of this particular case more closely is a topic for future research. Regardless,
even when sisVIVE’s performance degrades, it does no worse than the next best alternative,
naive two stage least squares.

In addition, the simulation study reaffirmed the points mentioned in Sections 2.2 and
2.3 of the Supplementary Materials that (i) sisVIVE seems to do well under different cor-

~

relation structures, and (ii) 5\’s deviation from * depends heavily on the proportion of
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correctly selected invalid instruments more so than the proportion of correctly selected valid

instruments.

2.5 Number of potential instruments

In this section, we extend the simulation study in Section 4 of the main manuscript by
increasing the potential number of instruments from L = 10 to L = 100. We note that in
Mendelian randomization settings, it is rare to have 100 potential genetic instruments since
all 100 of the genetic instruments must affect the exposure (see the Introduction and Section
3.1 of the main manuscript for details). Usually, the number of potential instruments is
far less than 100 (see citations in the Introduction of our main manuscript for examples).
However, for completeness, we demonstrate sisVIVE’s performance when L = 100 potential
instruments are present.

We rerun the simulation setup in Section 4 of the main manuscript and Section 2.3 in the
Supplementary Materials except L = 100 and when we vary endogeneity, we fix the number
of invalid instruments to be 30 (instead of 3); note that based on the simulation results in
Section 2.2 where other correlation structures did not impact the performance of sisVIVE,
we only consider the correlation structure in the main manuscript, specifically where all the
instruments are correlated to each other with pairwise correlation p. Also, for computational
reasons, we reduce the simulation number from 1000 to 500. Finally, we repeat the exercise

in Section 2.1 by computing p and p defined in Corollary 2. Table 5 and 6 show the results.

Table 5. Values of p defined in Corollary 2 for the Simulation Study

Instrument Strong Instrument, Strong Instrument, Weak Instrument, Weak Instrument,
Corr. () Equal Strength Variable Strength ~ Equal Strength Variable Strength

0 0.15 0.17 0.16 0.17
0.25 0.54 0.54 0.53 0.53
0.5 0.73 0.73 0.53 0.73
0.75 0.87 0.87 0.88 0.87
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Table 6. Condition on s in Corollary 2 for the Simulation Study

Instrument  Strong Instrument, Strong Instrument, Weak Instrument, Weak Instrument,
Corr. () Equal Strength Variable Strength ~ Equal Strength Variable Strength

0 4.2 3.3 4.0 3.4

0.25 0.33 0.33 0.33 0.33
0.5 0.17 0.17 0.17 0.17
0.75 0.11 0.11 0.11 0.11

Figures 23 and 24 represent the results from the simulation setup when we measure the
median of | B* — [B*| over 500 simulations; this setup is identical to Section 4 in the main
manuscript except for the exceptions mentioned in the previous paragraph. The behavior
of all four estimators are similar to Figures 2 and 3 in the main manuscript. For example,
when we vary endogeneity (Figure 23), sisVIVE tends to perform slightly worse when the
overall strength of the instruments is weak. Also, when the number of invalid instruments,
s, is varied (Figure 24), sisVIVE has a sharp peak at s = 50, similar to the sharp peak at
s = 5 in Figures 3 of the main manuscript.

Figures 25 and 26 represent the simulation setups in Section 2.3 of the Supplementary
Materials. Similar to what we observed in Section 2.3 when L = 10, when we vary endogene-
ity (Figure 25), but fix the number of invalid instruments to 30, we see that the proportion
of correctly selected invalid instruments are 1. When we vary s (Figure 26), we again notice
a sharp decrease in the proportion of correctly selected valid invalid instruments around
s = 50 for all instrument strength and magnitude of the correlation.

Overall, the simulation study suggests that sisVIVE does scale as L increases and that
its performance at large values of L is similar to its performance at smaller values of L, such

as L = 10.

2.6 Choice of )\

In this section, we look at different ways to select \. As discussed in the main manuscript,

the choice of A impacts the performance of sisVIVE where a high value of A will push most
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elements of & to zero while a low value of A will do the opposite. In Section 3.3 of the
main manuscript, we suggested cross-validation with the “one standard error” rule as a data-
driven method to choosing the tuning parameter. In addition, in Section 3.4, we provided
theoretical results which suggested choosing a A that is greater than 3||Z"Pp.€l/o. We
explore these two possible choices of A\ and their impact on estimation.

We begin with a simulation study similar to the one in the main manuscript. In particular,
we have L = 10 instruments of which the pairwise correlation between all instruments is 0.75
and the endogeneity is fixed at 0.8. We vary s, the number of invalid instruments and vary
instruments’ absolute strength, relative strength, and other strengths considered in Section
2.4 of the Supplementary Materials. In short, the simulation setups we consider correspond
to the last row of Figure 3 in the main manuscript and the last row of Figure 12 in the
Supplementary Materials. We do not simulate other correlation structures or different L
because the simulation results in Sections 2.2 and 2.5 of the Supplementary Materials showed
sisVIVE behaves similarly as the cases we consider in this Section.

Table 7 shows the different values of A averaged across 500 simulations where the overall,
absolute instrument strength is strong (see Section 4 of the main manuscript for details on
the definition of an absolute instrument strength). We use the same column heading labels
in Figure 3 of the main manuscript and Figure 12 in the Supplementary Materials. We also
use the column labeled “CV” to denote the average As based on cross validation laid out in
Section 3.3 of the main manuscript. Also, the column labeled “Theory” denotes the average
As based on Theorem 2, specifically the average of 3||Z"Pp . €l/o over 500 simulations. In
almost all cases, cross validation tends to choose a smaller A than one prescribed by Theorem
2, with the exception of s = 9 in the “Equal” column and s = 7,8, and 9 in the “Stronger
Valid” column. Except for these cases, cross validation tends to prefer a small A\, thereby
preferring &), to have more non-zero entries than zero entries and more instruments selected

as invalid instruments than valid instruments.
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Table 7. Average A from cross validation and Theorem 2 after 500
simulations for instruments whose overall strength is strong.

Equal Variable Stronger Invalid Stronger Valid
CV  Theory CV Theory CV  Theory CV  Theory
1.88 270 204 271 1.53 2.70 2.06 2.72
136 266 1.39 2,67 095 2.65 1.58 2.68
1.06 2.64 1.12 2.66 0.84 2.64 1.33 2.68
0.84 2.64 0.86 2.65 1.08 2.63 1.16 2.68
.70 2.63 133 2.64 0.87 2.62 0.99 2.67
1.78 262 1.10 263 0.85 2.61 0.96 2.67
2.02 2.62 0.79 2.64 0.91 2.61 3.40 2.68
2.41 2.62 0.86 2.62 1.01 2.61 3.74 2.67
3.19 2.62 0.45 2.62 1.31 2.60 6.03 2.67

O© 00 J O Ul W N HH®»

Table 8 shows the estimation performance of sisVIVE, the median of |f* — B,\| over
500 simulations, based on two different As, one based on cross validation and one based
on Theorem 2. In most cases, sisVIVE with a cross validated A performs just as well as
sisVIVE with a theory-based A. For the “Equal” and ”Variable” case, when s < 5, sisVIVE
with a cross-validated A performs better than sisVIVE with a theory-based A. For the
“Stronger Invalid” case, when s < 3, sisVIVE with a cross validated \ performs better than
sisVIVE with a theory-based A. However, when s > 3, sisVIVE with a cross validated A
performs worse than sisVIVE with a theory-based A, although the differences between the
two decrease as s increases. For the “Stronger Valid” case, sisVIVE with a cross validated A
always dominates sisVIVE with a theory-based A, although the differences between the two
are slight when s > 7.

Table 9 considers the same setup as Table 7, except we now look at instruments where
their overall, absolute strength is weak. Under this case, we see drastic differences between
As chosen based on cross validation and Theorem 2. For example, for the “Equal” and
“Variable” cases, when s < 5, A chosen based on cross validation is, on average, smaller
than A\ chosen based on Theorem 2. When s > 5, A chosen based on cross validation is, on
average, bigger than A chosen based on Theorem 2. For the “Stronger Invalid” case, when

s < 3, A based on cross validation is, on average, smaller than A based on Theorem 2. But,
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Table 8. Median absolute estimation error (|3* — f]) after 500
simulations from A chosen by cross-validation and Theorem 2. The
table only considers instruments whose overall strength is strong.

Equal Variable Stronger Invalid Stronger Valid
CV  Theory CV Theory CV  Theory @ CV  Theory
0.13 0.17 0.14  0.16 0.13 0.19 0.14 0.16
0.16 027 016 027 0.16 0.34 0.16  0.24
018 039 018 037 024 0.54 0.18  0.32
0.21 0.53 0.22 0.53 1.57 1.34 0.20 0.41
0.71 1.15 0.76 1.43 1.43 1.25 0.23 0.55
2.43 2.34 2.05 1.93 1.35 1.23 0.28 0.71
242 237 1.8 195 1.28 1.21 3.83 3.95
235 234 198 205 1.22 1.18 424  4.39
2.29 3.01 1.23 1.37 1.17 1.16 4.34 4.51
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when s > 3, the opposite is the case. Finally, for the “Stronger Valid” case, this phenomena

occurs at s = 6.

Table 9. Average A from cross validation and Theorem 2 after 500
simulations for instruments whose overall strength is weak.

Equal Variable Stronger Invalid Stronger Valid
CV  Theory CV Theory CV  Theory CV  Theory
1.36 3.20 1.56 3.23 1.05 3.13 1.52 3.24
1.25 3.00 1.22 3.01 0.93 2.92 1.47  3.07
1.12 291 111 294 3.67 2.81 1.26 3.00
2.06 2.86 1.83 2.89 9.47 2.75 1.13 2.97
6.30 2.80 4.34 2.84 10.52 2.71 1.20 2.92
1199 278 748 280 10.74 2.69 3.36 2.93
14.14 2.76 5.92 2.77 10.58 2.67 7.79 2.93
14.04 275 594 275 9.92 2.66 9.70 2.93
13.16 2.74 2.02 2.68 9.47 2.64 7.09 2.96

© 00 O Ul W N H—H®»

Table 10 considers the same setup as Table 8, except we now look at instruments where
their overall, absolute strength is weak. Similar to Table 8, sisVIVE with a cross validated
A performs better than sisVIVE with a theory-based A, with the only exception at s = 5
under “Equal” column. In fact, sisVIVE with a cross validated A performs drastically better
than sisVIVE based on Theorem 2 in the following cases: s < 5 (for “Equal” and “Variable”
cases), s < 3 (for “Stronger Invalid” case), and s < 7 (for “Stronger Valid” case).

Based on these simulations, sisVIVE based on cross-validation generally performs better
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Table 10. Median absolute estimation error (|3* — 3,|) after 500
simulations from A chosen by cross-validation and Theorem 2. The
table only considers instruments whose overall strength is weak.

Equal Variable Stronger Invalid Stronger Valid
CV  Theory CV Theory CV  Theory CV  Theory
044 0.63 044 0.60 0.43 0.69 0.44 0.61
0.51 096 050 094  0.50 1.13 0.52 0.88
0.55 1.30 055 1.26  0.70 1.86 0.56 1.13
061 1.74 061 1.75  3.19 3.77 0.58 1.43
410 3.80 398 393 325 3.78 0.62 1.83
528  6.03 528 554  3.36 3.79 0.73 2.52
5.84  6.55  5.5B8  5.63 347 3.77 7.51 7.68
6.29 6.7 6.19 6.19  3.52 3.70 9.69 9.77
6.72 6.90 4.18 4.34 3.56 3.64 10.86  10.91

© 00 1O Ul W N —H®»

than sisVIVE based on Theorem 2, especially when the overall instrument strength is weak.
We also note that cross validation tends to choose a smaller A than the one based on Theorem
2, suggesting that for better estimation, it is preferable to set only a few elements of &, to
zero and declare more instruments to be invalid than valid. This observation was also seen
in our simulation in Section 2.3 where low median absolute error, |5* — B,\|, was tied to
high proportion of correctly chosen invalid instruments. We note that this observation is in
contrast with estimating sparse vectors in typical high dimensional regression settings where
many zeroed elements are desirable in the estimated sparse vector.

Despite the simulation evidence suggesting the use of cross validation to choose A\ over
Theorem 2 to choose A, unfortunately, there is little theory to justify the use of cross val-
idation in ¢; penalization settings (Hastie et al. 2009; Bithlmann and van de Geer 2011).
However, Section 2.5.1 of Bithlmann and van de Geer (2011) does provide limited theoretical
results suggesting that A based on cross validation tends to set few elements of &, to zero,
a desirable property in our setting where we want to select more instruments to be invalid
than valid for better estimation performance of 3y.

Besides cross validation and Theorem 2, there is another way to choose A if we assume

Corollary 1 holds for our data. That is, if we are in the always identified region where
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s < U < L/2, one possible method of choosing A\ would be to find the A where exactly
U = L/2, say Apjs. From there, we grid the values of potential As between 0 and A/, and
choose the A\ that minimizes the estimating equation ||Pz(Y — Za — Df)|]2. It would be

interesting to investigate this method in future research.

3 Additional Discussion about Theorem 2

Theorem 2 is written in terms of the restricted isometry type (RIP) condition while its
corresponding Corollary 2 is written in terms of the mutual incoherence property (MIP)
condition. As the main text states, the RIP condition implies the MIP condition, but not
vice versa. We illustrate this relationship with the following simple example. Suppose the
matrix of instruments Z is an n by L matrix where each entry Z;; are from i.i.d. standard
Normal. Based on Theorem 5.2 in Baraniuk et al. (2008), when n > Cslog(L/s) for some
C not dependent on L and s, we are able to ensure the RIP condition 20,,(Z) > 305,(Z)
with high probability. Here, 20,,(Z) > 304.(Z) is a stronger condition than 26, (Z) >

03.(Z) +205,(PpZ), the RIP condition we need for Theorem 2. However, based on Theorem

1

=, we need n > C's®log L for

8 in Cai et al. (2013), to guarantee our MIP condition p <
some C not dependent on L and s. In short, when the order of n is between slog(L/s) and

s?log L, Z meet the RIP condition but not the MIP condition, with high probability.

4 Wisconsin Longitudinal Data

4.1 Background of Data

This research uses data from the Wisconsin Longitudinal Study (WLS) of the University of
Wisconsin-Madison. Since 1991, the WLS has been supported principally by the National
Institute on Aging (AG-9775, AG-21079, AG-033285, and AG-041868), with additional sup-
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port from the Vilas Estate Trust, the National Science Foundation, the Spencer Foundation,
and the Graduate School of the University of Wisconsin-Madison. Since 1992, data have
been collected by the University of Wisconsin Survey Center. A public use file of data from
the Wisconsin Longitudinal Study is available from the Wisconsin Longitudinal Study, Uni-
versity of Wisconsin-Madison, 1180 Observatory Drive, Madison, Wisconsin 53706 and at
http://www.ssc.wisc.edu/wlsresearch/data/. The opinions expressed herein are those of the

authors.

4.2 Reduced form estimates

Tables 11 and 12 summarize the reduced form estimates for the data analysis in the main
manuscript. The reduced form estimates are computed by using ordinary least squares (OLS)
where the genetic instruments are the explanatory variables and the dependent variables is
the exposure variable used in Section 5 of the main manuscript and Health Utility Index
Mark 3 (HUI-3).

Table 11. Reduced Form Estimates for HUI-3 and BMI for Three Instruments

Instruments BMI (SE) HUI-3 (SE)
151421085 20.05 (0.02) 0.0003 (0.004)
rs1501299 0.01 (0.02) 0.002 (0.005)
1s2241766 -0.0007 (0.03) -0.0001 (0.007)

Table 12. Reduced Form Estimates for HUI-3 and BMI for Four Instruments

Instruments BMI (SE) HUI-3 (SE)
151421085 20.05 (0.02) 0.0004 (0.004)
151501299 0.01 (0.02) 0.002 (0.005)
rs2241766 -0.0006 (0.03) -0.0004 (0.007)
rs6265 -0.004 (0.02) -0.008 (0.005)

4.3 First stage F statistic and structural correlations

The first stage F statistic with three instruments and the binary exposure in Table 11 is

3.16. The first stage F' statistic with four instruments and the exposure BMI in Table 12 is
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2.38. Based on the two F statistics, the instruments are generally weak.

We also estimate the implied structural correlation from our model, specifically the cor-
relation between D;, the exposure, and ¢;. We estimate ¢; by taking the residual from the
estimates of 8* and a*, ¢, = Y,-—DZ-BA,\ —ZT &y, where ) is chosen by cross-validation described
in Section 3.3 of the main manuscript. We find that our estimate of this correlation is —0.2,

suggesting a mild form of endogeneity.

4.4 Sargan overidentification test

For the data analysis with three SNPs, the Sargan overidentification test Sargan (1958),
which tests assumptions (A2) and (A3) in the presence of multiple instruments, gives a Chi-
squared value of 0.12 (p-value: 0.94), retaining the null hypothesis that the instruments are
all valid under the 0.05 significance level. For the data analysis with four SNPs, the Sargan

overidentification test gives a Chi-squared value of 2.53 (p-value: 0.47).

4.5 Quantifying obesity with BMI

To quantify obesity using BMI, we looked at BMI across several categories of obesity. The
categories were based on US National Institute of Health clinical guidelines (National Insti-
tute of Health 1998) and were also used in Trakas et al. (2001) and Sach et al. (2007) in
their analysis. Table 1 summarizes the different classes of obesity and their associations to
HUI-3.

Table 13. Relationship Between Obesity and Health Utility Index Mark 3 (HUI-3)
Health Utility Index Mark 3

Obesity Categories N 1st quartile Median 3rd quartile
Not obese (BMI < 30) 2581 0.84 0.92 0.97
Obese class I (30 < BMI < 35) 7 0.73 0.91 0.97
Obese class IT (35 < BMI < 40) 246 0.66 0.85 0.97
Obese class IIT (40 < BMI ) 108 0.51 0.72 0.91
All categories 3712 0.78 0.92 0.97
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We notice that among different obese classes, the median HUI-3 scores are different.
Hence, simply classifying individuals as obese vs. not obese ignores the variation of HUI-3
scores among different obese classes. To be comparable to prior literature, the method we
use in the main manuscript to quantify obesity is the closest equivalent to Trakas et al.
(2001), which also used our utility score measure HUI-3. We also explore different methods
of quantifying obesity through BMI. Specifically, we consider the following methods listed

below.

1. The binary BMI is takes a value of one if BMI is greater than or equal to 30 (i.e. obese)

and zero otherwise.
2. The exposure BMI A is what we use in the main manuscript.

3. The exposure BMI B is defined to be similar to Trakas et al. (2001), except the mag-
nitude of the BMIs is taken into consideration. Specifically, if an individual’s BMI is
less than 30, the individual’s exposure is assigned a value of zero. If an individual’s
BMI is between 30 and 35 (i.e. Obese Class I), the individual’s exposure is assigned
a value of one. If an individual’s BMI is between 35 and 40 (i.e. Obese Class II), the
individual’s exposure is assigned a value of three. If an individual’s BMI is above 40

(i.e. Obese Class III), the individual’s exposure is assigned a value of six.

4. The censored BMI takes into account the actual value of BMI at the obese range so

that it not only indicate obesity, but also to measure its severity. Specifically, the

censored BMI is defined the maximum of (BMI —30) and 0 (i.e. max(BMI—30,0)).

For each method of quantifying obesity, we estimate $* by using ordinary least squares
(OLS), two stage least squares (T'SLS) under the assumption that all the instruments are
valid, and sisVIVE. These results are reported in Tables 14 and 15 for the cases of three and
four instruments studied in Section 5 of the main manuscript. Overall, we notice that the

estimates of OLS, TSLS, and sisVIVE tend to be similar across different types of exposures.
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Granted, it is difficult to compare the estimates since each exposure variable measures slightly
different aspects about obesity and its impact on HUI-3. We also note that in the case of
four instruments where one of the instrument, rs6265, was suspect, sisVIVE correctly picks

156265 to be an invalid instrument in every method of quantifying obesity.

Table 14. Different Exposures and Their Estimates With Three Instruments

Exposure OLS (SE) TSLS (SE) sisVIVE, Invalid Instrument
Binary BMI  -0.074 (SE: 0.0070)  -0.012 (SE: 0.18) 20.012, None
BMI A 20.052 (SE: 0.0040) -0.00094 (SE: 0.081) -0.00094, None
BMI B 20.031 (SE: 0.0024)  -0.0011 (SE: 0.051) 20.0011, None
Censored BMI  -0.013 (SE: 0.0010) -0.00019 (SE: 0.022) -0.00019, None

Table 15. Different Exposures and Their Estimates With Four Instruments

Exposure OLS (SE) TSLS (SE) sisVIVE, Invalid Instrument
Binary BMI -0.074 (SE: 0.0070) -0.097 (SE: 0.17) -0.039, rs6265
BMI A -0.052 (SE: 0.0040) -0.0086 (SE: 0.080) -0.0037, rs6265
BMI B -0.031 (SE: 0.0024) -0.0012 (SE: 0.051) 20.0017, rs6265
Censored BMI  -0.013 (SE: 0.0010) 0.00091 (SE: 0.022) -0.00011, rs6265

5 Proofs

We adopt the following notations for the proofs. For any sets A, B C {1,..., L}, denote
AN B to be the intersection of sets A and B, AU B to be the union of sets A and B, and
A% and B¢ to be the complement of sets A and B, respectively. If A C B, denote B\ A to
be the set that comprises of all the elements of B except those that are in A. Let |A| and
| B| denote the cardinality of the sets A and B, respectively.

For any vector a € R* and set A C {1,..., L}, denote a4 € R” to be the vector where
all the elements except whose indices are in A are zero. Also, denote the jth element as
;. Let supp(a) C {1,...,L} to be the support of the vector e and supp(a)® be the
complement set. For any matrix M € R™ and set A C {1,...,p}, let M4 € R™L be an

n by |A| matrix where the columns are specified by set A.
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5.1 Proof of Theorem 1

First, we prove that, 5* is a unique solution if and only if a* is a unique solution. Suppose

£* has a unique solution; that is, for any two solutions a® 1) and a®,3?), in equation

(7)

o) 4 430 = (19a)

we have (1) = 3 Subtracting v*#™") from equations (19) gives a’) = a?. Now, suppose
o* is unique, which implies a¥) = a?. Again, subtracting a®® from (19) reveals (1) = 32,

Second, we prove the necessary and sufficient conditions for Theorem 1. Suppose the
subspace conditions on v* and I'* hold, specifically ¢,, = ¢, for any m # m’, but there are
two distinct sets of parameters, a™, 31V and a®, 3 that solve the moment equation in
equation (19). Let A =supp(aV) and A® =supp(a?) be the sets of invalid instruments
for the two distinct parameter sets, not equal to each other; if the supports are equal to
each other, we have the degenerate case whereby from equation (19), for any j € AW = A3
v;BY =T and ;3% = I}, which implies that 5 = 3 and aV) = a®, a contradiction.
Because the number of invalid instruments, s, is less than U, s < U, the number of valid
instruments, L — s, must be greater than L — U, L —s > L —U. Thus, [(AM)C], |(A®)¢| >
L-U.

Now, pick any subsets, (A and (A®))C, of (AM) and (AP)C, respectively, where
(A0 = |(A®)C| = L — U + 1. These subsets (A1))¢ and (A®)) inherit the following
property from their larger sets (AM)¢ and (A®)¢ respectively.

oft! 4580 = 4580 =15, j e (AN < (AM)°

o)+ =P =T, k€ (A®)° € (A®)°
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The subspace condition on 4* and I'* in Theorem 1 state that for any sets C,, with size
|Cin| = L — U + 1 and with the property that v;q,, = I';,j € Cy,, we have ¢, = ¢
for any m,m/. The subsets we constructed, (A1) and (A®))C, satisfy these subspace
condition with constants ¢ = (V) and ¢ = B8®. Hence, B = g1 = g» = @, which is
a contradiction. Hence, the two sets of parameters o), 3V and a®, 3 are identical to
each other and the solution is unique.

Now, suppose the solution is unique. Then, we show that the subspace conditions on ~v*
and T'* must hold. Pick any two sets A1, A®) C {1,..., L} with their complements having
the size [(AM)C| = [(A®))€| = L—U+1 and corresponding constants ¢; and g, respectively,
defined in the Theorem. We have to show that ¢ = ¢o for any pair of two sets.

Note that at least one set of these sets and its corresponding constant ¢ must exist
because at the true parameter values, a* and 3*, equation (7) is satisfied. Specifically, if
A* =supp(a*) where, by s < U, |(A*)°] = |[supp(a*)°| > L — U, we can take any subset
(ANC C (A*)C of size |(A*))C| = L — U 4 1. For any j € (A®))C, by equation (7),
v;B* = T'; and thus, its corresponding constant g.. is g+ = *. If there is exactly one set
AW the subspace condition holds automatically.

Suppose there are two or more sets and let A and ) be any pair of the sets. Based on
the sets A® and A® and their corresponding constants ¢; and ¢, we construct the following

sets of parameters V), 5 and a®, 5

0 j € (AM)C

(1) _ 1 _
B = (1, aj -

\F§ —q; J€ AW

.

0 j € (AP
B(Q) = (2, ag'Q) =

T — @) jeA®

The cardinality of a¥ and a(? are less than U. In addition, they satisfy the moment
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equation in equation (7).

(
Vi =T} j € (AM)©
af! 4y =0 7T

T~ oy +yja =15 jeA
(
Vigp =T j € (AP
a(2) +7;;5(2) _ J J

J

=@ +e=17 jeA?

Since the equation has only one unique solution, this implies that ) = @) or ¢ = go.
Since this holds for any two sets (AM)Y, (A®)C with constants ¢; and ¢, and cardinality

L — U + 1, we arrive at the subspace condition g, = ¢, for any m,m’. O

5.2 Proof of Corollary 1

Consider any two sets C,, and C,,, with the constants ¢,, and ¢, in Theorem 1. Take an
element j from the intersection C,, N C,,; this intersection is non-empty because |C,,| =
|Co| = L—=U+12> L/2+1. At element j € Cy, N Cpyr, we have v5qy, = '} and 77 ¢, = T7,
which implies ¢, = ¢,v. Since this holds for any two sets C,, and C,./, ¢ = @ for m,m’,
the subspace restriction condition in Theorem 1 always holds whenever U > L/2 and we

have identification. OJ

5.3 Proof of Theorem 2

We begin by introducing some notations and terminologies. For a« € R? and s € {1,...,p},
Qumax(s) 1s defined as the vector where all but the largest s elements set to zero and ov_ pax(s)

is defined as o — Qtpax(s)-

Definition 1. The restricted orthogonal constant (ROC) of single matrix of order k; and

ko, denoted as Oy, r,(M), is the smallest 6, ,(M) where for any k;-sparse vector o and
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ko-sparse vector as with non-overlapping support, we have
|(May, Mo)| < Ok, 1, (M) o [|2]| a2

Next, we introduce two lemmas. The first Lemma relates the RIP and ROC constants.

Lemma 1. For any matriz M and positive integers s; and ss,
1 _
051732 (M) 5 (5;—{-82 (M> 681+82 (M>) .

Proof. For any vectors x and y with disjoint supports and ||z||2 = ||ly||]2 = 1, we must have

x +y, v —y are both (s + sp)-sparse and ||z + y|| = ||z — y||3 = 2. Hence,

(M, My)| =7 [IM(z -+ )} — [M(z — 3) ]
= max {[IM(z + )3 [M(z — ), IM(z ~ I3 ~ IM(z + )3}
<t mae {57 M)+ vl — 55, (M) 2 —
5;t+82< Mz =yl = 05, VDl + 113}

(5+ <M) 55_14-52 (M)) )

S1+52
which implies 6, 5, (M) < 1 (4,
The second Lemma proves a standard property of the Lasso.

Lemma 2. Suppose we have the model Y; = ZF a* +¢; where o is s-sparse. Further suppose
that matriz Z has upper and lower RIP constants 07 (Z) and §; (Z), respectively. Define &
as the Lasso estimator

. 1
Gy = argmin §||Y—Za\|§+)\||a||1 (20)

and let h = &y — o™ measure the errors of the estimator.
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If r||Z7€l|o < A for some r > 1, we have

r+1
r—1

||h—max(s)||1 S ||hmax(s)||1- (21)

Furthermore, if (r + 1)04,(Z) < (3r — 1)d,,(Z),

2\/s(r—=1)(r+1)/r (22)

hmaxs S N .
Mol < 2305, @)=+ 0642)

Proof. Since & is the minimizer of (20) , we have
1 ~ 2 A 1 * (|2 *
SIY — Zan + Alenls < £y — Zar [ + M.
By the assumed model Y; = ZZ-Ta* + €;, we have

(le = ZRll2 — llellz) < Allee’[ly = lléally)- (23)

N | —

For the upper bound of (23), the fact that a* is s-sparse gives a useful bound. Specifically,

le[l1 = llaalls = [lagumpan i = l[@suppian) 1 — | @suppiar)e
< Ha:uzip(a*) - OA‘SUW(OL*) 1= Hhsum)(a*)c 1
< ||hsupp(a*) 1 — Hhsupp(a*)c”l

S Hhmax(s)Hl - thmax(s)Hl-

For the lower bound of (23), ||e — Zh||3 — ||€||3, we can simplify as

1

(le — 2RI — lleld) = —5

(Zh)"(2e — Zh) > —h"Z e > —||Z7 €|| || 2|1

DN | —

= —11Z" €llc (1hmax(s |1 + 1A= maxs)1)-
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Hence, by (23) and the condition r||ZT €[/, < A where r > 1, we have

T(Hhmax(s)Hl - ”h—max(s)Hl) Z _(Hhmax(s)Hl + ||h—max(s)||1)'

which yields (21), the first part of the theorem.
For (22), the second part of the theorem, suppose (r + 1)d5,(Z) < (3r — 1)d,,(Z) holds.
By the Karush-Kuhn-Tucker (KKT) condition of the minimization problem in (20), we we

have || ZT(y — Z&)||oo < A and

HZTZhHoo S HZT(y - Zd)”oo + ||ZT(y - Za*)“oo S A + ||ZT6||oo-

Lemma 5.1 in Cai and Zhang (2013) with A = max (|2 max(s)|lco» [|P— max(s)[|1/5) implies

|<thax(s)u Zh_ max(s)>| S es,s(z)Hhmax(s) ||2 . \/g . maX(Hh— max(s) ||007 ||h— max(s) ||1/3)

r+1
S \/ges,s(z)Hh/max(s)HQ : r_1 ||hmax(s)||1/5
r+1
< 95.9 Z hmax s 27
<002 o

where the last inequality uses (21). We then have

\/g()‘ + HZTGHOO)HhmaX(S)HZ > ()\ + HZTGHOO)HhmaX(S)Hl > <ZTZh> hmax(s))

= <thax(s)7 thax(s)) + <thax(s)a Zh_ max(s)>

r+1
2 ||thax(s)||§ - Qs,smnhmax(s)ng

_ r+1
— (32 - 0. ) Vs

3r—1 __ r+1 n )
(2(r — 1)528(2) 20— 1)525) | Pans(s) |12

>

where the last inequality uses Lemma 1. Moving ||Amax(s)|| to the right hand side and using

the condition r||Z7 €|l < A where r > 1 yields (22). O

30



Now we move on to the proof of Theorem 2. Section 3.5 in the main paper states that
the original estimation method can be reinterpreted as a two-step method where the first
step is the Lasso step and the second step is a dot product. The proof will first analyze step
1 using the lemmas about Lasso performance and use it to analyze step 2.

First, in lieu of step 1, the model in equation (3) from the original paper can be modified
to

Py, PyY = Py.Za" + Py Pge. (24)

Here, Py.7Z becomes the design matrix, Py, PzY becomes the outcome, and Pp.Pze is

the new error term. In addition, from the condition 3||Z"Pp.€|| < A, we have

A2 3||Z" (I -Pp)efl o = 3| Z" (Pz—Pp €|l =3[ Z" (I —Pp)Pzel o = 3[|(Pp. Z)" Pzél|cc-

Second, note that (27) is in terms of the RIP constants of Pp.Z. To relate the RIP
constants of Py, Z with that of Z, we see that for any 2s-sparse vector z € RY, |Pp. Zz||3 =

|Zz||2 — |PpZzx|3 < ||Zz||2 < 64,(Z)||z||3. By the definition of d5,(Pp. Z), this implies

05 (Pp.Z) < 65.(Z). (25)

In addition, we have ||PDLZx||% = ||Zzx|]3 — ||P]5Zx||§ > 52_5(Z)||x||§ — 5;;(P]3Z)||a:||%. By the

definition of d,,(Pp.Z), this also implies

055(Pp12) = 6,,(2Z) — 05,(PpZ). (26)

S

Combining (25), (26) with assumption that 20,,(Z) > d5,(Z) + 205,(PpZ), we know

205,(Pp.Z) > 0,,(Pp.Z). By Lemma 2, where we set r = 3 in assumption r|Z7 €|l < A
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and the model is rewritten as (24),

4/3)\\/5

hmax(s)ll2 < 5= 27
Vst 2 = 35, 5. 2) — 03, (P ) 0
and
thfrnax(s)Hl S QHhmax(s)HL (28)
Combining the RIP relations established by (25) and (26), we can rewrite (27) as
4/3)\

hmax S S - .
[[Pranas(s) |2 205,(Z) — 63,(Z) — 204, (P Z)

Third, we establish a bound for |PpZhll;. This bound is needed to bound step 2 in

Section 3.5 of the original paper because

- D Py (Y — Z&)) _ D'Py(Za* + DB* +e—Z&,) ,, D'PyZh  D'Ppe

IDII3 IDIJ3 IDIJ3 IDII3
Rearranging terms and taking norms on both sides give

ID"PHZh|2 N ID"Pyell> _ [PpZhl N D¢l

18y — 5*]|2 < - ~ < 2 !
D13 ID|13 |D[2 D13

Hence, a bound on ||[PpZhl, is necessary to bound |8y — B*|la. To start off, we apply
Lemma 1.1 in Cai and Zhang (2014) to represent h_a.x(s) as a weighted mean of s-sparse
vectors. This lemma allows us to convert the bound for Apax(s) in (29) to the bound for
|PpZh|s. Specifically, the lemma states we can find \; > 0 and s-sparse v; € R where i =
1,..., N such that Zf\il Ai =1 and Ao pax(s) = Zf\il \iv;. Hence, h = Zfil Ai (Pmax(s) + Vi)

Furthermore, we have

||h— max(s)”l

s ) ) HvzHl = Hh—max(s)”h

supp(v3) C supp(h_maste)s  l0illoe < max (nh_maX(s)uw,
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which yields

”hmax(s)Hl 2Hhmax(s)H1 2Hhmax(s)H1
- 3 ||Uz||1 S 2||hmax(s)||1

Hmuémm( ,
S S S

and ||hmaX(S) +Ui||% = “hmaX(S)H%+ HU'LHS < ||hmaX(5)||%+ HUzHlHUZHOO < 5||hma><(5)||§~ Combining

all these together with (29), we have

N N
IPpZhlla < AP Z(hmmax(s) + vi)ll2 < Y Niy/ 565, (PpZ) | mnaxs) |12
im1 im1
4/3\
5(5;5(P]5Z) [3AVs

205,(Z) — 63,(Z) — 205,(PpZ)
B 4v/5/3\\/ 564, (PpZ)
- 205,(Z) = 64,(Z) - 205,(PpZ)

Finally, using the relation (30) gives us the desired bound for Theorem 2. [

Of independent interest is that the proof of Theorem 2 can be generalized to a matrix of
D instead of a vector of D. That is, the proof can consider models where there are more than
one endogenous variables in the data-generating model. However, for clarity of presentation,

we don’t explore this route.

5.4 Proof of Corollary 2

Now, we establish Corollary 2 as a Corollary to Theorem 2. Specifically, the task is to
convert the RIP constants d05,(Z), d5,(Z), 65,(PpZ) and the constraint of 28,,(Z) — 65, (Z) —
204,(PpZ) > 0 into p and a similar constraint on s. To do this, note that for any s-sparse

vector o

Zalf= " Nz, + Y 2em0y(Z.Z)< Y o2+ Y (ed+ad)

Jj€supp(ar) i<g,1,j Esupp(cx) Jj€supp(ar) i<j,i,jEsupp(cx)

~Ql-) o=+ (- Dl

Esupp
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and

1Zal3= > 1Zi3ed+ ). 20ei(Zi,Z;)> > ai— )

Jj€supp(a) 1<g,1,j Esupp(cx) Jj€supp(a) i<j,i,jE€supp(ar)

= (1= (s = Dp)llex]3.
The upper and lower bounds on ||Zal|3 imply
5HZ) < (1+(s— D), and 65(Z) > (1— (s — Dy

For Pp.Z and all 2s-sparse vector x, we have

PoZz3< | > IPpZjzilla| <25 > PpZjul3

j€supp(z) jE€supp(x)

[PoZ,[3
=2 3 [Pzl =25 Y DSRR Iz
112

jEsupp(x) Jj€supp(x)

< 2s5p%6](Z) Z w7 < 25p°63,(Z) |3

J€supp(x)

Again, by the definition of 63, (PpZ), this implies that

5;5(P]52) < 23p2(52+5(Z).

1 1

Under the condition s < min (@’ 07

34
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(31)

), the denominator of the bound in Theorem 2



becomes

205,(Z) — 63,(Z) — 205,(PpZ) > 265,(Z) — (1 + 4sp*)03,(Z)
>2(1— (25 — 1)p) — (1 +4sp°)(1 + (25 — 1))
=1 —6su+3u—4sp® — 8s°p* 1 + 4sp*pu

> 1—6su —5sp® > 0.

For the numerator of the bound in Theorem 2, we have

41
565, (PpZ) < —\/_)\ 252p265.(Z) \/_0)\3/)\/1 + (25 — 1)p

4 4\/ 1
\/_)\Sp\/ 1+ 2su < < /\sp\/ = 05 Asp.
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Combining them together leads to the desired bound. Note that one can improve the con-

stants in the constraint of s with a bit more care on the above inequalities. O]

5.5 Proof of Theorem 3

The original estimation method can be rewritten as follows

.5 !
ay, B zargn;m §HPz(Y —Zo—Dp)|3 + A|elx
1
=argrr;m §H(Pﬁ + Py )Pz(Y — Za — DB)||; + Aljal)s
1 1
:argn%m 5||P,5PZ(Y — Za —Dpj)|2 + 5||P,5J>Z(Y — Za — DB)|2 + M|a||x

1 . 1
—argmin 5\|P,5(Y — Za) - Dp| + §||P]5LPZY — Py Zall5 + M|all:.

a7B

The first term, 1[|Pp(Y — Za) — D2 is always zero for any given o € RY because

Py (Y — Za) lies in the span of D and thus, we can pick 8 such that the first term is zero.
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The second term, 3||Pp.Pz(Y — Za)||3 + A|||]1, is the traditional Lasso problem where
the outcome is Py, PzY and the design matrix is Pp.Z. Hence, the minimizer for this

Lasso problem is also the minimizer for the original method. O
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Figure 1: Simulation Study of Estimation Performance Varying Endogeneity and Correlation
Only Exists Within Valid and Invalid Instruments. There are ten (L = 10) instruments.
Each line represents the median absolute estimation error (|3* — f|) after 500 simulations.
We fix the number of invalid instruments to s = 3. Each column in the plot corresponds
to different variation of instruments’ absolute and relative strength. There are two types of
absolute strengths, “Strong” and “Weak”, measured by the concentration parameter. There
are two types of relative strengths, “Equal” and “Variable”, measured by varying «* while
holding the absolute strength (i.e. concentration parameter) fixed. Each row corresponds to
the maximum correlation between instruments, but correlation only exists within valid and

invalid instruments.
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Figure 2: Simulation Study of Estimation Performance Varying the Number of Invalid In-
struments (s) and Correlation Only Exists Within Valid and and Invalid Instruments. There
are ten (L = 10) instruments. Each line represents the median absolute estimation error
(18* — f|) after 500 simulations. We fix the endogeneity ol to o7 = 0.8. Each column in
the plot corresponds to a different variation of instruments’ absolute and relative strength.
There are two types of absolute strengths, “Strong” and “Weak”, measured by the con-
centration parameter. There are two types of relative strengths, “Equal” and “Variable”,
measured by varying v* while holding the absolute strength fixed. Each row corresponds to
the maximum correlation between instruments, but correlation only exists within valid and

invalid instruments.
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Figure 3: Simulation Study of Estimation Performance Varying Endogeneity and Correlation
Only Exists Between Valid and Invalid Instruments. There are ten (L = 10) instruments.
Each line represents the median absolute estimation error (|3* — f|) after 500 simulations.
We fix the number of invalid instruments to s = 3. Each column in the plot corresponds to
a different variation of instruments’ absolute and relative strength. There are two types of
absolute strengths, “Strong” and “Weak”, measured by the concentration parameter. There
are two types of relative strengths, “Equal” and “Variable”, measured by varying «* while
holding the absolute strength (i.e. concentration parameter) fixed. Each row corresponds
to the maximum correlation between instruments, but correlation only exists between valid
and invalid instruments. 41
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(18* — f|) after 500 simulations. We fix the endogeneity ol to o7 = 0.8. Each column in
the plot corresponds to a different variation of instruments’ absolute and relative strength.
There are two types of absolute strengths, “Strong” and “Weak”, measured by the con-
centration parameter. There are two types of relative strengths, “Equal” and “Variable”,
measured by varying v* while holding the absolute strength fixed. Each row corresponds
to the maximum correlation between instruments, but correlation only exists between valid
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Figure 5: Simulation Study Varying Endogeneity and Correlation Exists Between All Instru-
ments. There are ten (L = 10) instruments. Each line represents the average proportions
of correctly selected valid instruments and correctly selected invalid instruments after 500
simulations. We fix the number of invalid instruments to s = 3. Each column in the plot
corresponds to a different variation of instruments’ absolute and relative strength. There
are two types of absolute strengths, “Strong” and “Weak”, measured by the concentration
parameter. There are two types of relative strengths, “Equal” and “Variable”, measured by
varying v* while holding the absolute strength (i.e. concentration parameter) fixed. Each
row corresponds to the maximum correlation between all instruments.
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Figure 7: Simulation Study Varying Endogeneity and Correlation Only Exists Within Valid
and Invalid Instruments. There are ten (L = 10) instruments. Each line represents the
average proportions of correctly selected valid instruments and correctly selected invalid
instruments after 500 simulations. We fix the number of invalid instruments to s = 3.
Each column in the plot corresponds to a different variation of instruments’ absolute and
relative strength. There are two types of absolute strengths, “Strong” and “Weak”, measured
by the concentration parameter. There are two types of relative strengths, “Equal” and
“Variable”, measured by varying v* while holding the absolute strength (i.e. concentration
parameter) fixed. Each row corresponds to the maximum correlation between instruments,
but correlation only exists within valid and i#®alid instruments.
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Figure 9: Simulation Study Varying Endogeneity and Correlation Only Exists Between
Valid and Invalid Instruments. There are ten (L = 10) instruments. Each line represents
the average proportions of correctly selected valid instruments and correctly selected invalid
instruments after 500 simulations. We fix the number of invalid instruments to s = 3.
Each column in the plot corresponds to a different variation of instruments’ absolute and
relative strength. There are two types of absolute strengths, “Strong” and “Weak”, measured
by the concentration parameter. There are two types of relative strengths, “Equal” and
“Variable”, measured by varying v* while holding the absolute strength (i.e. concentration
parameter) fixed. Each row corresponds to the maximum correlation between instruments,
but correlation only exists between valid and#nvalid instruments.
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Figure 10: Simulation Study Varying the Number of Invalid Instruments (s) and Correlation
Only Exists Between Valid and and Invalid Instruments. There are ten (L = 10) instruments.
Each line represents the average proportions of correctly selected valid instruments and
correctly selected invalid instruments after 500 simulations. We fix the endogeneity o7 to
ol = 0.8. Each column in the plot corresponds to a different variation of instruments’
absolute and relative strength. There are two types of absolute strengths, “Strong” and
“Weak” , measured by the concentration parameter. There are two types of relative strengths,
“Equal” and “Variable”, measured by varying v* while holding the absolute strength fixed.
Each row corresponds to the maximum correlation between instruments, but correlation only
exists between valid and invalid instruments48
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Figure 11: Simulation Study Varying Endogeneity and Correlation Exists Between All In-
struments. We also vary the instrument strength of valid and invalid instruments. There
are ten (L = 10) instruments. Each line represents the median absolute estimation error
(18* — B|) after 500 simulations. We fix the number of invalid instruments to s = 3. Each
column in the plot corresponds to a different variation of instruments’ absolute and relative
strength. There are two types of absolute strengths, “Strong” and “Weak”, measured by
the concentration parameter. There are two types of strengths for valid and invalid instru-
ments, “Stronger Invalid” and “Stronger Valid”, determined by varying ~* while holding
the absolute strength fixed. Each row corresponds to the maximum correlation between
instruments. 49
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Figure 12: Simulation Study Varying the Number of Invalid Instruments (s) and Correlation
Exists Between All Instruments. We also vary the instrument strength of valid and invalid
instruments. There are ten (L = 10) instruments. Each line represents the median absolute
estimation error (|8* — f|) after 500 simulations. We fix the endogeneity ol to ol =
0.8. Each column in the plot corresponds to a different variation of instruments’ absolute
and relative strength. There are two types of absolute strengths, “Strong” and “Weak”,
measured by the concentration parameter. There are two types of strengths for valid and
invalid instruments, “Stronger Invalid” and “Stronger Valid”, determined by varying ~*
while holding the absolute strength fixed. Each row corresponds to the maximum correlation
between instruments. 50
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Figure 13: Simulation Study Varying Endogeneity and Correlation Exists Between All In-
struments. We also vary the instrument strength of valid and invalid instruments. There are
ten (L = 10) instruments. Each line represents the average proportions of correctly selected
valid instruments and correctly selected invalid instruments after 500 simulations. We fix the
number of invalid instruments to s = 3. Each column in the plot corresponds to a different
variation of instruments’ absolute and relative strength. There are two types of absolute
strengths, “Strong” and “Weak”, measured by the concentration parameter. There are two
types of strengths for valid and invalid instruments, “Stronger Invalid” and “Stronger Valid”,
determined by varying +* while holding the absolute strength fixed. Each row corresponds
to the maximum correlation between instrundnts.
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Figure 14: Simulation Study Varying the Number of Invalid Instruments (s) and Correla-
tion Exists Between All Instruments. We also vary the instrument strength of valid and
invalid instruments. There are ten (L = 10) instruments. Each line represents the average
proportions of correctly selected valid instruments and correctly selected invalid instruments
after 500 simulations. We fix the endogeneity o to o7, = 0.8. Each column in the plot
corresponds to a different variation of instruments’ absolute and relative strength. There
are two types of absolute strengths, “Strong” and “Weak”, measured by the concentration
parameter. There are two types of strengths for valid and invalid instruments, “Stronger
Invalid” and “Stronger Valid”, determined by varying v* while holding the absolute strength
fixed. Each row corresponds to the maximumZorrelation between instruments.
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Figure 15: Simulation Study Varying Endogeneity and Correlation Only Exists Within Valid
and Invalid Instruments. We also vary the instrument strength of valid and invalid instru-
ments. There are ten (L = 10) instruments. Each line represents the median absolute
estimation error (|3* — (]) after 500 simulations. We fix the number of invalid instruments
to s = 3. Each column in the plot corresponds to a different variation of instruments’ abso-
lute and relative strength. There are two types of absolute strengths, “Strong” and “Weak”,
measured by the concentration parameter. There are two types of strengths for valid and in-
valid instruments, “Stronger Invalid” and “Stronger Valid”, determined by varying +* while
holding the absolute strength fixed. Each row corresponds to the maximum correlation
between instruments, but correlation only ex¥sts within valid and invalid instruments.
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Figure 16: Simulation Study Varying the Number of Invalid Instruments (s) and Correlation
Only Exists Within Valid and Invalid Instruments. We also vary the instrument strength of
valid and invalid instruments. There are ten (L = 10) instruments. Each line represents the
median absolute estimation error (|3* — j3|) after 500 simulations. We fix the endogeneity
o to o7, = 0.8. Each column in the plot corresponds to a different variation of instruments’
absolute and relative strength. There are two types of absolute strengths, “Strong” and
“Weak”, measured by the concentration parameter. There are two types of strengths for valid
and invalid instruments, “Stronger Invalid” and “Stronger Valid”, determined by varying ~*
while holding the absolute strength fixed. Each row corresponds to the maximum correlation
between instruments, but correlation only ex¥éts within valid and invalid instruments.
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Figure 17: Simulation Study Varying Endogeneity and Correlation Only Exists Within Valid
and Invalid Instruments. We also vary the instrument strength of valid and invalid instru-
ments. There are ten (L = 10) instruments. Each line represents the average proportions
of correctly selected valid instruments and correctly selected invalid instruments after 500
simulations. We fix the number of invalid instruments to s = 3. Each column in the plot
corresponds to a different variation of instruments’ absolute and relative strength. There
are two types of absolute strengths, “Strong” and “Weak”, measured by the concentration
parameter. There are two types of strengths for valid and invalid instruments, “Stronger
Invalid” and “Stronger Valid”, determined by varying v* while holding the absolute strength
fixed. Each row corresponds to the maximum@@orrelation between instruments, but correla-
tion only exists within valid and invalid instruments.
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Figure 18: Simulation Study Varying the Number of Invalid Instruments (s) and Correlation
Only Exists Within Valid and Invalid Instruments. We also vary the instrument strength
of valid and invalid instruments. There are ten (L = 10) instruments. Each line represents
the average proportions of correctly selected valid instruments and correctly selected invalid
instruments after 500 simulations. We fix the endogeneity o7, to o7, = 0.8. Each column in
the plot corresponds to a different variation of instruments’ absolute and relative strength.
There are two types of absolute strengths, “Strong” and “Weak”, measured by the con-
centration parameter. There are two types of strengths for valid and invalid instruments,
“Stronger Invalid” and “Stronger Valid”, determined by varying ~* while holding the abso-
lute strength fixed. Each row corresponds to 88e maximum correlation between instruments,
but correlation only exists within valid and invalid instruments.
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Figure 19: Simulation Study Varying Endogeneity and Correlation Only Exists Between
Valid and Invalid Instruments. We also vary the instrument strength of valid and invalid
instruments. There are ten (L = 10) instruments. Each line represents the median absolute
estimation error (|3*— ) after 500 simulations. We fix the number of invalid instruments to
s = 3. Each column in the plot corresponds to a different variation of instruments’ absolute
and relative strength. There are two types of absolute strengths, “Strong” and “Weak”,
measured by the concentration parameter. There are two types of strengths for valid and
invalid instruments, “Stronger Invalid” and “Stronger Valid”, determined by varying ~*
while holding the absolute strength fixed. Each row corresponds to the maximum correlation
between instruments, but correlation only exddts between valid and invalid instruments.
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Figure 20: Simulation Study Varying the Number of Invalid Instruments (s) and Correlation
Only Exists Between Valid and Invalid Instruments. We also vary the instrument strength
of valid and invalid instruments. There are ten (L = 10) instruments. Each line represents
median absolute estimation error (|3* — j3|) after 500 simulations. We fix the endogeneity
o to o7, = 0.8. Each column in the plot corresponds to a different variation of instruments’
absolute and relative strength. There are two types of absolute strengths, “Strong” and
“Weak”, measured by the concentration parameter. There are two types of strengths for valid
and invalid instruments, “Stronger Invalid” and “Stronger Valid”, determined by varying ~*
while holding the absolute strength fixed. Each row corresponds to the maximum correlation
between instruments, but correlation only ex¥$ts between valid and invalid instruments.
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Figure 21: Simulation Study Varying Endogeneity and Correlation Only Exists Between
Valid and Invalid Instruments. We also vary the instrument strength of valid and invalid
instruments. There are ten (L = 10) instruments. Each line represents the average propor-
tions of correctly selected valid instruments and correctly selected invalid instruments after
500 simulations. We fix the number of invalid instruments to s = 3. Each column in the plot
corresponds to a different variation of instruments’ absolute and relative strength. There
are two types of absolute strengths, “Strong” and “Weak”, measured by the concentration
parameter. There are two types of strengths for valid and invalid instruments, “Stronger
Invalid” and “Stronger Valid”, determined by varying v* while holding the absolute strength
fixed. Each row corresponds to maximum cotPelation between instruments, but correlation
only exists between valid and invalid instruments.
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Figure 22: Simulation Study Varying the Number of Invalid Instruments (s) and Correlation
Only Exists Between Valid and Invalid Instruments. We also vary the instrument strength
of valid and invalid instruments. There are ten (L = 10) instruments. Each line represents
the average proportions of correctly selected valid instruments and correctly selected invalid
instruments after 500 simulations. We fix the endogeneity o7, to o7, = 0.8. Each column in
the plot corresponds to a different variation of instruments’ absolute and relative strength.
There are two types of absolute strengths, “Strong” and “Weak”, measured by the con-
centration parameter. There are two types of strengths for valid and invalid instruments,
“Stronger Invalid” and “Stronger Valid”, determined by varying «* while holding the ab-
solute strength fixed. Each row corresponds @ maximum correlation between instruments,
but correlation only exists between valid and invalid instruments.
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Figure 23: Simulation Study of Estimation Performance Varying Endogeneity and Corre-
lation Exists Between All Instruments. There are 100 (

= 100) instruments. Each line

represents the median absolute estimation error (|3* — j|) after 500 simulations. We fix the
number of invalid instruments to s = 30. Each column in the plot corresponds to a different
variation of instruments’ absolute and relative strength. There are two types of absolute
strengths, “Strong” and “Weak”, measured by the concentration parameter. There are two
types of relative strengths, “Equal” and “Variable”, measured by varying ~* while holding
the absolute strength (i.e. concentration parameter) fixed. Each row corresponds to the
maximum correlation between instruments.
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Figure 24: Simulation Study of Estimation Performance Varying the Number of Invalid
Instruments (s) and Correlation Exists Between All Instruments. There are 100 (L = 100)
instruments. Each line represents the median absolute estimation error (|3* — 3|) after 500
simulations. We fix the endogeneity o7 to o7, = 0.8. Each column in the plot corresponds to
a different variation of instruments’ absolute and relative strength. There are two types of
absolute strengths, “Strong” and “Weak”, measured by the concentration parameter. There
are two types of relative strengths, “Equal” and “Variable”, measured by varying «* while
holding the absolute strength fixed. Each row corresponds to maximum correlation between

instruments.
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Figure 25: Simulation Study Varying Endogeneity and Correlation Exists Between All Instru-
ments. There are ten (L = 100) instruments. Each line represents the average proportions
of correctly selected valid instruments and correctly selected invalid instruments after 500
simulations. We fix the number of invalid instruments to s = 30. Each column in the plot
corresponds to a different variation of instruments’ absolute and relative strength. There
are two types of absolute strengths, “Strong” and “Weak”, measured by the concentration
parameter. There are two types of relative strengths, “Equal” and “Variable”, measured by
varying v* while holding the absolute strength (i.e. concentration parameter) fixed. Each
row corresponds to the maximum correlation between all instruments.
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Figure 26: Simulation Study Varying the Number of Invalid Instruments (s) and Correlation
Exists Between All Instruments. There are 100 (L = 100) instruments. Each line represents
the average proportions of correctly selected valid instruments and correctly selected invalid
instruments after 500 simulations. We fix the endogeneity o7, to o7, = 0.8. Each column in
the plot corresponds to a different variation of instruments’ absolute and relative strength.
There are two types of absolute strengths, “Strong” and “Weak”, measured by the con-
centration parameter. There are two types of relative strengths, “Equal” and “Variable”,
measured by varying v* while holding the absolute strength fixed. Each row corresponds to
maximum correlation between all instruments.
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