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Abstract

In the supplementary material, we provide additional simulation results (Section A),
full oracle results and all proofs (Section B), additional methodological details, including
proofs of the variational update equations (Section C), and examples of compatible design
matrices (Section D).

A Additional numerical results

A.1 Ozone interaction data

We apply our method to the real world ozone interaction data investigated in [1]. The
dataset contains n = 203 readings of maximal daily ozone measured in the Los Angeles
basin and p = 134 variables modeling the pairwise interaction of 9 meteorological and 3 time
variables. We firstly normalize the design matrix by centering and rescaling each column to
have Euclidean norm equal to

√
n and then add a column vector of ones to add an intercept

to the model.1 We apply the four methods investigated above (i.e. our method sparsevb

[7], varbvs, EMVS, SSLASSO) with unknown noise variance ς2, using the method settings
described in Section 5.2. We also tried to apply the ebreg method, but due to the highly co-
linear nature of the design matrix, the code gave errors when trying to compute the Cholesky
decomposition.

As we do not know the underlying truth, we consider the 10-fold cross validation prediction
error, i.e. we use nine folds to compute the posterior mean or MAP θ̂ and then use the 10th
fold to compute the prediction error ‖Y −Xθ̂‖2. We report the averaged out cross-validation
errors in Table 3, together with the runtimes and number of selected covariates. Our method
outperforms the other approaches in cross-validated prediction loss. Furthermore, while there
is some overlap between the models selected by the various methods, the results are quite
different, see Figure 2.

A.2 Comparing the VB algorithms

We compare our VB method with Laplace slabs (Algorithm 1) with different variations of
the VB algorithm. First, we consider the other mean-field VB posterior Q̃ derived from the
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1Except for EMVS, since adding an intercept resulted in an error message.
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Figure 2: Marginal inclusion probabilities of the variables for the ozone interaction data using
sparsevb (blue), EMVS (purple), SSLASSO (green) and varbvs (red).

Table 3: Cross-validated `2-estimation error of Bayesian model selection methods

data \ Method sparsevb varbvs EMVS SSLASSO

CV error 16.43 59.49 74.45 53.28

model size 9 7 14 5

runtime (sec) 1.49 1.14 0.02 0.10
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variational class QMF (Algorithm 4 in Section C.2). Next, we consider the VB method with
Gaussian prior slabs, which is the standard choice in the literature, see for instance [10, 4, 9],
both with component-wise and batch-wise computational approaches, see Algorithms 2 and
3 in Section C.2. To compensate for the over-shrinkage of the posterior mean caused by the
light tail of the Gaussian slabs, we also consider centered Gaussian prior slabs with standard
deviation set to the (unknown) oracle ρ = ‖θ0‖2, as proposed by [6] for the sequence model
(i.e. X = I the identity matrix).

In all experiments, we placed the non-zero signal components θi = A at the beginning of
the signal. In the first experiment, (i) we take the identity design matrix X = In and set
n = p = 400, s = 40, A = 4

√
log n. In the other three experiments, we consider a Gaussian

design matrix with entries Xij
iid∼ N(0, τ2) and vary the parameters n, p, s, τ and A. We

take (ii) (n, p, s, τ) = (100, 200, 20, 1), A
iid∼ U(0, 2 log n); (iii) (n, p, s, τ) = (200, 800, 40, 0.1),

A = 2 log n; (iv) (n, p, s, τ) = (100, 400, 15, 0.5), A
iid∼ U(−8, 8). In all experiments, we take

ς = 1 assumed to be known. The results over 200 runs are reported in Table 4 and we plot
the outcome of a typical run in Figure 3.

Our Laplace VB method (sparsevb) with variational class PMF typically outperforms the
other VB algorithms. From the identity design case (i), it is clear that Gaussian prior slabs
provide suboptimal recovery for θ0 unless the prior slab variance is rescaled by the norm of
θ0. However, the rescaled Gaussian slabs perform much less well in the Gaussian design cases
(ii)-(iv). The other mean-field variational class QMF performs similarly to our main method
in the identity design case, but significantly worse in the more complicated Gaussian design
cases. This is due to discrete nature of the variational parameter γ ∈ {0, 1} in this family,
which makes the optimization problem even more difficult, causing the method to frequently
get stuck at a poor local minimum. We do not report run times as the sparsevb R-package
is optimized for computation and therefore runs substantially faster than the other methods,
which are more simply implemented.

A.3 The effect of the hyper-parameter λ

Theorem 1 states that for a wide range of hyper-parameter values λ ∈ [‖X‖p , C‖X‖
√

log p
s0

],
our VB algorithm has good asymptotic properties. However, the finite-sample performance
depends on λ as we now investigate. We ran our algorithm for different choices of λ, ranging
from 1/20 to 20, on simulated data similar to that in the preceding subsections.

We consider four different settings, each with Gaussian design with entriesXij
iid∼ N(0, τ2),

non-zero signal components set to θi = A and noise variance ς2 = 1 assumed to be known.
We take (i) (n, p, s, τ) = (200, 300, 15, 0.5), A = 2 log n; (ii) (n, p, s, τ) = (500, 1000, 50, 1),

A = 2 log n; (iii) (n, p, s, τ) = (200, 500, 20, 0.2), A
iid∼ U(−10, 10); and (iv) (n, p, s, τ) =

(1000, 2000, 15, 2), A
iid∼ U(−8, 8). In all cases, the non-zero signal components are located

at the beginning of the signal. We ran each algorithm 200 times and report the results in
Table 5. The choice of λ can indeed significantly influence the finite-sample behaviour of
the algorithm (e.g. cases (ii) and (iii)), but not always ((i) and (iv)). There was not clear
evidence to support a particular fixed choice of λ, since larger values sometimes performed
better ((ii) and (iv)) and sometime worse ((i) and (iii)). This suggests using a data-driven
choice of λ may be helpful in practice. As expected, larger choices for λ, which cause more
shrinkage, result in smaller FDR and TPR. The runtime across hyper-parameter choices were
broadly comparable.
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Metric Method\ Experiment (i) (ii) (iii) (iv)

`2 − error

Laplace PMF 8.80 ± 0.85 0.60 ± 0.90 9.25 ± 9.73 1.08 ± 0.20
Laplace QMF 8.80 ± 0.85 7.07 ± 1.48 39.98 ± 6.88 6.56 ± 1.97
Gauss 31.06 ± 0.49 0.78 ± 1.14 43.58 ± 2.94 1.40 ± 0.29
Gauss (batch-wise) 31.11 ± 0.48 16.38 ± 0.79 66.98 ± 0.00 18.03 ± 0.00
Gauss (ρ = ‖θ0‖2) 6.26 ± 0.72 5.97 ± 6.16 58.12 ± 19.01 2.05 ± 3.59

FDR

Laplace PMF 0.00 ± 0.00 0.00 ± 0.01 0.03 ± 0.11 0.00 ± 0.02
Laplace QMF 0.00 ± 0.00 0.70 ± 0.07 0.45 ± 0.08 0.55 ± 0.14
Gauss 0.00 ± 0.00 0.00 ± 0.00 0.50 ± 0.03 0.01 ± 0.03
Gauss (batch-wise) 0.00 ± 0.00 0.87 ± 0.01 0.62 ± 0.03 0.82 ± 0.03
Gauss (ρ = ‖θ0‖2) 0.00 ± 0.00 0.25 ± 0.36 0.57 ± 0.21 0.06 ± 0.21

TPR

Laplace PMF 1.00 ± 0.00 0.89 ± 0.02 0.99 ± 0.06 0.81 ± 0.03
Laplace QMF 1.00 ± 0.00 0.81 ± 0.06 0.88 ± 0.08 0.74 ± 0.07
Gauss 1.00 ± 0.00 0.89 ± 0.02 0.94 ± 0.05 0.81 ± 0.03
Gauss (batch-wise) 1.00 ± 0.00 0.88 ± 0.07 0.82 ± 0.07 0.68 ± 0.08
Gauss (ρ = ‖θ0‖2) 1.00 ± 0.00 0.81 ± 0.10 0.58 ± 0.17 0.78 ± 0.10

Table 4: Linear regression with (i) identity design X = In, and (ii) − (iv) Gaussian design

Xij
iid∼ N(0, τ2). The non-zero coefficients are located in the beginning of the signal. The

parameters (n, p, s, A) are set to (i) (400, 400, 40, 4
√

log n); (ii) (100, 200, 20, U(0, 2 log(n)));
(iii) (200, 800, 40, 2 log n); (iv) (100, 400, 15, U(−8, 8)). We set (ii) τ = 1; (iii) τ = 0.1; (iv)
τ = 0.5. We compare the means and standard deviations over 200 runs for our method and
other variations of the VB algorithm.

Metric Method (i) (ii) (iii) (iv)

`2 − error

λ = 1/20 0.56 ± 0.11 2.92 ± 7.84 2.49 ± 0.50 0.09 ± 0.02
λ = 1/4 0.57 ± 0.12 0.97 ± 3.65 2.34 ± 0.50 0.08 ± 0.02
λ = 1 0.57 ± 0.11 0.34 ± 0.04 2.38 ± 0.48 0.08 ± 0.02
λ = 4 0.67 ± 0.12 0.35 ± 0.04 3.56 ± 0.51 0.07 ± 0.02
λ = 20 1.85 ± 0.22 0.47 ± 0.05 11.94 ± 1.01 0.07 ± 0.02

FDR

λ = 1/20 0.00 ± 0.00 0.09 ± 0.27 0.00 ± 0.00 0.00 ± 0.00
λ = 1/4 0.00 ± 0.01 0.03 ± 0.15 0.00 ± 0.00 0.00 ± 0.00
λ = 1 0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.01 0.00 ± 0.00
λ = 4 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.01 0.00 ± 0.01
λ = 20 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.02 0.00 ± 0.00

TPR

λ = 1/20 1.00 ± 0.00 1.00 ± 0.00 0.91 ± 0.04 0.95 ± 0.03
λ = 1/4 1.00 ± 0.00 1.00 ± 0.00 0.92 ± 0.04 0.96 ± 0.03
λ = 1 1.00 ± 0.00 1.00 ± 0.00 0.92 ± 0.04 0.97 ± 0.03
λ = 4 1.00 ± 0.00 1.00 ± 0.00 0.90 ± 0.04 0.98 ± 0.03
λ = 20 1.00 ± 0.00 1.00 ± 0.00 0.59 ± 0.07 0.98 ± 0.03

runtime (sec)

λ = 1/20 0.34 ± 0.29 3.23 ± 0.96 0.51 ± 0.10 4.23 ± 0.46
λ = 1/4 0.27 ± 0.07 3.40 ± 0.98 0.52 ± 0.13 4.23 ± 0.50
λ = 1 0.45 ± 0.41 2.98 ± 0.72 0.49 ± 0.09 4.23 ± 0.46
λ = 4 0.41 ± 0.47 2.46 ± 0.59 0.51 ± 0.12 4.25 ± 0.50
λ = 20 0.32 ± 0.24 2.17 ± 0.46 0.50 ± 0.07 4.29 ± 0.65

Table 5: Performance of sparsevb for different hyper-parameter values λ. We take Gaussian

design Xij
iid∼ N(0, τ2), place the non-zero signal coefficients θ0,i = A at the beginning of

the signal, and set the parameters (n, p, s, τ, A) equal to (i) (200, 300, 15, 0.5, 2 log n); (ii)
(500, 1000, 50, 1, 2 log n); (iii) (200, 500, 20, 0.2, U(−10, 10)); (iv) (1000, 2000, 15, 2, U(−8, 8)).
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Figure 3: Linear regression with (i) identity design X = In and (ii)-(iv) Gaussian design

Xij
iid∼ N(0, τ2). We plot the underlying signal with non-zero components θi = A (green)

and the posterior means of Π̃ (blue), Q̃ (purple), VB with Gaussian slabs (red) and VB with
rescaled Gaussian slabs (orange). From left to right and top to bottom, we set the parameters
(n, p, s, A): (i) (400, 400, 40, 4

√
log n); (ii) (100, 200, 20, 2 log n); (iii) (200, 800, 40, 2 log n); (iv)

(100, 400, 15, U(−8, 8)). We set (ii) τ = 1; (iii) τ = 0.1; (iv) τ = 0.5.
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Metric Method (i) N(0, 1) (ii) Lap(0, 1) (iii) U(−2, 2) (iv) Student t3

`2 − error
sparsevb 0.18 ± 0.05 0.24 ± 0.04 0.21 ± 0.03 0.30 ± 0.06
varbvs 0.17 ± 0.03 0.24 ± 0.04 0.21 ± 0.03 0.30 ± 0.06
EMVS 0.59 ± 0.03 1.03 ± 0.14 0.89 ± 0.16 1.13 ± 0.43
SSLASSO 5.99 ± 0.98 4.07 ± 1.02 4.88 ± 0.62 4.87 ± 0.78
ebreg 0.26 ± 0.05 0.26 ± 0.07 0.23 ± 0.05 0.23 ± 0.05

FDR
sparsevb 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
varbvs 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.01
EMVS 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.01
SSLASSO 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
ebreg 0.01 ± 0.02 0.01 ± 0.05 0.01 ± 0.05 0.01 ± 0.03

TPR
sparsevb 1.00 ± 0.01 1.00 ± 0.00 0.95 ± 0.00 0.90 ± 0.01
varbvs 1.00 ± 0.00 1.00 ± 0.00 0.95 ± 0.01 0.90 ± 0.01
EMVS 0.95 ± 0.02 0.92 ± 0.02 0.89 ± 0.02 0.81 ± 0.04
SSLASSO 0.67 ± 0.04 0.72 ± 0.05 0.64 ± 0.02 0.64 ± 0.04
ebreg 1.00 ± 0.01 1.00 ± 0.00 0.95 ± 0.01 0.90 ± 0.01

runtime (sec)
sparsevb 0.52 ± 0.28 0.51 ± 0.18 0.44 ± 0.07 0.61 ± 0.35
varbvs 0.57 ± 0.22 0.61 ± 0.31 0.45 ± 0.08 0.47 ± 0.10
EMVS 2.17 ± 0.82 2.41 ± 1.06 1.64 ± 0.20 1.74 ± 0.23
SSLASSO 0.31 ± 0.15 0.22 ± 0.08 0.24 ± 0.05 0.28 ± 0.07
ebreg 29.37 ± 7.10 24.89 ± 3.78 27.72 ± 4.51 28.19 ±4.51

Table 6: Noise misspecification: we compare the robustness of Bayesian model selection

methods under misspecified noise. We take Gaussian design Xij
iid∼ N(0, 22), set the model

parameters n = 200, p = 400, s = 20, and take non-zero coefficients θi
iid∼ U(−10, 10) located

in the beginning of the signal. We ran each experiment 200 times and report the means and
standard deviations.

A.4 Noise misspecification

We investigate the robustness of the Bayesian model selection methods to misspecification
of the noise distribution in practice. Note that our theoretical results are also robust to
some misspecification, see Remark B.1 in Section B below. We consider Gaussian design

Xij
iid∼ N(0, 22), set the model parameters n = 200, p = 400, s = 20, and take non-zero

signal coefficients θi
iid∼ U(−10, 10) located in the beginning of θ. We compare the correctly-

specified Gaussian noise case (i) Zi
iid∼ N(0, 1) in model (1) with the misspecified noise cases:

(ii) Laplace noise Zi
iid∼ Lap(0, 1); (iii) uniform noise Zi

iid∼ U(−2, 2); (iv) Student noise with

3 degrees of freedom Zi
iid∼ t3. We apply the same parametrizations of the methods as in

Section 5.2. We ran each experiments 200 times and collect the results in Table 6. Our
method (sparsevb) gave similar results to varbvs, ebreg and EMVS, while the SSLASSO
performed slightly worse. The noise distribution does not seem to have a major effect on
the results, hence these algorithms seem robust to noise misspecification. It is worthwhile to
further investigate this phenomenon both empirically and analytically.

A.5 Bayesian variable selection methods under correlated inputs

We lastly consider the common situation of correlated input variables. We take each row

Xi·
iid∼ Np(0,Σ) with Σjk = ρ for j 6= k and Σjj = 1, giving standard normal predictors with

non-zero correlation ρ. We take (i) (n, p, s, ς) = (100, 400, 10, 0.2), correlation ρ = 0.3 and
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Metric Method (i) (ii) (iii) (iv)

`2 − error
sparsevb 0.12 ± 0.06 0.89 ± 1.40 1.97 ± 0.37 4.85 ± 1.29
varbvs 0.13 ± 0.06 0.30 ± 0.10 2.10 ± 0.43 27.18 ± 23.59
EMVS 4.80 ± 0.21 5.29 ± 0.26 4.04 ± 0.30 7.04 ± 0.98
SSLASSO 1.62 ± 0.35 0.97 ± 0.36 56.70 ± 7.78 79.17 ± 4.95
ebreg 0.34 ± 0.06 0.56 ± 0.14 5.41 ± 0.67 6.41 ± 1.21

FDR
sparsevb 0.00 ± 0.00 0.18 ± 0.34 0.00 ± 0.01 0.00 ± 0.00
varbvs 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.02 0.31 ± 0.26
EMVS 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.01 0.14 ± 0.08
SSLASSO 0.00 ± 0.00 0.00 ± 0.00 0.18 ± 0.16 0.41 ± 0.19
ebreg 0.00 ± 0.00 0.00 ± 0.00 0.43 ± 0.05 0.28 ± 0.08

TPR
sparsevb 0.96 ± 0.05 0.95 ± 0.10 1.00 ± 0.00 1.00 ± 0.00
varbvs 0.95 ± 0.05 1.00 ± 0.00 1.00 ± 0.00 0.69 ± 0.32
EMVS 0.01 ± 0.03 0.02 ± 0.04 1.00 ± 0.00 1.00 ± 0.00
SSLASSO 0.48 ± 0.04 0.81 ± 0.08 0.34 ± 0.10 0.18 ± 0.05
ebreg 0.90 ± 0.01 0.96 ± 0.05 1.00 ± 0.00 1.00 ± 0.00

runtime (sec)
sparsevb 0.64 ± 0.26 0.51 ± 0.20 1.84 ± 2.00 2.61 ± 0.54
varbvs 0.84 ± 0.24 1.53 ± 0.60 21.16 ± 22.46 77.39 ± 14.84
EMVS 0.23 ± 0.23 0.23 ± 0.14 1.20 ± 1.27 1.21 ± 0.08
SSLASSO 0.82 ± 0.26 0.40 ± 0.12 0.20 ± 0.11 0.20 ± 0.03
ebreg 13.90 ± 1.62 15.06 ± 2.96 74.14 ± 6.36 65.98 ± 4.41

Table 7: Linear regression with correlated Gaussian design Xi·
iid∼ Np(0,Σ), with cor-

relation Σjk = ρ for j 6= k and Σjj = 1. The noise variance ς2 is unknown and
the non-zero signal coefficients equal θi = A. We take the parameters (n, p, s, A, ρ, ς)

equal to (i) (100, 400, 10,
iid∼ U(−3, 3), 0.3, 0.2) (non-zero coefficients at the beginning); (ii)

(100, 400, 10,
iid∼ U(−3, 3), 0.7, 0.2) (at the beginning); (iii) (200, 800, 20, 2 log n, 0.3, 5) (at the

end); (iv) (200, 800, 20, 2 log n, 0.7, 5) (at the end). We compare the means and standard
deviations over 100 runs.

non-zero coefficients θi
iid∼ U(−3, 3) at the beginning of the signal; (ii) the same setting as in

(i), but with higher correlation ρ = 0.7; (iii) (n, p, s, ς) = (200, 800, 20, 5), correlation ρ = 0.3
and non-zero coefficients θi = 2 log n at the end of the signal; (iv) the same setting as in (iii),
but with higher correlation ρ = 0.7. We apply the same parametrizations of the methods as
in Section 5.2. The results are summarized in Table 7.

One might expect that mean-field VB methods should not perform so well under correlated
inputs due to their factorizable structure. This was not the case in our simulations, where
the VB methods perform competitively with the other methods, often providing the best
results (except perhaps in (iv), where varbvs sometimes sometimes gave large `2 error). The
correlated design also does not seem to substantially influence the run time.

While our simulations are certainly not extensive, they suggest that mean-field VB can
perhaps still be effective in certain correlated input settings and understanding the exact
effect of correlation on VB seems to be a subtle question. It is currently not well understood
how VB, or indeed even the true posterior, behaves in general correlated design settings.
This important and practically very relevant setting requires further investigation, both the-
oretically and empirically.
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B Proofs

B.1 Full oracle results

The proofs of the full oracle results in Theorems B.1 and B.2 below rely on Theorem 5, which
allows one to exploit exponential probability bounds for the posterior to control the corre-
sponding probability under the variational approximation. To prove our results, it therefore
suffices to show that on a suitable event, one can (a) control the KL divergence between the
variational approximation and the true posterior and (b) establish the appropriate posterior
tail inequality (14). Part (a) is dealt with in Section B.2 and (b) in Section B.3 below. Define
the events

T0 = {‖XT (Y −Xθ0)‖∞ ≤ 2‖X‖
√

log p} (B.1)

and

T1 = T1(Γ, ε, κ) = T0 ∩
{

Π
(
θ : |Sθ| > Γ

∣∣Y ) ≤ 1/4
}
∩
{

Π
(
θ : ‖θ − θ0‖2 > ε|Y

)
≤ e−κ

}
,

(B.2)

for Γ, ε, κ > 0. The middle event in T1 says that the posterior puts most of its mass on models
of dimension at most Γ; the number 1/4 is unimportant and any number less than 1/2 suffices.
The third event says the posterior places all but exponentially small probability on an `2-ball
of radius ε about the truth and is used for a localization argument when bounding the KL
divergence. The proof uses an iterative structure, using successive posterior localizations to
eventually bound the KL divergence in Section B.2. This idea is a useful technique from
Bayesian nonparametrics, see e.g. [11].

For parameters θ0, θ∗ ∈ Rp, set S∗ = Sθ∗ and s∗ = |S∗| and define

∆∗ = (1 + 16
φ(S∗)2

λ
λ̄

)s∗ log p+ ‖X(θ0 − θ∗)‖22. (B.3)

This quantity appears in the posterior exponential probabilities, which take the form e−c∆∗ .
We require the following parameter choices for the event T1 in (B.2):

Γ = Γθ0,θ∗ = s∗ +
12

A4

(
1 +

16

φ(S∗)2

λ

λ̄

)
s∗ +

12‖X(θ0 − θ∗)‖22
A4 log p

= s∗ +
12∆∗
A4 log p

,

ε = εθ0,θ∗ =
ML

1/2
0

‖X‖ψ̃L0+2(S0)2

[√
s∗ log p
φ(S∗)

+ ‖X(θ0 − θ∗)‖2
]
,

κ = κθ0,θ∗ = (Γθ0,θ∗ + 1) log p,

L0 = max(3 + 12/A4, 2 +A4/2)

(B.4)

for some M > 0 large enough depending only on A1, A3, A4.

Lemma B.1. (i) The event T0 defined in (B.1) satisfies

inf
θ0∈Rp

Pθ0(T0) ≥ 1− 2/p.

(ii) Suppose the prior satisfies (4) and (5). For θ0 ∈ Rp\{0}, let θ∗ ∈ Rp be any vector
satisfying 1 ≤ s∗ = |Sθ∗ | ≤ |Sθ0 | = s0,

s∗
φ(S∗)2

≤ s0

φ(S0)2
and ‖X(θ0 − θ∗)‖22 ≤ (s0 − s∗) log p.

8



Then the event T1 given in (B.2) with parameters Γ, ε, κ chosen according to (B.4) satisfies

Pθ0(T1)→ 1

uniformly over all θ0 and θ∗ as above.

Proof. (i) Under Pθ0 , XT (Y −Xθ0) = XTZ ∼ Np(0, X
TX). Since (XTZ)i ∼ N(0, (XTX)ii)

and (XTX)ii ≤ ‖X‖2 for all 1 ≤ i ≤ p, a union bound and the standard Gaussian tail
inequality give

Pθ0(T c0 ) = P (‖XTZ‖∞ ≥ 2‖X‖
√

log p) ≤
p∑
i=1

P (|N(0, 1)| ≥ 2
√

log p) ≤ p 2√
2π
e−2 log p.

(ii) Applying Markov’s inequality and Lemma B.5 below with M = 3 gives

Pθ0
({

Π
(
θ : |Sθ| > Γθ0,θ∗ |Y

)
> 1/4

}
∩ T0

)
≤ 4Eθ0Π

(
θ : |Sθ| > Γθ0,θ∗ |Y

)
1T0

≤ C(A2, A4) exp
(
−
(

1 + 16
φ(S∗)2

λ
λ̄

)
s∗ log p

)
≤ C(A2, A4)e−s∗ log p ≤ C(A2, A4)e− log p.

Since the right-hand side does not depend on θ0 or θ∗, the probability tends to zero uniformly
as required.

Under the assumptions on θ∗,

(1 + 16
φ(S∗)2

λ
λ̄

)s∗ log p+ ‖X(θ0 − θ∗)‖22 ≤ s∗ log p+ 16
φ(S0)2

λ
λ̄
s0 log p+ (s0 − s∗) log p

= (1 + 16
φ(S0)2

λ
λ̄

)s0 log p.
(B.5)

Therefore, applying Lemma B.6 with L ≥ 1 yields

Eθ0Π

(
θ : ‖θ − θ0‖2 >

ML1/2

‖X‖ψL+2(S0)2

[√
s∗ log p

φ(S∗)
+ ‖X(θ0 − θ∗)‖2

] ∣∣∣Y) 1T0 ,

≤ C exp
(
−
[
L ∧ 4(L+2)

A4

] [
(1 + 16

φ(S∗)2
λ
λ̄

)s∗ log p+ ‖X(θ0 − θ∗)‖22
])
.

Using Markov’s inequality and the last display with L = L0 = max(3 + 12/A4, 2 +A4/2),

Pθ0
(
{Π
(
θ : ‖θ − θ0‖2 > ε|Y ) > e−κ

}
∩ T0

)
≤ eκEθ0Π

(
θ : ‖θ − θ0‖2 > ε|Y

)
1T0

≤ C exp
(
−
[
L ∧ 4(L+2)

A4
− 12

A4

] [
(1 + 16

φ(S∗)2
λ
λ̄

)s∗ log p+ ‖X(θ0 − θ∗)‖22
]

+ (s∗ + 1) log p
)

≤ Ce−s∗ log p ≤ Ce− log p.

Since the right-hand side again does not depend on θ0 or θ∗, the probability tends to zero
uniformly as required.

Theorem B.1 (Full oracle recovery). Suppose the model selection prior (3) satisfies (4) and
(5). For θ0 ∈ Rp\{0}, let θ∗ ∈ Rp be any vector satisfying 1 ≤ s∗ = |Sθ∗ | ≤ |Sθ0 | = s0 and
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‖X(θ0 − θ∗)‖22 ≤ (s0 − s∗) log p. Then the variational Bayes posterior Π̃ satisfies, uniformly
over all θ0 and θ∗ as above,

Eθ0Π̃

(
θ : ‖X(θ − θ0)‖2 ≥

Mρ
1/2
n

ψρn(S0)

[√
s∗ log p

φ(S∗)
+ ‖X(θ0 − θ∗)‖2

])

.
1

ρn

{
1 +

log(1/φ̃(Γ))

log p
+

λs0

‖X‖ψ̃L0+2(S0)2φ(S0)φ̃(Γ)2
√

log p

}
+ o(1)

for any ρn > 2, where Γ, L0 are given in (B.4). Moreover, both

Eθ0Π̃

(
θ : ‖θ − θ0‖1 > ‖θ0 − θ∗‖1 +

Mρn

ψρn(S0)2

[
s∗
√

log p

‖X‖φ(S∗)2
+
‖X(θ0 − θ∗)‖22
‖X‖
√

log p

])
,

Eθ0Π̃

(
θ : ‖θ − θ0‖2 >

Mρ
1/2
n

‖X‖ψ̃ρn(S0)2

[√
s∗ log p

φ(S∗)
+ ‖X(θ0 − θ∗)‖2

])
,

satisfy the same inequality. Furthermore, the exact same inequalities hold for the variational
Bayes posteriors Q̃ and Q̂.

Proof. Suppose first that s∗/φ(S∗)
2 ≤ s0/φ(S0)2. Let T1 denote the event in (B.2) with

parameters (B.4), which by Lemma B.1(ii) satisfies Pθ0(T1) → 1 uniformly over all θ0, θ∗ in
the theorem hypothesis. Set

Θn =

{
θ : ‖X(θ − θ0)‖2 ≥

Mρ
1/2
n

ψρn(S0)

[√
s∗ log p

φ(S∗)
+ ‖X(θ0 − θ∗)‖2

]}

and note Eθ0Π̃(Θn) ≤ Eθ0Π̃(Θn)1T1 + o(1). We now apply Theorem 5 with this choice of Θn

on the event T1. For ∆∗ defined in (B.3), it holds that ∆∗ ≤ (1 + 16
φ(S0)2

λ
λ̄

)s0 log p by (B.5).

Using Lemma B.6 below with L+ 2 = ρn thus gives

Eθ0Π(Θn|Y )1T0 ≤ Ce−cρn∆∗ ,

for p large enough depending on A1, A3, A4, and where C, c > 0 also depend only on the
prior parameters. Since T1 ⊂ T0 by (B.2), condition (14) is satisfied on T1 with δn = cρn∆∗.
Applying Theorem 5 gives

Eθ0Π̃(Θn)1T1 ≤ 2
cρn∆∗

KL(Π̃‖Π(·|Y ))1T1 + o(1).

Note that the parameters (B.4) satisfy Γ log p . ∆∗ and ε .
√
s0 log p

‖X‖ψ̃L0+2(S0)2φ(S0)
. Using this

and Lemma B.4 below,

2
cρn∆∗

KL(Π̃‖Π(·|Y ))1T1 .
1

ρn

{
1 +

log(1/φ̃(Γ))

log p
+

λs0

‖X‖ψ̃L0+2(S0)2φ(S0)φ̃(Γ)2
√

log p

}
+ o(1)

as required.

If s∗/φ(S∗)
2 > s0/φ(S0)2, then

√
s∗ log p
φ(S∗)

+‖X(θ0−θ∗)‖2 >
√
s0 log p
φ(S0) . The desired inequality

then immediately follows from the stronger inequality with θ∗ = θ0 just established above.
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The results for `1 and `2 loss follow exactly as above by using the respective inequalities for
the `1 and `2 oracle contraction rates in Lemma B.6 to establish (14).

Similarly, the results for the variational Bayes posteriors Q̂ and Q̃ based on the mean-field
variational families (9) and (10) follow identically upon using Lemmas B.2 and B.3 instead
of Lemma B.4 to control the Kullback-Leibler divergence.

Theorem B.2 (Full oracle dimension). Suppose the model selection prior (3) satisfies (4)
and (5). For θ0 ∈ Rp\{0}, let θ∗ ∈ Rp be any vector satisfying 1 ≤ s∗ = |Sθ∗ | ≤ |Sθ0 | = s0 and
‖X(θ0 − θ∗)‖22 ≤ (s0 − s∗) log p. Then the variational Bayes posterior Π̃ satisfies, uniformly
over all θ0 and θ∗ as above,

Eθ0Π̃
(
θ : |Sθ| ≥ |S∗|+ 4(ρn+2)

A4

[(
1 + 16

φ(S∗)2
λ
λ̄

)
|S∗|+

‖X(θ0−θ∗)‖22
log p

])
.

1

ρn

{
1 +

log(1/φ̃(Γ))

log p
+

λs0

‖X‖ψ̃L0+2(S0)2φ(S0)φ̃(Γ)2
√

log p

}
+ o(1)

for any ρn > 0, where Γ, L0 are given in (B.4). Furthermore, the exact same inequality holds
for the variational Bayes posteriors Q̃ and Q̂.

Proof. The proof follows similarly to that of Theorem B.1 by applying Theorem 5 with

Θn =
{
θ : |Sθ| ≥ |S∗|+ 4(ρn+2)

A4

[(
1 + 16

φ(S∗)2
λ
λ̄

)
|S∗|+

‖X(θ0−θ∗)‖22
log p

]}
,

again taking the event A = T1 and using Lemma B.5 with M = ρn + 2 instead of Lemma B.6
to verify (14).

Remark B.1 (Misspecification of the error distribution). The Gaussian error distribution
is assumed in model (1) for concreteness and can be relaxed. For recovery and dimension
control (Theorems 1 and 2), inspection of the contraction rate proofs in [5] and the KL bounds
in Section B.2 show that it suffices that there exists a constant C > 0 such that

Pθ0(‖XT (Y −Xθ0)‖∞ > C‖X‖
√

log p)→ 0,

which holds for much more general noise distributions. This condition is commonly imposed
when studying the LASSO, see e.g. [2]. For the full oracle bounds, we further need that
Lemma 3 of [5], which concerns a change of measure, holds. This indeed holds under a wider
range of noise distributions, see Remark 1 of [5]. The results for VB in this paper are thus
robust under noise misspecification as for the true posterior [5], see also Section A.4 for an
empirical study of noise misspecification for our method.

B.2 Kullback-Leibler divergences between variational classes and the pos-
terior

We now show that on the event T1 in (B.2), we can bound the (minimized) Kullback-Leibler
divergences between the posterior and the approximating variational classes. In particular, we
need oracle-type bounds on the KL divergence to obtain our oracle results. This is the major
technical difficulty in establishing our result. We first consider the family Q of distributions
(9), which consists of products of non-diagonal multivariate normal distributions with Dirac
delta distributions for a single fixed support set S.
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For a given model S ⊆ {1, . . . , p}, let XS denote the n×|S|-submatrix of the full regression
matrix X, where we keep only the columns X·i, i ∈ S. Let θ̂S = (XT

SXS)−1XT
S Y be the least

squares estimator in the restricted model Y = XSθS + Z. If the restricted model were
correctly specified, then θ̂S would have distribution NS(θ0,S , (X

T
SXS)−1) under Pθ0 . We

approximate the posterior with a NS(θ̂S , (X
T
SXS)−1)⊗ δSc distribution, where S is a suitable

approximating set to which the posterior assigns sufficient probability.

Lemma B.2. If 4e1+Γ log p−κ ≤ 1, then the variational posterior Q̂ arising from the family
(9) satisfies

KL(Q̂‖Π(·|Y ))1T1 ≤ Γ log p+
λΓ

φ̃(Γ)2

(
2s

1/2
0 ε+

3
√

log p

‖X‖

)
+ log(4e).

Proof. We construct our posterior approximation on the event T1 in (B.2). The posterior
takes the form

Π(·|Y ) =
∑

S⊆{1,...,p}

q̂SΠS(·|Y )⊗ δSc , (B.6)

where the weights q̂ = (q̂S : S ⊆ {1, ..., p}) lie in the 2p-dimensional simplex and ΠS(·|Y ) is
the posterior for θS ∈ R|S| in the restricted model Y = XSθS + Z. Since

Π(θ : ‖θ0,Scθ
‖2 > ε|Y ) ≤ Π(θ : ‖θ − θ0‖2 > ε|Y ),

it follows that on T1, ∑
S:|S|≤Γ
‖θ0,Sc‖2≤ε

q̂S ≥ 1− 1

4
− e−κ ≥ 3

4
− 1

4e
e−Γ log p ≥ 1

2

for all p since Γ > 0. Note further that

∣∣∣{S ⊆ {1, ..., p} : |S| ≤ Γ
}∣∣∣ =

bΓc∑
s=0

(
p

s

)
≤
bΓc∑
s=0

ps

s!
≤ epΓ.

Together, the last two displays show that on T1 and for all p, there exists a set S̃ satisfying

|S̃| ≤ Γ, ‖θ0,S̃c‖2 ≤ ε, q̂S̃ ≥ (2e)−1p−Γ. (B.7)

Since an NS(µS ,ΣS)⊗ δSc distribution is only absolutely continuous with respect to the
q̂SΠS(·|Y )⊗ δSc term of the posterior (B.6),

inf
Q∈Q

KL(Q||Π(·|Y )) = inf
S,µS ,ΣS

Eθ∼NS(µS ,ΣS)⊗δSc log
dNS(µS ,ΣS)⊗ δSc
q̂SdΠS(·|Y )⊗ δSc

≤ log
1

q̂S̃
+ inf
µS̃ ,ΣS̃

KL
(
NS̃(µS̃ ,ΣS̃)‖ΠS̃(·|Y )

)
,

(B.8)

where the last Kullback-Leibler divergence is over |S̃|-dimensional distributions. On T1,
log(1/q̂S̃) ≤ log(2epΓ) = log(2e)+Γ log p. It thus remains to bound the second term in (B.8).

Let EµS ,ΣS denote the expectation under the law θS ∼ NS(µS ,ΣS). Setting

µS̃ = (XT
S̃
XS̃)−1XT

S̃
Y and ΣS̃ = (XT

S̃
XS̃)−1, (B.9)
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one can check that the resulting normal distribution has density function proportional to
e−

1
2
‖Y−XS̃θS̃‖

2
2 , θS̃ ∈ R|S̃|. Therefore,

KL
(
NS̃(µS̃ ,ΣS̃)‖ΠS̃(·|Y )

)
= EµS̃ ,ΣS̃ log

DΠe
− 1

2
‖Y−XS̃θS̃‖

2
2−λ‖θ0,S̃‖1

DNe
− 1

2
‖Y−XS̃θS̃‖

2
2−λ‖θS̃‖1

= EµS̃ ,ΣS̃λ(‖θS̃‖1 − ‖θ0,S̃‖1) + log(DΠ/DN ),

(B.10)

with DΠ =
∫
R|S̃| e

− 1
2
‖Y−XS̃θS̃‖

2
2−λ‖θS̃‖1dθS̃ and DN =

∫
R|S̃| e

− 1
2
‖Y−XS̃θS̃‖

2
2−λ‖θ0,S̃‖1dθS̃ the nor-

malizing constants.
We firstly upper bound log(DΠ/DN ). Define

BS̃ = {θS̃ ∈ R|S̃| : ‖θS̃ − θ0,S̃‖2 ≤ 2ε}.

Let θ̄S̃ denote the extension of a vector θS̃ ∈ R|S̃| to Rp with θ̄S̃,j = θS̃,j for j ∈ S̃ and θ̄S̃,j = 0

for j 6∈ S̃. On T1, using (B.6) and (B.7),

ΠS̃(Bc
S̃
|Y ) ≤

q̂S̃
q̂S̃

ΠS̃(θS̃ ∈ R|S̃| : ‖θ̄S̃ − θ0‖2 > 2ε− ‖θ0,S̃c‖2|Y )

≤ q̂−1
S̃

Π(θ ∈ Rp : ‖θ − θ‖2 > ε|Y )

≤ 2epΓe−κ = 2e1+Γ log p−κ ≤ 1/2,

where the last inequality holds by assumption. Using Bayes formula, this yields

ΠS̃(BS̃ |Y )1T1 =

∫
BS̃
e−

1
2
‖Y−XS̃θS̃‖

2
2−λ‖θS̃‖1dθS̃∫

R|S̃| e
− 1

2
‖Y−XS̃θS̃‖

2
2−λ‖θS̃‖1dθS̃

1T1 ≥
1

2
1T1

almost surely. In particular, DΠ ≤ 2
∫
BS̃
e−

1
2
‖Y−XS̃θS̃‖

2
2−λ‖θS̃‖1dθS̃ on T1. Therefore on T1,

log
DΠ

DN
≤ log

2
∫
BS̃
e−

1
2
‖Y−XS̃θS̃‖

2
2−λ‖θS̃‖1dθS̃∫

BS̃
e−

1
2
‖Y−XS̃θS̃‖

2
2−λ‖θ0,S̃‖1dθS̃

≤ sup
θS̃∈BS̃

log eλ‖θ0,S̃‖1−λ‖θS̃‖1 + log 2

≤ sup
θS̃∈BS̃

λ‖θS̃ − θ0,S̃‖1 + log 2

≤ sup
θS̃∈BS̃

λ|S̃|1/2‖θS̃ − θ0,S̃‖2 + log 2

≤ 2λΓ1/2ε+ log 2,

where in the fourth inequality we have applied Cauchy-Schwarz.
We now turn to the first term in (B.10). On T1, using the triangle inequality and Cauchy-

Schwarz,

λEµS̃ ,ΣS̃ (‖θS̃‖1 − ‖θ0,S̃‖1) ≤ λ‖µS̃ − θ0,S̃‖1 + λE0,ΣS̃
‖θS̃‖1

≤ λΓ1/2
(
‖µS̃ − θ0,S̃‖2 + Tr(ΣS̃)1/2

) (B.11)
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since E0,ΣS̃
‖θS̃‖

2
2 = Tr(ΣS̃). Let Λmin(A) and Λmax(A) denote the smallest and largest

eigenvalues, respectively, of a symmetric, positive definite matrix A. Using the variational
characterization of maximal/minimal eigenvalues ([8], p. 234), for any S ⊆ {1, . . . , p},

Λmin(XT
SXS) = min

v∈R|S|:v 6=0

vTXT
SXSv

‖v‖22
= min

u∈Rp:u6=0,uSc=0

‖Xu‖22
‖u‖22

≥ ‖X‖2φ̃(|S|)2. (B.12)

Therefore,

Tr(ΣS̃) ≤ ΓΛmax((XT
S̃
XS̃)−1) ≤ Γ

Λmin(XT
S̃
XS̃)

≤ Γ

‖X‖2φ̃(Γ)2
.

Under Pθ0 , using (1) and (B.9), the bias term can be decomposed as

‖µS̃ − θ0,S̃‖2 ≤ ‖(X
T
S̃
XS̃)−1XT

S̃
XS̃cθ0,S̃c‖2 + ‖(XT

S̃
XS̃)−1XT

S̃
Z‖2 = I + II.

For I, note first that the `2-operator norm of (XT
S̃
XS̃)−1 is bounded by 1/(‖X‖2φ̃(|S̃|)2) by

(B.12). On T1, using Cauchy-Schwarz,

‖XT
S̃
XS̃cθ0,S̃c‖

2
2 =

∑
i∈S̃

 n∑
k=1

∑
j∈S̃c

XkiXkjθ0,j

2

=
∑
i∈S̃

∑
j∈S̃c
〈X·i, X·j〉θ0,j

2

≤ ‖X‖4
∑
i∈S̃

 ∑
j∈S̃c∩S0

|θ0,j |

2

≤ ‖X‖4|S̃|s0‖θ0,S̃c‖
2
2.

Together with (B.7), this gives

I ≤
‖X‖2|S̃|1/2s1/2

0 ‖θ0,S̃c‖2
‖X‖2φ̃(|S̃|)2

≤ Γ1/2s
1/2
0 ε

φ̃(|S̃|)2
.

Using the same bound on the `2-operator norm and (1), on the event T1 ⊂ T0 it holds that

II ≤
‖XT

S̃
Z‖2

‖X‖2φ̃(|S̃|)2
=

1

‖X‖2φ̃(|S̃|)2

∑
i∈S̃

(
XT (Y −Xθ0)

)2
i

1/2

≤ 2|S̃|1/2
√

log p

‖X‖φ̃(|S̃|)2
.

Combining all of the above bounds and using that |S̃| ≤ Γ, on the event T1,

λEµS̃ ,ΣS̃ (‖θS̃‖1 − ‖θ0,S̃‖1) ≤ λΓ

φ̃(Γ)2

(
s

1/2
0 ε+

2
√

log p

‖X‖
+
φ̃(|S̃|)
‖X‖

)
.

Together with (B.10), the bound log(DΠ/DN ) ≤ 2λΓ1/2ε + log 2 derived above and that
φ̃(|S̃|) ≤ φ̃(1) ≤ 1, this yields

KL
(
NS̃(µS̃ ,ΣS̃)‖ΠS̃(·|Y )

)
1T1 ≤

λΓ

φ̃(Γ)2

(
2s

1/2
0 ε+

3
√

log p

‖X‖

)
+ log 2.

Combining this with (B.8) and that log(1/q̂S̃) ≤ log(2e) + Γ log p completes the proof.
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We next consider the mean-field subclass QMF of Q given by (10). This again selects a
single fixed support S but further requires the fitted normal distribution to have diagonal
covariance matrix. We consider a diagonal version of NS(θ̂S , (X

T
SXS)−1)⊗ δSc considered in

Lemma B.2.

Lemma B.3. If 4e1+Γ log p−κ ≤ 1, then the variational posterior Q̃ arising from the family
(10) satisfies

KL(Q̃‖Π(·|Y ))1T1 ≤ Γ log
p

φ̃(Γ)
+

λΓ

φ̃(Γ)2

(
2s

1/2
0 ε+

3
√

log p

‖X‖

)
+ log(4e).

Proof. We showed in the proof of Lemma B.2 that on the event T1 given in (B.2), there exists
a set S̃ satisfying (B.7). Arguing as in (B.8),

inf
Q∈QMF

KL(Q||Π(·|Y )) ≤ log
1

q̂S̃
+ inf
µS̃ ,DS̃

KL
(
NS̃(µS̃ , DS̃)‖ΠS̃(·|Y )

)
,

where the last Kullback-Leibler divergence is over the |S̃|-dimensional distributions and DS̃
ranges over diagonal positive definite matrices. On T1 and for all p, we have log(1/q̂S̃) ≤
log(2epΓ) = log(2e) + Γ log p by (B.7).

The latter Kullback-Leibler divergence equals

KL
(
NS̃(µS̃ , DS̃)‖ΠS̃(·|Y )

)
= EµS̃ ,DS̃

[
log

dNS̃(µS̃ , DS̃)

dNS̃(µS̃ ,ΣS̃)
+ log

dNS̃(µS̃ ,ΣS̃)

dΠS̃(·|Y )

]
(B.13)

for any covariance matrix ΣS̃ . For the first term in (B.13), the formula for the Kullback-
Leibler divergence between two multivariate Gaussians gives

KL
(
NS̃(µS̃ , DS̃)‖NS̃(µS̃ ,ΣS̃)

)
= 1

2

(
log(|ΣS̃ |/|DS̃ |)− |S̃|+ Tr(Σ−1

S̃
DS̃)

)
,

where |A| denotes the determinant of a square matrix A. Set now µS̃ = (XT
S̃
XS̃)−1XT

S̃
Y ,

ΣS̃ = (XT
S̃
XS̃)−1 as in (B.9) and define the diagonal matrix DS̃ via (DS̃)ii = 1/(Σ−1

S̃
)ii =

1/(XT
S̃
XS̃)ii. This gives Tr(Σ−1

S̃
DS̃) = |S̃|, so that it remains to control 1

2 log(|ΣS̃ |/|DS̃ |) =
1
2 log(|ΣS̃ ||D

−1
S̃
|). For our choice of DS̃ ,

|D−1
S̃
| =

|S̃|∏
j=1

(Σ−1
S̃

)jj =

|S̃|∏
j=1

(XT
S̃
XS̃)jj ≤ ‖X‖2|S̃|,

while for Λmin(A) and Λmax(A) the smallest and largest eigenvalues, respectively, of a matrix
A and using (B.12),

|ΣS̃ | ≤ Λmax((XT
S̃
XS̃)−1)|S̃| = (1/Λmin(XT

S̃
XS̃))|S̃| ≤ 1/(‖X‖φ̃(|S̃|))2|S̃|.

This yields that KL(NS̃(µS̃ , DS̃)‖NS̃(µS̃ ,ΣS̃)) ≤ |S̃| log(1/φ̃(|S̃|)) ≤ Γ log(1/φ̃(Γ)).
Note that the second term in (B.13) is identical to the expression (B.10), except that

the expectation is taken under θS̃ ∼ NS̃(µS̃ , DS̃) instead of θS̃ ∼ NS̃(µS̃ ,ΣS̃). One may
therefore use the exact same arguments as in Lemma B.2 with the only difference occurring
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in the second term in (B.11), where one instead has λE0,DS̃
‖θS̃‖1 ≤ λ|S̃|

1/2(E0,DS̃
‖θS̃‖

2
2)1/2 =

λ|S̃|1/2Tr(DS̃)1/2. For ei the ith unit vector in Rp,

Tr(DS̃) =

|S̃|∑
i=1

1

(XT
S̃
XS̃)ii

=
∑
i∈S̃

1

‖Xei‖22
≤
∑
i∈S̃

1

‖X‖2‖ei‖22φ̃(1)2
=

|S̃|
‖X‖2φ̃(1)2

,

so that λ|S̃|1/2Tr(DS̃)1/2 ≤ λΓ/(‖X‖φ̃(1)). Combining the bounds as in Lemma B.2 then
gives the result.

Lemma B.4. If 4e1+Γ log p−κ ≤ 1, then the variational posterior Π̃ arising from the family
(7) of spike-and-slab distributions satisfies

KL(Π̃‖Π(·|Y ))1T1 ≤ Γ log
p

φ̃(Γ)
+

λΓ

φ̃(Γ)2

(
2s

1/2
0 ε+

3
√

log p

‖X‖

)
+ log(4e).

Proof. Since QMF ⊂ PMF , we have KL(Π̃‖Π(·|Y )) ≤ KL(Q̃‖Π(·|Y )). The result then follows
from Lemma B.3.

B.3 Oracle contraction rates for the original posterior distribution

Oracle type contraction rates for the original posterior were established in Castillo et al. [5].
However, their results are not stated with exponential bounds as needed in (14), so we must
reformulate them in order to apply our Theorem 5. The required exponential bounds in fact
follow from their proofs; we recall here the required results and, since [5] is a rather technical
article, we provide a brief explanation why the exponential bounds hold.

Lemma B.5 (Theorem 10 of [5]). Suppose the prior satisfies (4) and (5). Then for p large
enough depending on A2, A4, any M > 0 and any θ0, θ∗ ∈ Rp,

Eθ0Π

(
θ : |Sθ| ≥ |S∗|+

4M

A4

(
1 +

16

φ(S∗)2

λ

λ̄

)
|S∗|+

4M‖X(θ0 − θ∗)‖22
A4 log p

∣∣∣Y ) 1T0

≤ C(A2, A4) exp
(
−(M − 2)

(
1 + 16

φ(S∗)2
λ
λ̄

)
|S∗| log p− (M − 1)‖X(θ0 − θ∗)‖22

)
,

where S∗ = Sθ∗ and T0 is the event in (B.1).

Proof. Following the proof of Theorem 10 of [5], one obtains using (6.3) and the second
display on p. 2008 of [5] that for λ̄ = 2‖X‖

√
log p, any θ∗ and any measurable set B ⊆ Rp,

sup
θ0∈Rp

Eθ0Π(B|Y )1T0 ≤ e‖X(θ0−θ∗)‖22
(
ep2s∗

πp(s∗)
e

8λλ̄s∗
‖X‖2φ(S∗)2

∫
B
e−(λ/4)‖θ−θ∗‖1+λ‖θ‖1dΠ(θ)

)1/2

.

Setting now B = {θ : |Sθ| > R} for R ≥ s∗, the third display on p. 2008 of [5] shows that∫
B
e−(λ/4)‖θ−θ∗‖1+λ‖θ‖1dΠ(θ) ≤ πp(s∗)4s∗

(
4A2

pA4

)R+1−s∗ ∞∑
j=0

(
4A2

pA4

)j
.

≤ C(A2, A4)πp(s∗)4
s∗

(
4A2

pA4

)R+1−s∗
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for p large enough that 4A2/p
A4 < 1. Substituting this into the second last display and using

that λ̄2 = 4‖X‖2 log p,

sup
θ0∈Rp

Eθ0Π(B|Y )1T0 ≤ C(A2, A4)e‖X(θ0−θ∗)‖22(2p)s∗e
16λs∗ log p

λ̄φ(S∗)2

(
4A2

pA4

)(R+1−s∗)/2
.

Choosing R = (2δ + 1)s∗ − 1 + 2η, the right-hand side equals

C(A2, A4) exp
{
‖X(θ0 − θ∗)‖22 + (log 2 + δ log(4A2)) s∗ +

(
1 + 16λ

λ̄φ(S∗)2 − δA4

)
s∗ log p

+ η(log(4A2)−A4 log p)
}
.

Further picking δ = 2M(1 + 16λ/(λ̄φ(S∗)
2))/A4 and η = 2M‖X(θ0 − θ∗)‖22/(A4 log p), the

right-hand side is bounded by

C(A2, A4) exp{−(M − 2)(1 + 16λ
λ̄φ(S∗)2 )s∗ log p− (M − 1)‖X(θ0 − θ∗)‖22}

for p large enough depending on A2, A4, as required.

The following result is a modified version of the oracle inequality in Theorem 3 of [5] with
S∗ = S0. Since it is stated somewhat differently in [5], we sketch why this is true.

Lemma B.6 (Theorem 3 of [5]). Suppose the prior satisfies (4) and (5). Then there exists a
constant M > 0 such that for p large enough, both depending only on A1, A3, A4, any L ≥ 1,
and uniformly over all θ0, θ∗ ∈ Rp with |Sθ∗ | ≤ |Sθ0 |,

Eθ0Π

(
θ : ‖X(θ − θ0)‖2 >

ML1/2

ψL+2(S0)

[√
s∗ log p

φ(S∗)
+ ‖X(θ0 − θ∗)‖2

] ∣∣∣Y) 1T0

≤ C exp
(
−
[
L ∧ 4(L+2)

A4

] [
(1 + 16

φ(S∗)2
λ
λ̄

)s∗ log p+ ‖X(θ0 − θ∗)‖22
])

+ C exp(−L(1 + 16
φ(S0)2

λ
λ̄

)s0 log p),

where s0 = |Sθ0 |, s∗ = |Sθ∗ | and C = C(A2, A4). Moreover, both

Eθ0Π

(
θ : ‖θ − θ0‖1 > ‖θ0 − θ∗‖1 +

ML

ψL+2(S0)2

[
s∗
√

log p

‖X‖φ(S∗)2
+
‖X(θ0 − θ∗)‖22
‖X‖
√

log p

] ∣∣∣Y) 1T0 ,

Eθ0Π

(
θ : ‖θ − θ0‖2 >

ML1/2

‖X‖ψ̃L+2(S0)2

[√
s∗ log p

φ(S∗)
+ ‖X(θ0 − θ∗)‖2

] ∣∣∣Y) 1T0 ,

satisfy the same inequality.

Proof. Unless otherwise stated, we use here the notation from [5]. As on p. 2008 of [5], define
the event E = {θ : |Sθ| ≤ D∗ ∧D0} for

D∗ = D∗(L) = s∗ +
4(L+ 2)

A4

(
1 +

16

φ(S∗)2

λ

λ̄

)
s∗ +

4(L+ 2)‖X(θ0 − θ∗)‖22
A4 log p

, (B.14)
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where λ̄ = 2‖X‖
√

log p and D0 is the same expression with θ∗ replaced by θ0. Note that
we take different constants than in (6.7) of [5] to obtain the required exponential tail bound.
Lemma B.5 yields, with M = L+ 2 and since s∗ ≤ s0,

Eθ0Π(Ec|Y )1T0 = Eθ0Π(θ : |Sθ| > D∗ ∧D0|Y )1T0

≤ C(A2, A4) exp(−L(1 + 16
φ(S0)2

λ
λ̄

)s0 log p)

+ C(A2, A4) exp(−L(1 + 16
φ(S∗)2

λ
λ̄

)s∗ log p− L‖X(θ0 − θ∗)‖22)

(B.15)

for every θ0 ∈ Rp, so we can intersect the desired set with E in what follows.
From definition (12), we have ψL+2(S0) = φ(D0 + s0). Continuing through the proof, the

third last display on p. 2009 of [5] (note that up to this point, the definitions of D∗ and D0

only affect the definition of the compatibility type constants) gives

Π(θ ∈ E : ‖X(θ − θ0)‖2 > 4‖X(θ∗ − θ0)‖2 +R|Y )1T0

≤ e

πp(0)As∗1
p(2+A3)s∗e

32λ̄2(D∗+s∗)
‖X‖2ψL+2(S0)2 e−

R2

8

p∑
s=0

πp(s)2
s,

where again λ̄ = 2‖X‖
√

log p. By condition (4),
∑p

s=0 πp(s)2
s ≤ πp(0)

∑p
s=0(2A2p

−A4)s ≤
πp(0)C(A2, A4) for p large enough. Using this and taking R2 = M

2
(D∗+s∗) log p/ψL+2(S0)2,

the last display is bounded by

C(A2, A4) exp

{
−s∗ logA1 + (2 +A3)s∗ log p+

128(D∗ + s∗) log p

ψL+2(S0)2
− 1

8
R2

}

≤ C(A2, A4) exp

{
−

[
M

2

8
− 130−A3 −

| logA1|
log p

]
(D∗ + s∗) log p

ψL+2(S0)2

}
,

where we have also used ψL+2(S0) ≤ φ(1) ≤ 1 for any S0. Using the definition (B.14) of D∗,
that λ/λ̄ ≤ 2 and the inequality

√
x+ y ≤

√
x+
√
y for any x, y ≥ 0,

(D∗ + s∗)
1/2 ≤ Cs1/2

∗ L1/2/φ(S∗) + CL1/2‖X(θ0 − θ∗)‖2/
√

log p

for a constant C > 0 depending only on A4, yielding

R ≤ CML1/2

ψL+2(S0)

(√
s∗ log p

φ(S∗)
+ ‖X(θ0 − θ∗)‖2

)
.

Combining this with the third last display gives

Π

(
θ ∈ E : ‖X(θ − θ0)‖2 >

ML1/2

ψL+2(S0)

[√
s∗ log p

φ(S∗)
+ ‖X(θ0 − θ∗)‖2

] ∣∣∣Y) 1T0

≤ C(A2, A4) exp(−(D∗ + s∗) log p/ψL+2(S0)2)

for some M > 0 large enough depending only on A1, A3, A4. Using ψL+2(S0) ≤ 1 and
the definition (B.14), the probability in the last display is smaller than that in (B.15) if
4(L+ 2)/A4 ≥ L. Considering these two cases separately establishes the required inequality
for the prediction error ‖X(θ − θ0)‖2.
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For `1-loss, the result follows from that for prediction error and the first display on p.
2010 of [5].

For `2-loss, note that ‖X(θ − θ0)‖2 ≥ φ̃(|Sθ−θ0 |)‖X‖‖θ − θ0‖2 ≥ ψ̃L+2(S0)‖X‖‖θ − θ0‖2
for any θ ∈ E. The result then follows from that for prediction error and that ψL+2(S0) ≥
ψ̃L+2(S0) by Lemma D.1.

C Additional methodological details

C.1 Proofs for the variational algorithm

We provide here the derivations of the formulas used in the CAVI update equations of our
variational algorithm in Section 4.

Proof of (16): We compute the Kullback-Leibler divergence between Pµ,σ,γ and the pos-
terior Π(·|Y ), conditional on zi = 1, as a function of µi and σi. Since the variational proba-
bility distribution of θi conditional on zi = 1 (i.e. Pµi,σi|zi=1) is singular to the Dirac measure
δ0, in the Radon-Nikodym derivative dPµi,σi|zi=1/dΠi, where Πi is the prior for θi, it suf-
fices to consider only the continuous part of the prior measure in the denominator. Write
Π(θ|Y ) = D−1

Π e−‖Y−Xθ‖
2
2/2dΠ(θ) with DΠ the normalizing constant. Using all of these and

the prior product structure, KL(Pµ,σ,γ|zi=1‖Π(·|Y )) equals, as a function of µi and σi,

Eµ,σ,γ|zi=1

[
1
2‖Y −Xθ‖

2
2 + logDΠ + log

dPµ−i,σ−i,γ−i ⊗N(µi, σ
2
i )

dΠ−i ⊗ wLap(λ)

]
= Eµ,σ,γ|zi=1

[
1
2(Y −Xθ)T (Y −Xθ) + log

dPµ−i,σ−i,γ−i

dΠ−i
(θ−i)− log σi −

(θi − µi)2

2σ2
i

+ λ|θi|
]

+ C,

where C > 0 is independent of µi, σi and wi = a0/(a0 + b0) is the prior mean for wi. Recall
that the expected value of the folded normal distribution with parameters µ ∈ R and σ > 0
is σ

√
2/πe−µ

2/(2σ2) + µ(1− 2Φ(−µ/σ)). Using this and explicitly evaluating the expectation
of the first term, the last display equals

µi
∑
k 6=i

(XTX)ikγkµk +
1

2
(XTX)ii(σ

2
i + µ2

i )− (Y TX)iµi + λσi
√

2/πe−µ
2
i /(2σ

2
i )

+ λµi(1− 2Φ(−µi/σi))− log σi + C ′,

where C ′ > 0 is again independent of µi, σi. Minimizing the last display with respect to
either µi or σi (but not jointly) gives the same minimizers as minimizing fi and gi in (16).

Proof of (17): Similarly to the derivation of (16) above, the KL divergence between Pµ,σ,γ

and Π(·|Y ) as a function of γi equals

Eµ,σ,γ

[
1
2‖Y −Xθ‖

2
2 + log

dPµ−i,σ−i,γ−i

dΠ−i
(θ−i) + log

d(γiN(µi, σ
2
i ) + (1− γi)δ0)

d(wiLap(λ) + (1− wi)δ0)
(θi)

]
+ C,

where C > 0 is independent of γi and wi = a0/(a0 + b0). Since on an event of Pµ,σ,γ-
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probability one, θi = 0 if and only if zi = 0, the last display equals

Eµ,σ,γ

[
1
2‖Y −Xθ‖

2
2 + 1{zi=1} log

γidN(µi, σ
2
i )

widLap(λ)
(θi) + 1{zi=0} log

1− γi
1− wi

]
+ C

= Eµ,σ,γ

[
1
2‖Y −Xθ‖

2
2 + 1{zi=1}

(
log

√
2√

πσiλ
− (θi − µi)2

2σ2
i

+ λ|θi|

)]
+ γi log

γi
wi

+ (1− γi) log
1− γi
1− wi

+ C

= γi

{
µi
∑
k 6=i

(XTX)kiγkµk + 1
2(XTX)ii(σ

2
i + µ2

i )− (Y TX)iµi + log

√
2√

πσiλ
− 1

2

+ λσi
√

2/πe−µ
2
i /(2σ

2
i ) + λµi(1− 2Φ(−µi/σi)) + log

γi
1− γi

+ log
b0
a0

}
+ log(1− γi) + C

=: hi(γi|µ,σ,γ−i) (C.1)

where C > 0 may change from line to line and is independent of γi. Setting the derivative
with respect to γi of this last expression equal to zero and rearranging gives (17).

C.2 Algorithms for Gaussian slabs

We collect here for completeness the variational algorithms for the spike-and-slab prior with
Gaussian slabs with which we have compared our method. First we give the component-wise
update of the parameters as in [10], see Algorithm 2 below.

Algorithm 2 Component-wise variational Bayes for Gaussian prior slabs

1: Initialize: (∆H ,σ,γ), µ := µ̂(0) (for a preliminary estimator µ̂(0)), a := order(|µ|)
2: while ∆H ≥ ε do
3: γold := γ
4: for i = 1 to p do
5: µi := σ2

i

(
(Y TX)i −

∑
j 6=i(X

TX)j,iµjσj
)

6: σi := 1/
√

(XTX)ii + 1
7: γi = logit−1

(
log(a0/b0) + log σi + µ2

i /(2σ
2
i )
)

8: ∆H := maxi{|H(γi)−H(γold,i)|}

In [9] the authors argue that coordinate-wise parameter updates can accumulate error
from each step leading to a suboptimal optimization procedure. To resolve this, they propose
simultaneously updating the entire parameter vectors µ,σ and λ without using a CAVI type
of algorithm. A version of their proposed algorithm is given in Algorithm 3, where diag(v),
v ∈ Rp, creates a diagonal square matrix in Rp×p with diagonal elements v (see also Algorithm
1 of [12] with α = 1, σ = 1 and ν1 = 1 for a related implementation). As in the other cases,
we have taken the ridge regression estimator (XTX + I)−1XTY as our initialization for µ.

Lastly, we provide the VB algorithm for the QMF mean-field variational class using
Laplace slabs in the prior.
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Algorithm 3 Batch-wise variational Bayes for Gaussian prior slabs

1: Initialize: (∆H ,σ,γ), µ := µ̂(0) (for a preliminary estimator µ̂(0)), a := order(|µ|)
2: while ∆H ≥ ε do
3: γold := γ
4: Γ := diag(γ)
5: µ := (XTX + Γ)−1XTY
6: for i = 1 to p do
7: σi := 1/

√
(XTX)ii + γi

8: γi := logit−1
(
logit(1/p) + log σi + µ2

i /(2σ
2
i )
)

9: ∆H := maxi{|H(γi)−H(γold,i)|}

Algorithm 4 Variational Bayes for Laplace prior slabs and variational class QMF

1: Initialize: (∆H ,σ,γ), µ := µ̂(0) (for a preliminary estimator µ̂(0)), a := order(|µ|)
2: while ∆H ≥ ε do
3: γold := γ
4: for j = 1 to p do
5: i := aj
6: µi := argmaxµifi(µi|µ−i,σ,γ, zi = 1) // see equation (16)
7: σi := argmaxσigi(σi|,µ,σ−i,γ, zi = 1) // see equation (16)
8: γi = argmaxγi∈{0,1}hi(γi|µ,σ,γ−i) // see equation (C.1)

9: ∆H := maxi{|H(γi)−H(γold,i)|}

D Examples of compatible design matrices

In addition to the compatibility type constants defined in Section 2.3, we also consider a
stronger invertibility condition involving the ‘mutual coherence’ of the design matrix, which
is the maximal correlation between the different predictors in X.

Definition D.1 (Mutual coherence). The mutual coherence number is

mc(X) = max
1≤i 6=j≤p

|〈X·i, X·j〉|
‖X·i‖2‖X·j‖2

. (D.2)

While we do not actually use the mutual coherence in our results, it provides an easy way
to understand the compatibility constants in Definitions 1-3 in several well-studied design
matrix examples below. The following result relates these notions.

Lemma D.1 (Lemma 1 of [5]). φ(S)2 ≥ φ(1)2 − 15|S|mc(X), φ(s)2 ≥ φ̃(s)2 ≥ φ(1)2 −
smc(X).

By evaluating the infimum in Definition 2 at the unit vectors, one obtains φ̃(1) = φ(1) =
mini ‖X·i‖2/‖X‖ = mini 6=j ‖X·i‖2/‖X·j‖2, which is bounded away from zero if the columns
of X have comparable Euclidean norms. In this case, Lemma D.1 implies that the compat-
ibility numbers and sparse singular values are bounded away from zero for models of size
O(1/mc(X)). The mutual coherence condition is thus the strongest of these notions. These
conditions are illustrated via the following well-studied examples.
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1. (Sequence model). We observe a vector Y = (Y1, . . . , Yn) of independent random vari-
ables with Yi ∼ N(θi, 1). This corresponds to model (1) with n = p and X = Ip the
identity matrix, so that ‖X‖ = ‖X·i‖2 = 1 for all i, the compatibility numbers are 1
and mc(X) = 0. In this setting, all results below are valid for all sparsity levels.

2. (Sequence model, multiple observations). We observe n independent N(θi, σ
2
n) random

variables with σn → 0. Defining Yi as σ−1
n times the original observations, this falls

within the framework of model (1) with X = σ−1
n Ip, so that ‖X‖ = ‖X·i‖2 = σ−1

n for
all i, the compatibility numbers are 1 and mc(X) = 0, similar to Example 1.

3. (Regression with orthogonal design). If X is an orthogonal design matrix such that
〈X·i, X·j〉 = 0 for i 6= j, the regression problem can be transformed into a sequence
model.

4. (Response model). Suppose the entries of the original regression matrix are i.i.d.
random variables Wij . We may then normalize the entries of the design matrix by
defining Xij = Wij/‖W·j‖2, so that the column lengths satisfy ‖X‖ = ‖X·i‖2 = 1
for all i. If |Wij | ≤ C for a constant C > 0 and log p = o(n), or Eet0|Wij |α < ∞
for some α, t0 > 0 and log p = o(nα/(4+α)), then Theorems 1 and 2 of [3] show that√
n/ log pmc(W )

P→ 2 as n→∞. Since mc(W ) = mc(X), this shows that for any ε > 0,
P (mc(X) > (2 + ε)

√
(log p)/n)→ 0. Thus with probability approaching one, the com-

patibility numbers are bounded away from zero for sparsity levels sn = o(
√
n/ log p).

A classic example is Wij
iid∼ N(0, 1). In this case, the above bound on the mutual

coherence holds as long as log p = o(n1/3).

5. By rescaling the columns of X, one can set the p×p matrix C := XTX/n to take value
one for all diagonal entries. Then ‖X‖ = ‖X·i‖2 =

√
n for all i and the elements Cij ,

i 6= j, are the correlations between columns. For some m ∈ N, if Cij = r for a constant
0 < r < (1 + cm)−1 and all i 6= j or |Cij | ≤ c/(2m − 1) for every i 6= j, then [13]
show that models up to dimension m satisfy the ‘strong irrepresentability condition’
and are hence estimable. In particular, mc(X) = maxi 6=j Cij = O(1/m) and hence the
compatibility numbers are bounded away from zero for sparsity levels sn = o(m).
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