
SUPPLEMENTARY MATERIAL

1 Comparison with existing methods

1.1 Ensemble regression

Bracegirdle and Stephenson (2012) proposed a method for projection using emergent con-

straints known as “ensemble regression”. Ensemble regression is equivalent to simple linear

regression of the model mean responses on the model mean historical climates, and can be

written in our notation as

X̄Fm − X̄Hm ∼ N
(
X̄F − X̄H + β′(X̄Hm − X̄H), σ2

F |H

)

where X̄tm =
∑

r Xtmr/Rtm and X̄t =
∑

m X̄tm/M . This is equivalent to our Equation 2

in the main text where β′ = β − 1, since E
[
X̄tm

]
= Xtm and E

[
X̄t

]
= μt.

Ensemble regression ignores uncertainty due to internal variability in the model means

X̄Hm and the ensemble mean X̄H . It is well known that errors in the independent variable

(X̄Hm − X̄H) in a regression will cause the slope estimate to be biased towards zero, a

phenomenon known as regression dilution or regression attenuation (Frost and Thompson,

2000). Consider a balanced ensemble (RHm = RFm = R for all m) in which all models sim-

ulate the same internal variability in each time period, i.e., σ2
m = σ2 and ϕ2

m = 1 for all m.

The expected value of the linear regression estimate of the emergent constraint is

E
[
β̂′
]

=
cov

(
X̄Fm − X̄Hm, X̄Hm − X̄H

)

var
(
X̄Hm − X̄H

) =
β′σ2

H − σ2/R

σ2
H + σ2/R

where β′ is the “true” value of the emergent constraint. The bias is largest when the

internal variability σ2 is large compared to the model uncertainty σ2
H , or when the number
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of runs R from each model is small. Our framework avoids this bias by explicitly modeling

internal variability and its relationship to the expected model climates Xtm.

In Bracegirdle and Stephenson (2012), the ensemble regression estimate of the response

of the Earth system is

YF − YH ∼ N
(
X̄F − X̄H + β ′(ZH − X̄H), σ2

F |H

)
.

This is equivalent to assuming the Earth system is exchangeable with the models and

ignores the possibility of common differences between the models and the Earth system,

as well as the effects of observation uncertainty and natural variability. The framework

proposed here explicitly allows for common model inadequacy, observation uncertainty and

natural variability.

1.2 A simple hierarchical framework

Bowman et al. (2018) propose a hierarchical framework for emergent constraints without

explicit reference to climate models. In our notation, the linear normal-theory version is

YH ∼ N
(
μH , σ2

H

)
YF | YH ∼ N

(
μF + β(YH − μH), σ2

F |H

)

and ZH | YH ∼ N (YH , σ2
Z). In practice, the parameters μH , μF , β, σH and σF |H are

estimated from an ensemble of climate models by assuming

XHm ∼ N
(
μH , σ2

H

)
XFm | XHm ∼ N

(
μF + β(XHm − μH), σ2

F |H

)

for all m = 1, . . . ,M . This is identical to Equation 2 in the main text, so the framework

proposed by Bowman et al. (2018) is almost equivalent to Ensemble Regression (Bracegirdle

and Stephenson, 2012), but allowing for observation uncertainty. However, the inclusion
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of the prior on YH implies that the posterior expectation of YF (Bowman et al., 2018,

Eqns 11,13,17) is

E [YF | ZH ] = μF + β
σ−2

Z

σ−2
Z + σ−2

H

(ZH − μH) .

So the expected future climate YF experiences a shrinkage towards the representative cli-

mate μF depending on how informative the observations are compared to the models for

the historical climate YH , i.e., the ratio of σ2
Z to σ2

H . No attempt is made to account for

model inadequacy, the Earth system is implicitly assumed to be exchangeable with the

models. Further, only one run from each model is used, thus ignoring internal variability

and leaving the estimated emergent relationship vulnerable to regression dilution.

1.3 The coexchangeable framework

Rougier et al. (2013) propose a model of the joint distribution of the historical and fu-

ture climate in multi-model experiments known as the coexchangeable framework. In our

notation

Xm ∼ N (μ,Σ) m = 1, . . . ,M

Y ∼ N (Aμ,ΣΔ) ZH ∼ N
(
YH , σ2

Z

)

where Xm = (XHm, XFm)T , Y = (YH , YF )T , μ = (μH , μF )T . The matrix A is assumed

known and allows for transformation of variables between model world and the real world

(the default choice is A = I, the identity). The exchangeable framework is a special case

of the the coexchangeable framework where ΣΔ = Σ and A = I. The framework proposed

here is an extension of the coexchangeable framework with A = I and

μ =




μH

μF



 Σ =




σ2

H βσ2
H

βσ2
H β2σ2

H + σ2
F |H



 .
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However, the basic coexchangeable framework does not distinguish between model differ-

ences and internal variability, and does not account for natural variability in the Earth

system. The extended framework proposed here accounts for both of these additional

sources of uncertainty.

Rougier et al. (2013) suggest the following parametrization of the model inadequacy

ΣΔ = κ2Σ + D

where D is a diagonal matrix with diag(D) = (D2
H , D2

F )T . The variances D2
H and D2

F

are intended to guard against overly precise projections when models are in close agree-

ment. However, this parametrization has unexpected consequences for emergent con-

straints. Standard results for the multivariate normal distribution show that

E [YF | YH ] = μF + β?(YH − μH) where β? =
cov (YF , YH)

var (YH)
=

κ2σ2
H

κ2σ2
H + D2

H

β

The emergent constraint shrinks towards zero by an amount that depends on D2
H . This

is difficult to defend given that we have assumed the emergent constraint has a physical

basis and should apply to the Earth system. Similar terms D2
H and D2

F |H could be added

to Equation 8 in the main text, but without effecting the emergent constraint, since then

cov (YF , YH) = var (YH) = κ2σ2
H +D2

H and β? = β. The difference is due to our formulation

in terms of conditional rather than marginal variances. Like σ2
ΔH

and σ2
ΔF |H

, D2
H and

D2
F |H are difficult to specify a priori without additional data. One possibility might be to

consider the spread of a family of closely related models as a lower bound for the model

inadequacy.

1.4 The generalized truth-plus-error framework
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Chandler (2013) proposed an alternative joint framework for multi-model projection

Xmr ∼ N (Xm,Σm) r = 1, . . . , Nm

Xm ∼ N (μ,Λm) m = 1, . . . ,M

μ ∼ N (Y,ΣΔ) YHa ∼ N
(
YH , σ2

a

)

where Xmr = (XHmr, XFmr)
T , Xm = (XHm, XFm)T , μ = (μH , μF )T , Y = (YH , YF )T . The

variances Λtm represent the propensity of each simulator to deviate from the ensemble

consensus. This provides flexibility to incorporate prior knowledge that certain climate

models are more or less similar to each other. Internal variability and model inadequacy

are both accounted for. In contrast to Rougier et al. (2013), natural variability is accounted

for, but observation uncertainty is ignored.

Chandler (2013) suggests estimating the historical model inadequacy from data as

σ2
ΔH

= (YHa − μH)2 then setting

ΣΔ =




σ2

ΔH
σ2

ΔH

σ2
ΔH

(1 + κ)σ2
ΔH





for κ > 0. This parametrization ignores any emergent constraints in the projection of the

future climate. In addition, estimating σ2
ΔH

from a single observation YHa provides very

limited information and makes the analysis vulnerable to outlying or spurious measure-

ments.

The frameworks proposed by Chandler (2013) and Rougier et al. (2013) are conceptually

very different and appear incompatible. The most obvious difference is the direction of con-

ditioning between the system Y and the representative or consensus climate μ. However,

Rougier et al. (2013) demonstrated that a simplified form of the generalized truth-plus-

error framework can be viewed as a special case of the coexchangeable framework (up to
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the second moments), for particular choices of A 6= I and ΣΔ. It is interesting to note

that when all the distributions are normal, identical priors are set for related quantities

and A = I, both frameworks produce identical posterior inferences. This is not the case

when the assumption of normality is relaxed, and should not be interpreted as meaning

that both formulations are equivalent and can be used interchangeably.

? also considered the direction of conditioning between climate models the Earth system

and concluded that it should be decided by our ability to formulate the relevant distribu-

tions, to interpret them, and to perform the necessary computations. We find it more

natural to consider the actual climate as the sum of our knowledge (the representative

model) plus what we do not understand (model inadequacy), than vice-versa. Hence we

adopt a coexchangeable representation for the models. In contrast, in the supplementary

material we use a truth-plus-error representation to combine reanalysis data sets in order

to estimate observation uncertainty. This feels more natural since the reanalyses are trying

to approximate an observable (YHa), rather than an abstract quantity (“the climate”) for

the models.

1.5 Reliability ensemble averaging

Tebaldi et al. (2005) proposed a probabilistic interpretation of the heuristic “reliability

ensemble averaging” framework of ?. The framework belongs to the truth-plus-error family,

with some interesting features. Multivariate extensions were proposed by Smith et al.

(2009) and Tebaldi and Sansó (2009), and a similar spatial framework was proposed by

Furrer et al. (2007). The basic framework in our notation is given by

XHm ∼ N
(
YH , λ2

m

)
XFm | XHm ∼ N

(
YF + β(XHm − YH), (θλm)2

)

YHa ∼ N
(
YH , σ2

a

)
.
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Similar to Chandler (2013), the model climates Xtm are conditioned on the Earth system

climate Yt, and the variances λm are interpreted as the propensity of each model to deviate

from the system. The coefficient θ allows the propensity of the models to differ from the

system to change in the future period. Somewhat confusingly, natural variability in the

Earth system is accounted for, but internal variability in the models is ignored. Observation

uncertainty and model inadequacy are also both neglected.

The framework proposed by Tebaldi et al. (2005) includes something similar to an

emergent constraint. It is instructive to consider this alternative formulation in detail.

The expectation of the full conditional posterior distribution of future climate (Tebaldi

et al., 2005, Eqn. A9) is

E [YF | . . .] =

∑
m λ−2

m XFm∑
m λ−2

m

+ β

(

YH −

∑
m λ−2

m XHm∑
m λ−2

m

)

.

This is equivalent to Equation 5 in the main text, if λ2
m = σ2

H for all m, i.e., if all the models

are exchangeable. Let λ2
m = σ2

H and θλ2
m = σ2

F |H for all m, then the posterior expectation

of YH (Tebaldi et al., 2005, Eqn. A8) is

E [YH | . . .] =
σ−2

a YHa + M
(
σ−2

H X̄H + σ−2
F |Hβ(YF − X̄F + βX̄H)

)

σ−2
a + M

(
σ−2

H + Mσ−2
F |Hβ2

)

In comparison, the posterior expectation of YH in our framework is

E [YH | . . .] =
σ−2

a YHa + σ−2
H μH + σ−2

F |Hβ (YF − μF + βμH)

σ−2
a + σ−2

H + σ−2
F |Hβ2

assuming κ = 1, i.e., the models are exchangeable with the Earth system. Both estimates

are weighted averages of the model outputs and the actualized climate YHa. The two es-

timates effectively differ only in the weight given to the models. Under the framework

proposed by Tebaldi et al. (2005), the models receive M times more weight than under
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our framework. As a result, the posterior expectation of the expected climate YH , and

consequently the projected climate YF , will lie much closer to the consensus climate, and

approach the consensus as the number of models increases. In fact, the framework proposed

by Tebaldi et al. (2005) implies that we can learn the expected climate YH and YF to any

degree of precision we require, simply by adding more climate models (?). Given the exis-

tence of shared errors in all climate models, such an assumption is unsupportable. Tebaldi

and Sansó (2009) later proposed the inclusion of a common model bias term to address this

issue. However, the common bias was treated as a fixed quantity to be estimated, and does

not contribute to our uncertainty about the Earth system in the same way as the model

inadequacy terms proposed here and by Rougier et al. (2013) and Chandler (2013).

1.6 Model weighting and Bayesian model averaging

A variety of model weighting schemes have been proposed in the literature (the Introduction

in the main text for examples), but all have essentially the same functional form

Yt =
M∑

m=1

wmXtm.

The actual climate (or climate response) Yt is modeled as a weighted combination of the

model outputs. Depending on the exact formulation, the weights wm may be constrained

to be positive and sum to one. The weights wm are estimated by comparing observations

of the historical climate YH with model simulations XHm of the same period. The same

weights are then applied to future simulations XFm to obtain projections of the future

climate YF or climate response YF − YH . Bayesian Model Averaging differs from simple

model weighting by dressing each simulation Xtm with a kernel, so Yt becomes a mixture

model.
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In principle, model weighting will respect emergent relationships. Consider the example

of Figure 1 in the main text. If the models closest to the observations receive the most

weight, then the projected climate response will be lower than the ensemble mean estimate.

However, unless the models further from the observations receive almost zero weight, the

projected response will shrink towards the ensemble mean. The amount of shrinkage will

depend on the exact form of the weights. In practice, the weights wm are usually estimated

by comparing model performance at multiple locations, often across the entire study region

(e.g., Bhat et al., 2011; Knutti et al., 2017). If the emergent relationship does not apply

across the entire region, or varies within the region, then the weights are unlikely to reflect

the relationship and the constraining behavior will be lost.
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2 Ensemble thinning

An extended version of the CMIP5 surface temperature data analyzed by Bracegirdle

and Stephenson (2013) was considered for analysis. The mean climates over 30 winters

(December-January-February) are compared between December 1975 and January 2005

from the historical scenario, and between December 2069 and January 2099 from the

RCP4.5 scenario. The five year shift in the historical period compared to Bracegirdle

and Stephenson (2013) provides slightly better compatibility with the latest observation

and reanalysis data sets. Several of these data sets begin in 1979 when satellite observations

become prevalent. A total of 216 runs from 37 CMIP5 models were included in the full

ensemble, 128 runs of the historical scenario and 88 of the RCP4.5 scenario. The complete

list of models and details of their major components are given in Table 1.

In the main text we noted that not all of the models should be included in the anal-

ysis in order to satisfy the assumption of exchangeability. In particular, models from the

same center are likely to be more similar than those from different centers. Therefore, only

one model from each center should be included. Modeling centers may also share compo-

nents with other groups. Therefore, where possible only one model using any given major

component, or at least any combination of components, should be included.

The full ensemble was thinned in order to satisfy the judgment of exchangeability be-

tween the model outputs. The ACCESS models supersede the CSIRO-Mk3.6.0 model,

however all of the major components in the ACCESS models are borrowed from other

models. Therefore, none of the models submitted by CSIRO were included. Two models

were submitted by BCC, the model with the higher resolution atmosphere components was

retained. Three models were submitted from the combined efforts of the NSF-DOE-NCAR.

The CESM1(CAM5) variant was selected as it includes a more recent version of the CAM
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atmosphere model. The NCAR CCSM4 model has been superseded by the CESM1 model,

and so was not included. The two NorESM1 models are also very closely related to the

CESM1 model, so was excluded. The BNU-ESM and FIO-ESM models were also excluded

since they use outdated and low resolution versions of the CAM atmosphere included in

the CESM1 model. The two models submitted from the CMCC are both based on an old

atmosphere component and a very old ocean component. They also lack a full land surface

model, therefore neither model was included. The CNRM-CM5 model and EC-EARTH

models are very closely related, but EC-EARTH model includes more RCP4.5 runs so

was retained over CNRM-CM5. The models from NOAA-GFDL differ primarily in their

ocean component. GFDL-ESM2G uses the GOLD ocean model, while GFDL-ESM2M and

GFDL-CM3 use the MOM4.1 ocean model. However, the MOM4 ocean model is also used

in the models from the BCC, so GFDL-ESM2M and GFDL-CM3 are excluded. The NASA

GISS-E2-R model was retained over the GISS-E2-H for the increased number of levels in

the ocean model. The MOHC model in its HadGEM2-CC configuration has a relatively

low resolution ocean component compared to most of the other models, so it is excluded

in favor of the HadGEM2-ES configuration. The model submitted by NIMR/KMA is an-

other version of the MOHC model, and so was excluded. The resolution of the atmospheric

component of the IPSL-CM5A-LR model is also low compared to the rest of the ensemble,

so it is excluded in favor of the IPSL-CM5A-MR configuration. Similarly, the atmospheric

resolution of the MIROC models in their MIROC-ESM configuration is relatively low, so

they are excluded and MIROC5 is retained. In contrast, the MPI-ESM-MR configuration

features a very high resolution ocean component compared to the rest of the ensemble.

Therefore the MPI-ESM-LR configuration is retained instead.

The thinned ensemble contains a total of 89 runs from 13 models, 50 runs from the

historical scenario and 39 from the RCP4.5 scenario. The models included in the thinned

12



Table 2: Models included in the thinned ensemble. Number of runs available from each model for the

historical and future time periods.

Runs

Modeling center Model Historical Future

NHm NFm

BCC BCC-CSM1.1(m) 3 1

CCCMA CanESM2 5 5

NSF-DOE-NCAR CESM1(CAM5) 3 3

ICHEC EC-EARTH 8 9

LASG-CESS FGOALS-g2 5 1

NOAA GFDL GFDL-ESM2G 1 1

NASA GISS GISS-E2-R 6 6

MOHC HadGEM2-ES 4 4

INM INM-CM4 1 1

IPSL IPSL-CM5A-MR 3 1

MIROC MIROC5 5 3

MPI-M MPI-ESM-LR 3 3

MRI MRI-CGCM3 3 1

Total 50 39

ensemble and the number of runs from each is listed in Table 2.
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3 Estimating observation uncertainty

Estimates of the observation uncertainty σ2
Z are often not readily available. Several model-

ing centers produce “reanalysis” products that combine multiple observation sources using

complex data assimilation techniques and numerical weather models. Given multiple re-

analysis data sets we can approximate our uncertainty about the observed state of the

climate. Let Wi be the output of reanalysis i, which we model as

Wi ∼ N
(
μW , σ2

W

)
(1)

where μW is interpreted as a representative reanalysis and the variance σ2
W quantifies the

spread of the reanalyses. We expect the representative reanalysis μW to be similar to the

actualized climate YHa, and so we model the representative reanalysis as

μW ∼ N
(
YHa, σ

2
ΔW

)
(2)

The variance σ2
ΔW

quantifies our uncertainty about the discrepancy between the repre-

sentative reanalysis and the actual climate, due to sparsity of observations, errors in the

numerical weather models etc. Similar to the models, we judge that the representative

reanalysis is less like the actualized climate than the individual reanalyses are like the

representative reanalysis, so we set

σ2
ΔW

= κ2
W σ2

W κW ≥ 1. (3)

Conditioning the representative reanalysis μW on the actualized climate YHa in Equa-

tion 2 induces a correlation (dependence) between the models and the reanalyses, i.e,

cov (Wi, XHm) = var (μH)+σ2
ΔH

+σ2
a +σ2

ΔW
for all {i,m}. Such a correlation makes sense,

since climate models and reanalyses are very closely related, sharing very similar numerical

cores.

14



For the analysis of Arctic surface temperature we combined four contemporary reanal-

ysis data sets: ERA-Interim (?); NCEP CFSR (?); JRA-25 (?); and NASA MERRA (?).

The coefficient κW was set to equal to the ensemble coefficient kappa at 1.2.
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4 Derivation of Gibbs’-Metropolis updating equations

For the purposes of computation it is more convenient to work with precisions than vari-

ances, so let

τm = 1/σ2
m for m = 1, . . . ,M ; φm = 1/ϕ2

m for m = 1, . . . ,M

τH = 1/σ2
H ; τF |H = 1/σ2

F |H ; τa = 1/σ2
a; φa = 1/ϕ2

a; τW = 1/σ2
W .

The complete model defined by Equations 1–8 of the main text and Equations 1–3 of the

supplementary material can be rewritten as

XHmr | XHm ∼ N
(
XHm, τ−1

m

)
XFmr | XFm ∼ N

(
XFm, (φmτm)−1)

XHm ∼ N
(
μH , τ−1

H

)
XFm | XHm ∼ N

(
μF + β (XHm − μH) , τ−1

F |H

)

τm ∼ Gamma

(
νH

2
,
νHψ2

2

)

φm ∼ Gamma

(
νF

2
,
νF θ2

2

)

YHa | YH ∼ N
(
YH , τ−1

a

)
YFa | YF ∼ N

(
YF , (φaτa)

−1)

YH ∼ N
(
μH , τ−1

ΔH

)
YF | YH ∼ N

(
μF + β (YH − μH) , τ−1

ΔF |H

)

τa ∼ Gamma

(
νHa

2
,
νHaψ

2

2

)

φa ∼ Gamma

(
νFa

2
,
νFaθ

2

2

)

Wi ∼ N
(
μW , τ−1

W

)
μW ∼ N

(
YHa, τ

−1
ΔW

)

where

τΔH
= τH/κ2; τΔF |H

= τF |H/κ2; τΔW
= τW /κ2

W ; νHa = νH/κ2; νFa = νF /κ2.

Vague conjugate prior probability distributions were specified for the parameters as fol-

lows μH , μW , β ∼ N (0, 106), μF | μH ∼ N (μH , 106), τH , τF |H , τW ∼ Inv -gamma (10−3, 10−3),

ψ2, θ2 ∼ Gamma (10−3, 10−3), and νH , νF ∼ Exp (1/M). The resulting full conditional pos-

terior distributions all have standard forms with the exception of the degrees-of-freedom νH

16



and νF . Therefore, posterior inference can be efficiently accomplished by Gibbs’ sampling

with Metropolis-Hastings steps for νH and νF .

Let X = (Xtmr, s ∈ {H,F},m = 1, . . . ,M, r = 1, . . . , Rtm)′ be the model outputs, Y =

(YH , YHa, τa)
′ be the latent state of the climate system, θ = (μH , μF , β, τH , τF |H , ψ2, φ2, νH , νF )′

be the ensemble parameters, χ = (XHm, XFm, τm, φm,m = 1, . . . ,M )′ be the latent model

states, W = (Wi, i = 1, . . . , N ) be the reanalysis outputs, and ω = (μW , τW )′ be the re-

analysis parameters. The future state of the climate system defined by YF , YFa and φa are

purely predictive quantities and can be sampled after sampling of all other quantities is

complete, using the equations above.

The joint posterior can be decomposed as

Pr (Y, χ, θ, ω | X,W) ∝ Pr (W | ω) Pr (Y | θ, ω) Pr (X | χ) Pr (χ | θ) Pr (θ) Pr (ω)

The likelihood of the reanalysis outputs W given the reanalysis parameters ω is propor-

tional to

Pr (W | ω) ∝
N∏

i=1

τ
1/2
W exp

(
−

τW

2
(Wi − μW )2

)
.

The likelihood of the system Y given the ensemble parameters θ and the reanalysis pa-

rameters ω is proportional to

Pr (Y | θ, ω) ∝ τ
1/2
ΔH

exp
(
−

τΔH

2
(YH − μH)2

)
τ 1/2
a exp

(
−

τa

2
(YHa − YH)2

)

(
νHaψ2

2

)νHa/2

Γ (νHa/2)
τ νHa/2−1
a exp

(

−
νHaψ

2

2
τa

)

.
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The likelihood of the model outputs X given the latent model states χ is proportional to

Pr (X | χ) ∝
M∏

m=1

RHm∏

r=1

τ 1/2
m exp

(
−

τm

2
(XHmr − XHm)2

)

M∏

m=1

RFm∏

r=1

(φmτm)1/2 exp

(

−
φmτm

2
(XFmr − XFm)2

)

.

The likelihood of the model states χ given the ensemble parameters θ is proportional to

Pr (χ | θ) ∝
M∏

m=1

τ
1/2
H exp

(
−

τH

2
(XHm − μH)2

)

M∏

m=1

τ
1/2
F exp

(
−

τF

2
(XFm − μF − β (XHm − μH))2

)

M∏

m=1

(
νHψ2

2

)νH/2

Γ (νH/2)
τ νH/2−1
m exp

(

−
νHψ2

2
τm

)

M∏

m=1

(
νF θ2

2

)νF /2

Γ (νF /2)
φνF /2−1

m exp

(

−
νF θ2

2
φm

)

.

The joint prior distribution of the ensemble parameters θ is proportional to

Pr (θ) ∝ exp

(

−
bμH

2
(μH − aμH

)2

)

exp

(

−
bμF

2
(μF − μH)2

)

exp

(

−
bβ

2
(β − aβ)2

)

τ
aτH

−1

H exp (−bτH
τH) τ

aτF
−1

F exp (−bτF
τF ) ν

aνH
−1

H exp (−bνH
νH) ν

aνF
−1

F exp (−bνF
νF )

(
ψ2
)aψ2−1

exp
(
−bψ2ψ2

) (
θ2
)aθ2−1

exp
(
−bθ2θ2

)
.

The joint prior distribution of the reanalysis parameters ω is proportional to

Pr (ω) ∝ τ
1/2
ΔW

exp
(
−

τΔW

2
(μW − YHa)

2
)

τ
aτW

−1

W exp (−bτW
τW ) .
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The full conditional distributions of the system quantities Y are

YHa | . . . ∼ N

(
τaYH + τΔW

μW

τa + τΔW

, (τa + τΔW
)−1

)

YH | . . . ∼ N

(
τΔH

μH + τaYHa

τΔH
+ τa

, (τΔH
+ τa)

−1

)

τa | . . . ∼ Gamma

(
νHa + 1

2
,
νHaψ

2 + (YHa − YH)2

2

)

The full conditional distributions of the reanalysis parameters ω are

μW | . . . ∼ N

(
τW

∑
i Wi + τΔW

YHa

τW N + τΔW

, (τW N + τΔW
)−1

)

τW | . . . ∼ Gamma

(

aτW
+

N + 1

2
, bτW

+
1

2

∑

i

(Wi − μW )2 +
1

2
κ−2

W (μW − YHa)
2

)

The full conditional distributions of the latent model states χ are

XFm | . . . ∼ N

(
τF (μF + β (XHm − μH)) + φmτm

∑
r XFmr

τF + φmτmRFm

, (τF + φmτmRFm)−1

)

XHm | . . . ∼ N

(
τHμH + τF β (XFm − μF + βμH) + τm

∑
r XHmr

τH + τF β2 + τmRHm

,
(
τH + τF β2 + τmRHm

)−1
)

τm | . . . ∼ Gamma

(
νH + NHm + NFm

2
,
νHψ2 +

∑
r (XHmr − XHm)2 + φm

∑
r (XFmr − XFm)2

2

)

φm | . . . ∼ Gamma

(
νF + NFm

2
,
νF θ2 + τm

∑
r (XFmr − XFm)2

2

)
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The full conditional distributions of the ensemble parameters θ are

μH | . . . ∼ N
(
μ̃H ,

(
bμH

+ bμF
+ τHM + τF β2M + τΔH

)−1
)

μF | . . . ∼ N

(
bμF

μH + τF

∑
m (XFm − β (XHm − μH))

bμF
+ τF M

, (bμF
+ τF M)−1

)

β | . . . ∼ N



bβaβ + +τF

∑
m (XHm − μH) (XFm − μF )

bβ + τF

∑
m (XHm − μH)2 ,

(

bβ + τF

∑

m

(XHm − μH)2

)−1




τH | . . . ∼ Gamma

(

aτH
+

M + 1

2
, bτH

+

∑
m (XHm − μH)2 + κ−2 (YH − μH)2

2

)

τF | . . . ∼ Gamma

(

aτF
+

M

2
, bτF

+

∑
m (XFm − μF − β (XHm − μH))2

2

)

ψ2 | . . . ∼ Gamma

(

aψ2 +
νHM + νHa

2
, bψ2 +

νH

∑
m τm + νHaτa

2

)

θ2 | . . . ∼ Gamma

(

aθ2 +
νF M

2
, bθ2 +

νF

∑
m φm

2

)

where

μ̃H =
bμH

aμH
+ bμF

μF + τH

∑
m XHm − τF β

∑
m (XFm − μF − βXHm) + τΔH

YH

bμH
+ bμF

+ τHM + τF β2M + τΔH

.
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The full conditional distributions of the degrees-of-freedom νH and νF do not correspond

to any standard distribution. The likelihoods associated with νH and νF are

l (νH) =
βαHa

Ha

Γ (αHa)
ταHa−1
a exp (−βHaτa)

∏

m

βαH
H

Γ (αH)
ταH−1
m exp (−βHτm)

and

l (νF ) =
∏

m

βαF
F

Γ (αF )
φαF−1

m exp (−βF φm)

where

αHa = νHa/2, βHa = νHaψ
2/2, αH = νH/2, βH = νHψ2/2, αF = νF /2, βF = νF θ2/2.

The prior densities of νH and νF are

p (νH) ∝ ν
aνH

−1

H exp (−bνH
νH) and p (νF ) ∝ ν

aνF
−1

F exp (−bνF
νF ) .

The posterior distributions of νH and νF conditional on the current state of the other

parameters can be sampled using the Metropolis-Hastings algorithm. For each s ∈ {H,F}:

1. Sample a new state ν?
t from q (ν?

t | νt);

2. Calculate the Hastings ratio

r (ν?
t , νt) =

l(ν?
t )p(ν?

t )q(ν
?
t | νt)

l(νt)p(νt)q(νt | ν?
t )

;

3. Accept the new state ν?
t with probability

a(ν?
t , νt) = min(1, r (ν?

t , νt)).

where q(ν?
t | νt) = Gamma (νtλt, λt) is the proposal distribution, with expectation νt and

variance controlled by the free parameter λt. The acceptance rate of the Metropolis step

can be controlled using the parameter λt.
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5 Posterior computation

Four parallel chains were initialized for each grid box, from over-dispersed starting points.

Initially, 20 000 samples were performed by each chain for each grid box. The first 10 000

samples were discarded as burn-in, and Gelman-Rubin diagnostics performed on the re-

maining 10 000 samples (?). If any random quantity had a potential scale reduction factor

greater than 1.10, then sampling was continued for a further 10 000 samples per chain and

diagnostics performed again until satisfactory convergence was indicated. We store every

40th sample from the last 10 000 samples of each chain, leading to a final sample size of

1000 for each grid box. The Metropolis-within-Gibbs’ sampler was implemented in the R

statistical computing language (?). Computation time for four parallel chains of 20 000

samples at a single grid box is around 5.5 s on a standard Linux workstation. The samplers

for all grid boxes converged successfully. Convergence was achieved after the initial 20 000

samples at 50 % of grid boxes. Less than 2 % of grid boxes required more than 100 000

samples before convergence.

Inspection of the posterior distributions showed that, despite the small ensemble size,

the ensemble parameters μH , μF , β, σ2
H , σ2

F |H and ψ2 and θ2 are all very well constrained

by the data. As expected, the degrees-of-freedom νH and νF were only mildly constrained

compared to the exponential prior. The inter-quartile range (IQR) for the mode of νH over

the 2880 grid boxes was 5–10, and for νF the IQR was 5–8, compared to the mode of zero

for the exponential prior. However, both νH and νF tended to have long tails at individual

grid boxes. Due to the extremely small sample size, the reanalysis spread σW was relatively

poorly constrained compared to the other parameters, but the posterior mean was below

2.0 ◦C at more than 75 % of grid boxes.

Monte Carlo standard errors were computed for each parameter at each grid box (??).
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The Monte Carlo standard error rarely accounted for more than 4 .3 % of the posterior

standard error, or exceeded 3.8 % of the absolute posterior mean.

Examination of correlation matrices for the posterior samples revealed that only the

means μH and μF are consistently highly correlated (IQR Cor (μH , μF ) 0.69–0.93), which

is to be expected given the relationship in Equation 2 of the main text. Unsurprisingly, the

internal variability ψ2 and θ2 are also moderately correlated (IQR −0.44–−0.37). The only

other parameters to have consistently non-zero correlation in the posterior samples were ψ2

and νH (IQR 0.13–0.28), and θ2 and νF (IQR 0.08–0.16). Again, this is not surprising given

the close relationship between these parameters in Equation 3 of the main text, and the

small number of initial condition runs available from each model. None of these findings is

particularly troubling, and so we conclude that the posterior simulation worked well.
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Figure 1: Posterior mean estimates of the representative reanalysis μW and the reanalysis uncertainty σW .

6 Posterior parameter estimates

The spread between the reanalyses σW is greater over land than over the ocean where

temperatures vary more slowly (Figure 1). The reanalysis uncertainty increases with lati-

tude as the number of observing stations decreases and the terrain tends to become more

mountainous (Figure 1). The spread between the reanalyses is particularly large around

the sea ice edge.

The representative historical climate μH is quite similar to the representative reanalysis

μW , except over the Arctic ocean where climate models tend to be cold biased (Figure 2).

The historical spread between the models σH is generally greater than the spread between

the reanalyses σW (Figure 2). Like the reanalyses, the model spread tends to be greatest
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Figure 2: Posterior mean estimates of the representative historical climate μH and the historical model

uncertainty σH .

over mountainous regions and near the sea ice edge.

The model response uncertainty σF |H is greatest over the Arctic ocean, particularly to

the east of Svalbard (Figure 3).

Like the reanalysis uncertainty, the representative internal variability ψ is greater over

land than over the oceans, and highest in mountainous regions and close to the sea ice

edge (Figure 4). The representative change in internal variability θ is small over most of

the study area (Figure 4). Internal variability decreases close to the historical sea ice edge,

where rising temperatures cause the ice edge to retreat and temperatures to stabilize. The

climate in the interior of the Arctic becomes more variable as rising temperatures causes

seasonal melting in regions permanently covered by sea ice during the historical period.
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Figure 3: Posterior mean estimates of the representative future climate μF and the model response uncer-

tainty σF |H
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Figure 4: Posterior mean estimates of the representative historical internal variability ψ and change in

internal variability θ.
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