SUPPLEMENTARY MATERIAL

1 Comparison with existing methods

1.1 Ensemble regression

Bracegirdle_and Stephensonl (2012) proposed a method for projection using emergent con-
straints known as “ensemble regression”. Ensemble regression is equivalent to simple linear
regression of the model mean responses on the model mean historical climates, and can be

written in our notation as
Xpm — Xtgm ~ N (XF — Xu + ' (Xam — XH>7U%\H)

where Xy, = Y, Xomy/Rim and X, = Yom Xim/M. This is equivalent to our Equation 2
in the main text where ' = 3 — 1, since E [)_(tm} = X4, and E [)_(t} = .

Ensemble regression ignores uncertainty due to internal variability in the model means
Xpm and the ensemble mean Xy . It is well known that errors in the independent variable
(Xgm — Xp) in a regression will cause the slope estimate to be biased towards zero, a
phenomenon known as regression dilution or regression attenuation (Frost_and Thompson),

2000). Consider a balanced ensemble (Rp,, = Rpy, = R for all m) in which all models sim-
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2 =¢? and ¢?, =1 for all m.

ulate the same internal variability in each time period, i.e., o
The expected value of the linear regression estimate of the emergent constraint is

cov (XFm—XHm,XHm—XH) B o —o*/R
Var(XHm—XH) o4 +0?/R

o[7]-

where (3 is the “true” value of the emergent constraint. The bias is largest when the

internal variability o2 is large compared to the model uncertainty o%, or when the number



of runs R from each model is small. Our framework avoids this bias by explicitly modeling
internal variability and its relationship to the expected model climates Xj,,.
In Bracegirdle and Stephenson (2012), the ensemble regression estimate of the response

of the Earth system is
Ve =Yy~ N (Xp—Xpg+ 03 (Zn — Xu),op) -

This is equivalent to assuming the Earth system is exchangeable with the models and
ignores the possibility of common differences between the models and the Earth system,
as well as the effects of observation uncertainty and natural variability. The framework
proposed here explicitly allows for common model inadequacy, observation uncertainty and

natural variability.

1.2 A simple hierarchical framework

Bowman_ef all (2018) propose a hierarchical framework for emergent constraints without

explicit reference to climate models. In our notation, the linear normal-theory version is
Vi~ N (1, %) Vi | Yig ~ N (e + B(¥is — ir). o3y)

and Zy | Yy ~ N (Yu,0%). In practice, the parameters pg, pp, 3, og and opg are

estimated from an ensemble of climate models by assuming

Xgm~ N (/LH,O'%.I) Xrm | Xgm ~ N (MF + B(Xpm — MH)70%|H)

for all m = 1,..., M. This is identical to Equation 2 in the main text, so the framework
proposed by Bowman ef all (2018) is almost equivalent to Ensemble Regression (Bracegirdle

and_Stephenson, P012), but allowing for observation uncertainty. However, the inclusion



of the prior on Yy implies that the posterior expectation of Yr (Bowman ef all POTR,

Eqns 11,13,17) is
—2

ag
EYr | Zy| = pr + B—52— (Zny — ) -
0, + o0y

So the expected future climate Y experiences a shrinkage towards the representative cli-
mate pp depending on how informative the observations are compared to the models for
the historical climate Yy, i.e., the ratio of 0% to 0%. No attempt is made to account for
model inadequacy, the Earth system is implicitly assumed to be exchangeable with the
models. Further, only one run from each model is used, thus ignoring internal variability

and leaving the estimated emergent relationship vulnerable to regression dilution.

1.3 The coexchangeable framework

Rongier_ef_all (2013) propose a model of the joint distribution of the historical and fu-
ture climate in multi-model experiments known as the coexchangeable framework. In our

notation

X0 ~ N (1, 2) m=1,... M
Y ~ N (Ap, Za) Zy ~ N (Yi,0%)

where X,, = (Xgm, Xrm)', Y = (Yu,Ye)?, p = (pg, ur)?T. The matrix A is assumed
known and allows for transformation of variables between model world and the real world
(the default choice is A = I, the identity). The exchangeable framework is a special case
of the the coexchangeable framework where X5 = 3 and A = 1. The framework proposed

here is an extension of the coexchangeable framework with A =1 and
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However, the basic coexchangeable framework does not distinguish between model differ-
ences and internal variability, and does not account for natural variability in the Earth
system. The extended framework proposed here accounts for both of these additional
sources of uncertainty.

Rongier_ef all (2013) suggest the following parametrization of the model inadequacy
SA=r*T+D

where D is a diagonal matrix with diag(D) = (D%, D%)T. The variances D% and D%
are intended to guard against overly precise projections when models are in close agree-
ment. However, this parametrization has unexpected consequences for emergent con-
straints. Standard results for the multivariate normal distribution show that

cov (Yp, Yy) K20y,
E|Yr|Yy| = “(Yg — h * = =
Yr | Yu] = pr + 8*(Yu — pu) where f var (Yy) K202, +D12L16

The emergent constraint shrinks towards zero by an amount that depends on D?%. This
is difficult to defend given that we have assumed the emergent constraint has a physical
basis and should apply to the Earth system. Similar terms D% and Dl%ﬂ| y could be added
to Equation 8 in the main text, but without effecting the emergent constraint, since then
cov (Yp,Yy) = var (Yy) = k?0% + D% and 3* = 3. The difference is due to our formulation
in terms of conditional rather than marginal variances. Like o3 and O'ZAF‘H, D% and
D%‘ y are difficult to specify a priori without additional data. One possibility might be to
consider the spread of a family of closely related models as a lower bound for the model

inadequacy.

1.4 The generalized truth-plus-error framework

=



Chandler (2013) proposed an alternative joint framework for multi-model projection

Xpr ~ N (X, Sin) r=1,...,Np
X0 ~ N (11, Ary) m=1,...,M
p~N(Y,SA) Yia ~ N (Y, 00)

where X = (Xamrs Xeme) 'y Xon = (X, Xpm) ™, o= (g, pr)", Y = (Y, Yp)". The
variances Ay, represent the propensity of each simulator to deviate from the ensemble
consensus. This provides flexibility to incorporate prior knowledge that certain climate
models are more or less similar to each other. Internal variability and model inadequacy
are both accounted for. In contrast to Rougieref all (2013), natural variability is accounted
for, but observation uncertainty is ignored.

Chandler (2013) suggests estimating the historical model inadequacy from data as
03X, = Yia — pur)? then setting
oo [ 7

UZH (1+ Ii)O'QAH

for kK > 0. This parametrization ignores any emergent constraints in the projection of the
future climate. In addition, estimating O'KH from a single observation Yy, provides very
limited information and makes the analysis vulnerable to outlying or spurious measure-
ments.

The frameworks proposed by Chandler (2013) and Rougieref all (2013) are conceptually
very different and appear incompatible. The most obvious difference is the direction of con-
ditioning between the system Y and the representative or consensus climate p. However,

Rongier_ef_all (20T3) demonstrated that a simplified form of the generalized truth-plus-

error framework can be viewed as a special case of the coexchangeable framework (up to



the second moments), for particular choices of A # I and ¥ A. It is interesting to note
that when all the distributions are normal, identical priors are set for related quantities
and A = I, both frameworks produce identical posterior inferences. This is not the case
when the assumption of normality is relaxed, and should not be interpreted as meaning
that both formulations are equivalent and can be used interchangeably.

? also considered the direction of conditioning between climate models the Earth system
and concluded that it should be decided by our ability to formulate the relevant distribu-
tions, to interpret them, and to perform the necessary computations. We find it more
natural to consider the actual climate as the sum of our knowledge (the representative
model) plus what we do not understand (model inadequacy), than vice-versa. Hence we
adopt a coexchangeable representation for the models. In contrast, in the supplementary
material we use a truth-plus-error representation to combine reanalysis data sets in order
to estimate observation uncertainty. This feels more natural since the reanalyses are trying
to approximate an observable (Yy,), rather than an abstract quantity (“the climate”) for

the models.

1.5 Reliability ensemble averaging

Tebaldi—ef"all (2005) proposed a probabilistic interpretation of the heuristic “reliability
ensemble averaging” framework of 7. The framework belongs to the truth-plus-error family,
with some interesting features. Multivariate extensions were proposed by Smith ef al
(2009) and Tebaldi"and Sansd (2009), and a similar spatial framework was proposed by

Furrer_ef-all (2007). The basic framework in our notation is given by

YHa ~ N (YH,O'L%) .



Similar to Chandled (2013), the model climates Xy, are conditioned on the Earth system
climate Y;, and the variances ), are interpreted as the propensity of each model to deviate
from the system. The coefficient 6 allows the propensity of the models to differ from the
system to change in the future period. Somewhat confusingly, natural variability in the
Earth system is accounted for, but internal variability in the models is ignored. Observation
uncertainty and model inadequacy are also both neglected.

The framework proposed by [Tebaldi—ef all (2005) includes something similar to an
emergent constraint. It is instructive to consider this alternative formulation in detail.
The expectation of the full conditional posterior distribution of future climate ([Tebaldi

etaLJZOU&:Eqn.AQ)iS

E[Yr|..] = Znln Xem ZAXHW).

2m A 2 A

This is equivalent to Equation 5 in the main text, if A2, = 0% for all m, i.e., if all the models

+ﬁ(YH—

are exchangeable. Let A7, = o}, and 0A}, = o7, for all m, then the posterior expectation

of Yy (Tebaldi"et all, PO0S, Eqn. A8) is

o2+ M (UH + MUF|H52>

E[Yy|..]=

In comparison, the posterior expectation of Yz in our framework is

0. Yo + 05 i + U}‘QHB (Ye — pp + Brm)

2 —2 -2 22
o, +oy + aFlHﬂ

E[Yy|..]=

assuming x = 1, i.e., the models are exchangeable with the Earth system. Both estimates
are weighted averages of the model outputs and the actualized climate Yy,. The two es-
timates effectively differ only in the weight given to the models. Under the framework

proposed by [Tebaldi“ef all (2005), the models receive M times more weight than under
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our framework. As a result, the posterior expectation of the expected climate Yy, and
consequently the projected climate Yz, will lie much closer to the consensus climate, and
approach the consensus as the number of models increases. In fact, the framework proposed
by [Mebaldi_ef"all (2005) implies that we can learn the expected climate Yy and Y to any
degree of precision we require, simply by adding more climate models (?). Given the exis-
tence of shared errors in all climate models, such an assumption is unsupportable. [Tebaldi
and Sansd (2009) later proposed the inclusion of a common model bias term to address this
issue. However, the common bias was treated as a fixed quantity to be estimated, and does
not contribute to our uncertainty about the Earth system in the same way as the model

inadequacy terms proposed here and by Rougier ef all (2013) and Chandler (2013).

1.6 Model weighting and Bayesian model averaging

A variety of model weighting schemes have been proposed in the literature (the Introduction

in the main text for examples), but all have essentially the same functional form

M
Y, = Z Wi Xt -
m=1

The actual climate (or climate response) Y; is modeled as a weighted combination of the
model outputs. Depending on the exact formulation, the weights w,, may be constrained
to be positive and sum to one. The weights w,, are estimated by comparing observations
of the historical climate Yy with model simulations Xpg,, of the same period. The same
weights are then applied to future simulations Xg,, to obtain projections of the future
climate Y or climate response Yr — Y. Bayesian Model Averaging differs from simple
model weighting by dressing each simulation X, with a kernel, so Y; becomes a mixture

model.



In principle, model weighting will respect emergent relationships. Consider the example
of Figure 1 in the main text. If the models closest to the observations receive the most
weight, then the projected climate response will be lower than the ensemble mean estimate.
However, unless the models further from the observations receive almost zero weight, the
projected response will shrink towards the ensemble mean. The amount of shrinkage will
depend on the exact form of the weights. In practice, the weights w,, are usually estimated
by comparing model performance at multiple locations, often across the entire study region
(e.g., Bhat et all, 20TT; Knutfiet all, 2017). If the emergent relationship does not apply
across the entire region, or varies within the region, then the weights are unlikely to reflect

the relationship and the constraining behavior will be lost.



2 Ensemble thinning

An extended version of the CMIP5 surface temperature data analyzed by Bracegirdld
and_Stephenson (2013) was considered for analysis. The mean climates over 30 winters
(December-January-February) are compared between December 1975 and January 2005
from the historical scenario, and between December 2069 and January 2099 from the
RCPA4.5 scenario. The five year shift in the historical period compared to Bracegirdle
and_Stephenson (2013) provides slightly better compatibility with the latest observation
and reanalysis data sets. Several of these data sets begin in 1979 when satellite observations
become prevalent. A total of 216 runs from 37 CMIP5 models were included in the full
ensemble, 128 runs of the historical scenario and 88 of the RCP4.5 scenario. The complete
list of models and details of their major components are given in Table Tl

In the main text we noted that not all of the models should be included in the anal-
ysis in order to satisfy the assumption of exchangeability. In particular, models from the
same center are likely to be more similar than those from different centers. Therefore, only
one model from each center should be included. Modeling centers may also share compo-
nents with other groups. Therefore, where possible only one model using any given major
component, or at least any combination of components, should be included.

The full ensemble was thinned in order to satisfy the judgment of exchangeability be-
tween the model outputs. The ACCESS models supersede the CSIRO-Mk3.6.0 model,
however all of the major components in the ACCESS models are borrowed from other
models. Therefore, none of the models submitted by CSIRO were included. Two models
were submitted by BCC, the model with the higher resolution atmosphere components was
retained. Three models were submitted from the combined efforts of the NSF-DOE-NCAR.
The CESM1(CAMS5) variant was selected as it includes a more recent version of the CAM
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atmosphere model. The NCAR CCSM4 model has been superseded by the CESM1 model,
and so was not included. The two NorESM1 models are also very closely related to the
CESM1 model, so was excluded. The BNU-ESM and FIO-ESM models were also excluded
since they use outdated and low resolution versions of the CAM atmosphere included in
the CESM1 model. The two models submitted from the CMCC are both based on an old
atmosphere component and a very old ocean component. They also lack a full land surface
model, therefore neither model was included. The CNRM-CM5 model and EC-EARTH
models are very closely related, but EC-EARTH model includes more RCP4.5 runs so
was retained over CNRM-CM5. The models from NOAA-GFDL differ primarily in their
ocean component. GFDL-ESM2G uses the GOLD ocean model, while GFDL-ESM2M and
GFDL-CM3 use the MOM4.1 ocean model. However, the MOM4 ocean model is also used
in the models from the BCC, so GFDL-ESM2M and GFDL-CMS3 are excluded. The NASA
GISS-E2-R model was retained over the GISS-E2-H for the increased number of levels in
the ocean model. The MOHC model in its HaddGEM2-CC configuration has a relatively
low resolution ocean component compared to most of the other models, so it is excluded
in favor of the HadGEM2-ES configuration. The model submitted by NIMR/KMA is an-
other version of the MOHC model, and so was excluded. The resolution of the atmospheric
component of the IPSL-CM5A-LR model is also low compared to the rest of the ensemble,
so it is excluded in favor of the IPSL-CM5A-MR configuration. Similarly, the atmospheric
resolution of the MIROC models in their MIROC-ESM configuration is relatively low, so
they are excluded and MIROCS is retained. In contrast, the MPI-ESM-MR configuration
features a very high resolution ocean component compared to the rest of the ensemble.
Therefore the MPI-ESM-LR configuration is retained instead.

The thinned ensemble contains a total of 89 runs from 13 models, 50 runs from the

historical scenario and 39 from the RCP4.5 scenario. The models included in the thinned
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Table 2: Models included in the thinned ensemble. Number of runs available from each model for the

historical and future time periods.

Runs

Modeling center Model Historical Future

Num Nrm
BCC BCC-CSM1.1(m) 3 1
CCCMA CanESM2 5 5
NSF-DOE-NCAR CESM1(CAMS5) 3 3
ICHEC EC-EARTH 8 9
LASG-CESS FGOALS-g2 5 1
NOAA GFDL GFDL-ESM2G 1 1
NASA GISS GISS-E2-R 6 6
MOHC HadGEM2-ES 4 4
INM INM-CM4 1 1
IPSL IPSL-CM5A-MR 3 1
MIROC MIROC5 5 3
MPI-M MPI-ESM-LR 3 3
MRI MRI-CGCM3 3 1
Total 50 39

ensemble and the number of runs from each is listed in Table 3.
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3 Estimating observation uncertainty

Estimates of the observation uncertainty o2 are often not readily available. Several model-
ing centers produce “reanalysis” products that combine multiple observation sources using
complex data assimilation techniques and numerical weather models. Given multiple re-
analysis data sets we can approximate our uncertainty about the observed state of the

climate. Let W; be the output of reanalysis ¢, which we model as

where py is interpreted as a representative reanalysis and the variance o3, quantifies the
spread of the reanalyses. We expect the representative reanalysis uy to be similar to the

actualized climate Yy,, and so we model the representative reanalysis as

pw ~ N (Ya, 04,,) (2)

The variance aQAW quantifies our uncertainty about the discrepancy between the repre-
sentative reanalysis and the actual climate, due to sparsity of observations, errors in the
numerical weather models etc. Similar to the models, we judge that the representative
reanalysis is less like the actualized climate than the individual reanalyses are like the

representative reanalysis, so we set

ORy = KO kw > 1. (3)

Conditioning the representative reanalysis py on the actualized climate Yy, in Equad
Eion—2 induces a correlation (dependence) between the models and the reanalyses, i.e,
cov (Wi, Xpm) = var (ug) 4+ 04, + 0o +ox,, for all {i,m}. Such a correlation makes sense,
since climate models and reanalyses are very closely related, sharing very similar numerical

cores.
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For the analysis of Arctic surface temperature we combined four contemporary reanal-
ysis data sets: ERA-Interim (?); NCEP CFSR (?); JRA-25 (?7); and NASA MERRA (?).

The coefficient ky was set to equal to the ensemble coefficient kappa at 1.2.
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4 Derivation of Gibbs’-Metropolis updating equations

For the purposes of computation it is more convenient to work with precisions than vari-

ances, so let

Tm=1/02 form=1,...,.M; ¢n,=1/0> form=1,....M

th=1/0k;  Tem =10k Ta=1/0%  ¢a=1/0L  Tw =1/0p.

The complete model defined by Equations 1-8 of the main text and Equations 1-3 of the

supplementary material can be rewritten as

XHmr | XHm ~ N (XHmaTyzl) XFmr | XFm ~ N (XFma (¢me)_1>
X~ N (it 75) Ko | Xogm ~ N (e + 8 K — i), 751
vy vg)? vp vpb?
T Gamma( 5o ) Om ~ Gamma < 5 o
Yia | Yu ~ N (Y, 7,) Yra | Yr ~ N (Yr, ($a7a) )
Yig ~ N (p,7a,) Yp | Yy ~N (MF +0(Yu — i) 77&;\1{)
2 92
7, ~ Gamma (%, Vng ) o ~ Gamma (%, VF; )
W;~ N (/LWJT‘;/}) pw ~ N (YHayTg‘}V)
where

TAy = TH/H2§ TApig = TF|H//<c2; TAw = TW/H%/V; VHa = VH/H2; VFa = VF/’f2-

Vague conjugate prior probability distributions were specified for the parameters as fol-
lows pp, pw, 8~ N (0,109, pup | g ~ N (e, 10%), 7, Ty, 7w ~ Inv-gamma (1073,1073),
2, 0% ~ Gamma (1072,1073), and vy, vr ~ Exp (1/M). The resulting full conditional pos-

terior distributions all have standard forms with the exception of the degrees-of-freedom vg
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and vg. Therefore, posterior inference can be efficiently accomplished by Gibbs’ sampling
with Metropolis-Hastings steps for vy and vg.

Let X = (Xynr,s €{H, F},m=1,... , M,r =1,..., Ry,) be the model outputs, Y =
(Y, Yaa, 72)' be the latent state of the climate system, 8 = (. pip, 3, T, Trm, 2, 6%, v, vp)'
be the ensemble parameters, X = (Xgm, XrFm, Tm, @m, m = 1,..., M)’ be the latent model
states, W = (W;,i = 1,..., N) be the reanalysis outputs, and w = (uw,7w) be the re-
analysis parameters. The future state of the climate system defined by Y, Yz, and ¢, are
purely predictive quantities and can be sampled after sampling of all other quantities is
complete, using the equations above.

The joint posterior can be decomposed as
Pr(Y,x,0,w | X, W) xPr(W |w)Pr(Y|0,w)Pr(X|x) Pr(x|0)Pr(0)Pr(w)

The likelihood of the reanalysis outputs W given the reanalysis parameters w is propor-

tional to
i T
Pr (W 1/2 (——W W, — 2).
W ) o [T esp (<5 0 =)

The likelihood of the system Y given the ensemble parameters @ and the reanalysis pa-

rameters w is proportional to

Ta

2

H

T
Pr(Y |8,w) oc 782 exp (=5 (Vi = par)?) 7/ exp (=T (Vina = Yar)?)

VHa¢2)VHa/2 2
(57) i &)

T (via/2) © 2
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The likelihood of the model outputs X given the latent model states x is proportional to

M RH'm
Pr (X 1/2 (—T—’”XW—Xm?)
(¢ o T TT o esn (<5 (= i)
M Rpm Qb -
H (¢me)1/2 €xXp (_ - (XFmr XFm)z)
m=1 r=1

P Pexp (=5 (X — pa)’)
r(X|0)OCTH1TH exp 5 ( H ,UH)
M T
H 7.;/ exp <_7F (Xpm — pr — B (Xgm — b)) )
m=1
9\ VH/2
M VHd’ ) "
H <2—7_ZIH/2—1 exp (_VH_WTm>
AL T/ 2
02 vp/2
11\_4[ ( ) I/F/Q*l exp _VF6)2¢

The joint prior distribution of the ensemble parameters 6 is proportional to

Pr(8) x exp (—b“TH (pr — a“H)2> exp (—b“TF (pr — ,UH)2> exp (—%ﬁ (B - aﬁ)2>

Ti T exXp (b 7i) Ti " exp (—br, TR) U exp (< by, va) VT exp (—by,vr)

(1#2)%271 exp (—by21?) (92)%271 exp (—bp26?) .
The joint prior distribution of the reanalysis parameters w is proportional to

Pr(w) Ti/w exp < TAQW (w — YHa)2> Tgl;w_l exp (—bry Tw) -
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The full conditional distributions of the system quantities Y are

LY _
YHa|"-NN . H+TAWMW)(Ta+TAW) !
Ta + TAy

TA ,U/H—i_TaYHa -1
Y |... ~N (22 ,
o 7 (PN (g )

<VHa +1 vaa® + (Yia — YH)2>
To | ... ~ Gamma

2 2

The full conditional distributions of the reanalysis parameters w are

N Tw Zz W, + TAWYHa
TwiN + Tay,

,uw‘...N ,(TwN+TAW>_1)

N +1

Tw | ...~ Gamma <a7W+ 5

1 1 _ 2
by + 5;(‘% — pw)” + 5t (kw = Vi) )

The full conditional distributions of the latent model states x are

X - mim X mr —
~ N (TF (MF : ﬁ( o MH)) u ¢ i ZT d ) (TF + gmemRFm) 1)
TF + ¢m7—mRFm

Ty + Trf (XFm — up + ﬂMH) + Tm Zr X Hmr
Ty + Tr0% + T Ram

Vg + NHm + NFm VHw2 + Zr (XHmr - )(Hm)2 + ¢m Zr (XFmr - XFm)2>

Xpm | ...

XHm|NN< 7(7—H+7—F52+TmRHm)l>

ml|.o..~G ,
Tm | amma( 5 9

2 2

Gm | ~ Gamma (VF + Npp vpt + 70 30, (Xpmr — XFm)2)
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The full conditional distributions of the ensemble parameters 0 are

gl ~N (ﬁH, (Buss + b —|—THM+TFﬁ2M+TAH)*1>

bupperr + 77>, (Xpm — B (Xam — fim)) 1
N [ £ m b M
( bur + 77 M e+ 7 M)

luF’N

-1

bgag + +7 Xgm — Xpm —

Bl...~N |22 P 2 (Kiim — pin) ( o NF), by + 71 Y (Xbm — par)’
55+TFZm(XHm—MH)

M+1 Xy — 2 -2y, _ 2
T | ... ~ Gamma (aTH+T+»er+Zm( H ,UH)2+/€ (Y MH))
X m = - X m 2
75 | ...~ Gamma (aTF Zm( F HF 25( H MH)))
2 I/HM—f-VHa Vi S Ton 4 VitaTa
7| ..o~ Gamma | ayr + —————, by2 + :
0*| ... ~ Gamma (a92+— boz + VFZZm¢m>
where
i _bMHa#H+blLFMF+THZ XHm_TFﬁZ (Xpm — :uF_ﬁXHm)'f‘TAHYH
H_

buy + bup +THM + TRF2M + Ta,,
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The full conditional distributions of the degrees-of-freedom vy and v do not correspond

to any standard distribution. The likelihoods associated with vy and vg are

[ (l/H) = %Tgmﬁl exp (—ﬁHaTa) ];;[ Fﬁ(ZH)T%H_l exp (—ﬁHTm)
and
_ B;F ap—1 o
! (VF) - H T (OCF> ¢m exp ( 5F¢m>
where

aHa:VHa/Qy BHQZVHa@bQ/Q, O{H:VH/Q, BH:VH¢2/2, OéF:VF/Q, ﬁF:VF92/2~
The prior densities of vy and vp are
Ay, —1 ay.—1
p(vy) cvyg® “exp(=b,,vg) and p(vr) xvp® exp(—by.vr).

The posterior distributions of vy and vg conditional on the current state of the other

parameters can be sampled using the Metropolis-Hastings algorithm. For each s € {H, F'}:

1. Sample a new state v} from q (v} | 1p);

2. Calculate the Hastings ratio

Wv)p()alvy | v) |
Uve)p(ve)a(ve | vf) 7

T(Vt*vyt) =

3. Accept the new state v; with probability
a(vy,vy) = min(1,7r (v, 1n)).
where q(vf | ) = Gamma (v:A, \¢) is the proposal distribution, with expectation v and

variance controlled by the free parameter );. The acceptance rate of the Metropolis step

can be controlled using the parameter \;.
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5 Posterior computation

Four parallel chains were initialized for each grid box, from over-dispersed starting points.
Initially, 20 000 samples were performed by each chain for each grid box. The first 10000
samples were discarded as burn-in, and Gelman-Rubin diagnostics performed on the re-
maining 10000 samples (7). If any random quantity had a potential scale reduction factor
greater than 1.10, then sampling was continued for a further 10000 samples per chain and
diagnostics performed again until satisfactory convergence was indicated. We store every
40th sample from the last 10000 samples of each chain, leading to a final sample size of
1000 for each grid box. The Metropolis-within-Gibbs’ sampler was implemented in the R
statistical computing language (7). Computation time for four parallel chains of 20000
samples at a single grid box is around 5.5s on a standard Linux workstation. The samplers
for all grid boxes converged successfully. Convergence was achieved after the initial 20 000
samples at 50% of grid boxes. Less than 2% of grid boxes required more than 100 000
samples before convergence.

Inspection of the posterior distributions showed that, despite the small ensemble size,
the ensemble parameters uy, pr, 3, 0%, O'%‘ 5 and ¥? and 67 are all very well constrained
by the data. As expected, the degrees-of-freedom vy and vy were only mildly constrained
compared to the exponential prior. The inter-quartile range (IQR) for the mode of vy over
the 2880 grid boxes was 5-10, and for vr the IQR was 5-8, compared to the mode of zero
for the exponential prior. However, both vy and vr tended to have long tails at individual
grid boxes. Due to the extremely small sample size, the reanalysis spread oy, was relatively
poorly constrained compared to the other parameters, but the posterior mean was below
2.0°C at more than 75 % of grid boxes.

Monte Carlo standard errors were computed for each parameter at each grid box (?77).
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The Monte Carlo standard error rarely accounted for more than 4.3 % of the posterior
standard error, or exceeded 3.8 % of the absolute posterior mean.

Examination of correlation matrices for the posterior samples revealed that only the
means py and pp are consistently highly correlated (IQR Cor (pg, pr) 0.69-0.93), which
is to be expected given the relationship in Equation 2 of the main text. Unsurprisingly, the
internal variability ¢? and 6? are also moderately correlated (IQR —0.44-—0.37). The only
other parameters to have consistently non-zero correlation in the posterior samples were )2
and vg (IQR 0.13-0.28), and 6% and v (IQR 0.08-0.16). Again, this is not surprising given
the close relationship between these parameters in Equation 3 of the main text, and the
small number of initial condition runs available from each model. None of these findings is

particularly troubling, and so we conclude that the posterior simulation worked well.
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Figure 1: Posterior mean estimates of the representative reanalysis py and the reanalysis uncertainty oy .

6 Posterior parameter estimates

The spread between the reanalyses oy is greater over land than over the ocean where
temperatures vary more slowly (Eignre ). The reanalysis uncertainty increases with lati-
tude as the number of observing stations decreases and the terrain tends to become more
mountainous (Eigure ). The spread between the reanalyses is particularly large around
the sea ice edge.

The representative historical climate pg is quite similar to the representative reanalysis
tw, except over the Arctic ocean where climate models tend to be cold biased ([Eigure™).
The historical spread between the models oy is generally greater than the spread between

the reanalyses oy (Eigure3). Like the reanalyses, the model spread tends to be greatest

24



w ——

2 4 5 6 7
Representative historical climate py ( C) istorical model uncertainty oy ( C)

-40 -3 -30 -25 -20 -15 -10 -5 .0 5 10 15 0 1

Figure 2: Posterior mean estimates of the representative historical climate ppy and the historical model

uncertainty og.

over mountainous regions and near the sea ice edge.

The model response uncertainty op|y is greatest over the Arctic ocean, particularly to
the east of Svalbard (Eigure3).

Like the reanalysis uncertainty, the representative internal variability ¢ is greater over
land than over the oceans, and highest in mountainous regions and close to the sea ice
edge (Eigured). The representative change in internal variability € is small over most of
the study area (Eigured). Internal variability decreases close to the historical sea ice edge,
where rising temperatures cause the ice edge to retreat and temperatures to stabilize. The
climate in the interior of the Arctic becomes more variable as rising temperatures causes

seasonal melting in regions permanently covered by sea ice during the historical period.
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Figure 3: Posterior mean estimates of the representative future climate pp and the model response uncer-

tainty o
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Figure 4: Posterior mean estimates of the representative historical internal variability v and change in

internal variability 6.
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