Appendices

Appendix 1: Proof of Equations (3-4).

Let
f= (Xt _Xt—l), (Xt _Xt—l)—l—;\"(r_li’yt _éxt _éxt—l _at)’ t>1.
Then
of , , A
a—Xt=2Xt—2Xt_l—)\,B:O’ (Al)
and
of A - R
G_XZT_Tyt —-Bx, -Cx,-a, =0,
which leads
A A 1 ~ A, ~
TPy, - Bx,, —E(BB )2.-Cx., -, =0.
That is

A

= 2(@@')_1(1—&% ~(B+C)x.-a) (A2)
Replacing Equation (A2) in Equation (Al) leads
X =(|mxm —é'(éé’)_l(mé))xt_l+é'(éé’)_1(r—‘ifyt “a,).

Therefore,

Appendix 2: Proof of Lemma 1.

Equations (2) and (3) lead the following equations:

A A

-, = Q(yt—l - ‘i’)/t-z - th—z - CXI—S _at—z) = Q(yt—l - ‘r),

for t>1, and



Xiq—

t-2 —

8(B8) ex,-B(B8) (F+)(y.-1)-B(BE) e t-1

-1 A
t>1.

Expressing Equation (1) as a difference equation and using the above results provide

the iterative formula for y, —t as follows:

Therefore, we have

Hence,

where,

and

Y, — 1T Yo, —T (1-B)n,
Yia—7T =M Yio—T |t 0
X =X Xip = X3 0
o+Bx,-T| (1-B)n_,
=M™ - + (M)J 0
X, =0 0
Yi—T :yt—1+§t’
a+Bx,-7
Yia = [I 0 O] M -7 =E v, +tF. (_T) +G, (X,
Xo



t— (1_B)nt*j t-1

&=[1 0 O]Zl‘,(l\/l)j 0 |=(m—nu)+ 2E (M M)
i=0 0 i=1

Note that & =0,fort<0, hence & can be further expressed as

nxn

&.’t :[Inxn 0nxn Onxm](l_BM)_l 0nxn (1_B)nt
0

mxn

= [(I (2n+m)x(2n+m) ~ BM)_l]ll (1_ B)nt )

(A3)

Appendix 3: Proof of Theorem 1.

If p(M)<1, then

- t _
!Lrg M = 0(2n+m)><(2n+m)'
Therefore, it implies
!im E, = !im F =0, !im G, =0,

Hence, in this case, Equation (12) leads

imE(y,)=lim{t+E v, +F,(-7)+G X =T

t—oow

Now, since maxd; <1 guarantees (1-8)n, is stationary, the stability conditions

I<i<n

depend on {E,}z To show the covariance matrix of &, is bounded, we first denote

e; astheentry of E. According to Horn and Johnson (1990), since !im E =0,
for arbitrary &> 0, there exists a positive integer N_ such that

D eli<e V>N,
¥

which leads the Euclidean norm (||||2) of E, tobelessthan ¢ forlarge t.

Define st=zt:||Ei||2. Then
i=0



M
Sy —Ss, :inz+1||Ei||2 <& vn>n, >N,
=l

This demonstrates that s, is a Cauchy sequence. Therefore, the filter relating

(1-B)n, to & s stable. According to Reinsel (2003), the process outputs

controlled by the dqpMEWMA controller satisfy Equations (8) and (9).

Appendix 4: Proof of Equation (17).

From Equation (10), we have

| -BM,, -BM, -BM,

nxn

I-BM=| -5l I 0

nxn nxn

“BM,, -BM,, |__-BM,

mxm

By the inverse of block matrix (Graybill, page 19), we have

-1
| 0 T
[(l _BM)&]n = In><n _BMn _Bz [M12 M13] " . |
-BM,, 1. —BM,, M,,

mxm
where

Inxn 0

In><n O B
|:_BM32 Imxm_BMsj _[_(Imxm_BMss)l(_BMsz) (Imxm_BMss)lll

Under C=kB, we have

_ - SR\t A
(Imxm_BME}S)l:Imxm_l_i:lkgB ,(BB') ’
and
4 B aiaa\ta
(1 — BM,) (—BMsz)=mB’(BB) ¥
Hence,
) .. 0 B I
(1+kB){InanMllB [M,, Mls][_BMSZ lmxm—B'V'sj {MJ}

= (L+kB)1,,, —(L+kB)BM,, — B2 (L+kB)[M,, + M,;M, ]

nxn



From (A3) in Appendix 2, we have

(1o — @ B-®,8° - ®,B°) & = (1+kB)(1-B) n,.

Appendix 5: The expression of > (v;,7.,).

t=1

From Equation (13), we can re-express vy, , and Z(’Y;—lYt—l) as

t=1
Yo
’Y’[fl = [Ian Onxn Onxm] Mt_l -7
XO
and
o0 0 I nxn On><n 0n><m YO
! ! ! ! ! t-1 —
Z(ytilytil) = [YO -T XO] Z(M ) OFIXFI Onxn Onxm Mt ' -7 1
Opa On Opn X,
respectively. To further simplify the above equation, let
© Inxn nxn Onxm
Zé = Z(M,)t Onxn nxn Onxm Mtv
“ [Onn O O
then
o0 YO
Z Yt 1'Yt1 o =T Xé]zi -7 |.
t=1 XO

Note that X, can be viewed as the covariance matrix of the time series ¢, where

St = MIGt—l +&,

and g, Is a vector white noise series with covariance matrix



Hence, we have

Inxn Onxn Onxm
L. =MZM+ 0 O Oiin
Omxn Omxn Omxm
Now, by use of procedure in Reinsel (2003, pp 29-30),
-1
Eé = mat(2n+m)x(2n+m) ((|(2n+m)zx(2n+m)z -M'®&M ) VeC(Za )j !

where vec(-) is the operator stacking column vectors of a pxq matrix asa pgx1
vector; mat . () denotes the operator inversely stackinga pgx1 column vector as

a pxq matrix; ® denotes the Kronecker product, that is, A®C:(aijC)mp .

with A=(a;) ~and C=(c;) .

Therefore,
) 1 YO
Z Yt a7V 1 0 -7 Xg]mat(2n+m)x(2n+m)( (I(2n+m)2x(2n+m)2 -M'® M,) VeC(Zs) j T
t=1
XO

Appendix 6: The expression of v
From Equation (17), if n, is a vector IMA(1,1) process, then & will follow a
stationary vector ARMAC(3,2) process, and the corresponding Yule-Walker
equations are
I, =Cov (g, &) =T (@) + Ty (®,) +5(®;) +H,,
I, =Cov (&, &) =T,(®,) +I(®,) +T,(®;) +H,,
I,=Cov(g,&,,)=T,(®) +,(®,) + (D) +H,,
[,=Cov(§, &.,)=T,(®@) +I,(®,) +T ()"

where



Ho =X (@; —@1)26);—(@;(@; -0,)+(®, —@2))29; :
H,=-20;-(®,-0,)20,, and H,=-X6),
0,=0-kl ., and O, =kO.
Again, by use of procedure in Reinsel (2003, pp 29-30 and 59-60), we obtain

v=trace(I,)= trace(matnxn (Pl‘1 (P;h, +P,h, + ho))) :
where h,=vec(H,),i=12,3 P,=Q,-Q,Q,Q,; P,=Q,Q,, and

P,=P,(®;®1,,)S,, +(®;®1,,+®,®®])S .
with
Q=1..-(0;®00;)-(®;®1,,+®,0d;)S (P, ®],,);
Q,=(®;®l,, +®; ®<I>;)S(nyn)
(@, @1, +@;00;)S, (@] @1, +(0;®1,,)S,,);
Q, =(|annz (@, ®1,,0)S )~ (@3 81,,,)Sy (@5 O, +(@5 8 |nxn)s(n,n)))_1 :

Q4 = q)I ® In><n +((I); ® Inxn)s(n,n) ((I); ® Inxn) !

and S, => > E, ®E;, isthe permuted identity matrix, with E; =(e;) and

ij
=1 iy=1

[ ifi=iand j=i,
10  otherwise.

Appendix 7: Proof of Equation (21).

A A A

As B=B, C=C, and Y=Y,



Hence,

Yea¥ia = EaYoVoEia

which implies
N N
D trace(y, 471, )= trace(E_voYoEL, )
t=1

t=1
N
= Z YoErEiaYo
t=1

(1-@)"" 0 - 0
N 0 . .
- tZzil;’yo . O
I 0 0 (1_ n)2t72
N n
- ZZ(l_wl )Zt—Z |20
t=1 i=1l
1_(1_ I)ZN ,

In addition,
(Inxn_q)lB)ét:(Inxn_QB)at’
where @, =1 -Q=diag(l-®,....1-®,), and then the

Yule-Walker equations are

I, =Cov(g, &, )=T®;+H,,
I = Cov(ét' ém) = FO(I)i + Hl’

where

!

Hy=Z—(®,-0)Z0 and H,=-X0.
Setting g, =vec(I';) and h, =vec(H,) leads
goz(lnxn_q)1®q)1)_lh;’
where hy =vec(H®; +H,).

Let g, :(gfo),..., gffj)). Since

Yo (A4)

corresponding



-0l ° 0

0 ) :
(1, - ®®) = 5 E ,
0 P e o]

and
Hi®! + H, :-@zq>;+(>:—(q>l—®)2®'),
we can obtain

0, —2(1-w )00, +0,X6,
o), = =200 0T, 9
1-(1-w)

! !’

where ¢, =(0y,...0,,) and 0, =(6,,...6,) . Therefore, we can obtain Equation

i1’ in

(21) by Equations (A4) and (A5).

Appendix 8: The process 1-O Model used in Section 6

For the CMP dataset, according to Fan et al. (2002), a dynamic process is a better and
more realistic model to explain the complicated process. However, the results are
addressed only under the case of the SISO process. In the following, adopt this dataset,

we obtain a prediction model as follows:

“ -0.58 -0.02 449.5 31.13 107.59 34.72 57.97
Y. = Yiat + Xi4
0.06 -0.61 2513.5 130.64 -31.65 172.58 19.80

N 10.53 4185 1295 18.62 «
83.35 -26.17 97.90 10.42| %

By using Akaike information criterion (AIC), we have AIC(dynamic)=11.19,
AIC(static linear model, Tseng et al., 2002)=12.72, AlC(quadratic without interaction

term, Castillo and Yeh, 1988)=13.65. Furthermore, the Ljung-Box Portmanteau



statistics for multivariate time series is Q =84.69 when the lag is 20, and the
corresponding p-value is 0.34. The test supports that the residuals are white noise.
Hence, it demonstrates that the dynamic model together with IMA (1, 1) disturbance

is more appropriate for the CMP dataset.

Appendix 9: The derivation of the ST controller.

Considering ® =0 Equation (1) with vector IMA(1,1) disturbance can be

reduced as follows:
Y, =¥y +o+Bx +Cx_, +(1- B)fl g,
which leads
Ye—Yer =P (Yeu —Yio) +B(X =%, ) +C (X, — X g ) + &
In this case, the MMSE controller can be written as follows (Reinsel, 2003):
X, =X, +(BB)" B'(t-y,— ¥ (Y, — Y1)~ C(Xy —X,)). (A6)
where (B'B)f1 denotes the generalized inverse of B'B.

Let the estimated matrix of model parameters be

A

= =| ¥, |B|C |

and

!

L= |:(yt _yt—l) |(Xt—1 _thz) |(Xt—2 _ths) } .
In addition, for t=1,2,..., set

K, = Pt—}Xt ,
7 Ly

Egi) = Egi—)l +K, (yi,t — 7 _Egi—)ﬂ(t) '

10



and

I (n+2m)x(n+2m) Kt Pt—lXt

n+2m

Pt = ( I (n+2m)x(n+2m) - KtXt ) Ptfl +

where = isthe i-th row of Z, and the initial setting for P, is very close to an

identity matrix in practical applications, that is, P, ~ | ) (Del Castillo and

(n+2m)x(n+2m

Yeh, 1998). Then modifying Equation (A6) provides the ST controller as follows.

-1 . ~

Xi = X4 +(ét ét) Bt (T —Yi _‘Pt (yt _yt—l)_ét (Xt—l _thz))'
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