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Chapter S1. 	Chonotherapeutic implications for posttraumatic chronodisruption -New pharmacological treatment approaches 

S1. 1.	Serotonergic treatment 
Selective serotonine reuptake inhibitors (SSRI) are currently considered a first line pharmacotherapy treatment option for PTSD [1, 2]. However, SSRI have been shown to exert additional, circadian system-related effects. The SCN receives a major input from serotonergic projections from the raphe nuclei [3] and SSRI have been shown accordingly to increase the sensitivity of the human circadian system to light [4] and majorly influence circadian entrainment [5]. SSRIs are also shown to modulate the circadian system via phase advances of SCN neuronal firing [6] and also normalize disrupted circadian locomotor activity and hippocampal clock gene expression in genetic animal models of high trait anxiety and depression [7]. Interestingly, early administration of SSRI after trauma was found to positively influence sleep patterns and prevent SD, while it could also have preventive potential on overall PTSD after interpersonal trauma [8].

S1. 2.	Melatonergic treatment 
MLT exerts its pleiotropic action on crucial physiological systems and positively modulates mechanisms of sleep, cognition, memory, metabolism, pain, immune system, neuroendocrinology, circadian gene expression, oxidative stress and epigenetic modulation, suggesting potentially advantageous effects of an add-on melatonergic treatment in PTSD [9, 10]. MLT and melatonergic agonists robustly show positive influence on nearly all aspects of SD (i.e., reduction of sleep onset latency, increase of sleep propensity, quality and total duration, REM sleep percentage and continuity, normalization of sleep patterns, body-movement, breathing-related pathologies and daytime dysfunction) [11-24], a benign short- and long-term side-effect profile, no efficacy wearing-off and no withdrawal effects or dependence risk [11, 12, 17, 18, 21, 25-27]. In particular, MLT directly entrains amplitude and phase of central (e.g., SCN, hippocampus, pituitary pars tuberalis) and peripheral (e.g., adrenal gland) circadian-related gene expression [28-34] and modulates circadian GR activity [35-39]. In addition, MLT decreases hypothalamic CRH, thus inhibiting the adrenocortical ACTH-stimulated CORT production [28-34, 40] and attenuating acute and chronic secretory response to stress [41-44]. With respect to the ANS, MLT restores autonomic rhythmicity by inhibiting central SAM outflow and shifting autonomic balance in favor of PNS activity [45-49]. Interestingly, research findings suggest also a direct enhancing effect of melatonergic transmission in stimulus processing, memory consolidation and conditional cued fear extinction, especially under stress [50-53], which is extremely important in PTSD development. Finally, immediate melatonergic treatment directly after stress exposure, normalizes Per1/2 gene expression in hippocampal regions of rats, thus suggesting also possible preventing properties of melatonergic treatment [54]. In models of sleep deprivation and chronic stress, MLT has been found protective to these hippocampal neurons from oxidative stress, by preventing GC-related toxicity by decreasing GR translocation to the nucleus [55-58]. Taken together, MLT and melatonergic agents could, thus, represent a promising adjuvant contribution to the routine clinical treatment and even prevention of posttraumatic chronodisruption in PTSD [59-64].

S1. 3.	Glucocorticoid treatment 
Manipulation of GC signalling through exogenous, time-sensitive GC or GC-analogs application can enhance peripheral clock resetting [37, 65, 66] and may have restorative or even preventive potential in posttraumatic chronodisruption and PTSD symptoms in general [67]. For example, exogenous GC administration effectively reduced fear responses and facilitated fear extinction in experimental settings [68-70]. Accordingly, hydrocortisone applied immediately after trauma exposure has been also repeatedly associated with the effective prevention PTSD in humans [71-74], with its effects being possibly time-dependent [75]. In addition, GC administration in PTSD has also shown therapeutic potential for specific (e.g., memory performance) and general PTSD symptomology, either alone [76] or in in combination to psychotherapeutic assessments [77-79]. On the other hand, pharmacological GR-antagonism has been also found associated with insomnia symptoms improvement [80] and could also represent a potential approach. For example, the GR-antagonist mifepristone has shown potential in the reduction of overall PTSD symptoms in combat veterans [81].

S1. 4.	Other potential treatment modalities
- MDMA: Both acute and chronic 3,4-Methyl​enedioxy​methamphetamine (MDMA) administration has been shown to influence photic entrainment [82] and circadian behavioral rhythms [83, 84], mainly through expression and DNA methylation alterations in clock genes in the periphery [85], but also in the CNS and SCN [86]. MDMA interestingly even leads to a reverse reaction to the physiological stress-induced downregulation of specific clock genes in the hippocampus [87]. The main chronobiological MDMA mechanism of action includes serotonergic 5HT2A receptor pathways influencing circadian regulatory neurocircuitry [88-90]. In PTSD, adjunctive MDMA treatment paired with psychotherapy represents a very promising treatment alternative [91], most possibly through a general memory-modifying effect during reconsolidation [92] and shows high rate of clinical response and remission, with durable efficacy, while being well-tolerated [93]. MDMA-assisted psychotherapy for PTSD has, thus, obtained Breakthrough Therapy Designation (BTD), potentially leading up to a near future FDA approval [94].
- Opioidergic treatment: Animal research suggests an important, phase-dependent role of opioid receptors on circadian system light responsiveness, as opioid agonists have been found to influence light entrainment [95, 96]. In addition, opioids direct influence the central SCN electrical activity through opioid receptor-related clock gene expression [96-99]. On the other hand, administration of a kappa-opioid receptor (KOR) antagonist has been interestingly shown to reduce/invert chronic stress-related SD and chronodisruption in mice [100]. Interestingly, in PTSD, morphine administration after traumatic stress has been repeatedly associated with lower rates of PTSD development [101-103], suggesting that the opioid system might be of particular importance in PTSD-related neurocircuitry and possibly exert time-of-day-dependent effects depending on circadian responsiveness [104].
- Cannabinoid system: The complex endocannabinoid signaling network is involved in the central modulation of numerous aspects of light entrainment, clock gene expression, sleep-wake regulation and overall circadian physiology, mainly through CNS cannabinoid type-1 receptor (CB1R) [105-111]. A single randomized, placebo-controlled trial of the synthetic cannabinoid agonist nabilone, has offered promising results and showed that nabilone was effective in the reduction of treatment-resistant SD and nightmares in a small PTSD sample [112].
- GABAergic treatment: γ-amino butyric acid (GABA)-ergic neurons exhibit vital phase- and light-dependent excitatory and/or inhibitory effects on SCN intrinsic cell activity and are a crucial facilitator of circadian entrainment [113, 114]. With the exception of benzodiazepines for various reasons [115], some other GABA-ergic compounds could have a certain (chrono)therapeutic potential in PTSD treatment. For example, baclofen (a GABA agonist) [116, 117], pregabalin (an indirect GABA synthesis modulator) [118] and tiagabine (a GABA reuptake inhibitor) [119] haven been all found effective as add-on treatment in PTSD and have demonstrated sleep improving properties in several studies [120, 121].
- Glutamatergic treatment: The primary excitatory glutamatergic neurotransmitter system critically affects the circadian and the sleep-wake regulatory system and is vital for their physiological modulation [122]. Most importantly, the primary intrinsic neuronal firing of SCN neurons has been lately proposed to be majorly influenced by NMDA receptor-dependent glutamatergic gliotransmission of SCN astrocytes [123]. Ketamine, a selective antagonist of the NMDA receptor, has been shown to effectively and immediately affect circadian clock gene expression of the main and auxiliary TTFL in the SCN and other core CNS areas [124, 125]. Intravenous ketamine has been lately repeatedly shown to rapidly alleviate posttraumatic symptoms in several randomized, placebo-controlled clinical studies [126-128] and shows promise as a potential new routine therapeutic possibility in PTSD as further multi-center, dose finding studies are on their way [129].
- casein kinase 1ε: First findings suggest that casein kinase 1ε, a closely related clock components implicated in period determination, could represent a novel target of pharmacological inhibition, thus stabilizing the circadian clock against phase shift [130] and might be of particular interest for stress-related chronodisruption. 























Figure S1. 	Schematic overview and detailed description of the human central and peripheral stress system
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Figure Legend: AC: adrenal cortex; ACh: acetylcholine; ACTH: adrenocorticotropic hormone; AD: adrenalin; AM: adrenal medulla; ANS: autonomic nervous system; AP: anterior pituitary; ARC: arcuate nucleus; AVP: arginine vasopressin; CAN: central autonomic network; CRH: corticotropin releasing hormone; DMH: dorsomedial hypothalamus; DMV: dorsomedial hypothalamic nucleus; GCs: glucocorticoids; HPA axis: hypothalamic-pituitary-adrenal axis; InC: insular cortex; LC: locus caeruleus; MPA: medial preoptic area; MSH: melanocyte-stimulating hormone/melanocortin; β-E: β-endorphine; NE: norepinephrine; NTS: nucleus of the solitary tract; PAHN: preautonomic hypothalamic nucleus; PB: parabrachial nuclei; PGC: paragigantocellular nuclei; PNS: parasympathetic nervous system; PGAN: preganglionic autonomic neurons; PVN: paraventricular nucleus; SNS: sympathetic nervous system; subPVN: subparaventricular area; VLM: ventrolateral medulla.
The central stress system: The greatly interconnected components of the central stress system are located in the hypothalamus and the brainstem, and include: a) the parvocellular CRH neurons b) the AVP neurons of the PVN, c) the CRH neurons of the PGC and PB of the MO and LC, d) the ARC peptides α-MSH and β-E e) other NE cell groups in the MO and pons (LC/NE) and f) central nuclei of the ANS and the CAN. The CAN includes the InC, central nucleus of the amygdala, HT, periaqueductal gray matter, PB, NTS and VLM. The insular cortex and amygdala mediate high-order autonomic control associated with cognitive perception and emotional responses through hypothalamic-brainstem pathways. NTS, PVN and VLM contain a network of respiratory, cardiovagal, and vasomotor neurons, receiving afferent vagal sensory input from thoracic and abdominal viscera and other cranial nerves. These structures accordingly modulate the activity of PGAN. 
The peripheral stress system: The peripheral components of the SS include: a) the hypothalamic-pituitary-adrenal HPA axis and b) the limbs of the ANS i.e., i) the SNS and SAM system and ii) the PNS, which all exert complementary actions throughout the body. 
The HPA axis consists of the PVN, the pituitary corticotrophs and the zona fasciculata of the adrenal cortex, which, respectively, employ corticotropin-releasing hormone (CRH) / arginine vasopressin (AVP), adrenocorticotropic hormone (ACTH) and glucocorticoids (GCs, i.e., cortisol in humans) as their signalling effector molecules. CRH and AVP are released from the PVN into the hypophyseal system in response to stimulatory signals from higher regulatory centers (e.g., PFC) and reach the pituitary gland to stimulate the secretion of ACTH. ACTH reaches the cortex of the adrenal glands through release in the systemic circulation and stimulates both production and secretion of GCs. Systemically released GCs, in turn, besides their major actions, close a negative feedback loop by suppressing the activation of the PVN and the pituitary gland. 
The SNS originates in brainstem nuclei and gives rise to preganglionic ACh efferent fibers mostly projecting to postganglionic sympathetic ganglia. The long postganglionic neurons terminate outwards on effector tissues, mostly releasing NE. Alternatively, preganglionic neurons may also directly synapse with the modified postganglionic chromaffin cells of the AM. A sympathetic activation, thus, principally releases NE (locally and to a lesser extent systematically from the AM) or AD (systematically from the AM) together with other neuropeptides in the body. Whereas SNS activity depends on two peripheral branches (neural and adrenal), the PNS activity is displayed only by nerves. The preganglionic ACh-neurons of the PNS arise from several brainstem nuclei and from the spinal sacral region (S2 - S4) and synapse with short postganglionic neurons within terminal ganglia close to or embedded to effector tissues. The parasympathetic response to stress is mainly mediated by the nucleus ambiguus and the dorsal motor nucleus of the vagus nerve, possibly through input from the NTS. For a further overview, see references [131-138].
Figure S2. 	Schematic overview and detailed description of the human central and peripheral circadian system
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Figure Legend: ANS: autonomic nervous system; DM SCN: dorsomedial SCN; DMH: dorsomedial hypothalamus; HPA axis: hypothalamic-pituitary-adrenal axis; IGL: thalamic intergeniculate leaflet; ipRGC: intrinsically photosensitive retinal ganglion cells; LC: locus caeruleus; MLT: melatonin; OT: optic tract; PGL: pineal gland; R&C: rodes and cones; RHT: retinohypothalamic tract; SCN: suprachiasmatic nucleus; SCG: superior cervical ganglia; VL SCN: ventrolateral SCN.
The central circadian system consists of the ipRGC, the RHT, the hypothalamic SCN and the PGL. The SCN is the integrative “master clock” of the organism with a distinct intrinsic molecular pacemaker activity mainly preserved by the synchronization of SCN neurons through intercellular coupling to its neighboring cells in an action-potential-dependent manner. Additionally, the circadian system receives continuously adjustive input by behavioral (e.g., nutrition, sleep, social activity), hormonal and environmental signals (e.g., light, temperature) in order to stay tuned to geophysical time, a process called entrainment. The SCN, thus, integrates its intrinsic pacemaker activity with several other secondary Zeitgeber cues to a main circadian rhythm. The dorsomedial SCN primarily receives hypothalamic input, while the ventrolateral SCN primarily photic input, the most important secondary Zeitgeber. The photic input transmitted from the ipRGC through the RHT tract to the SCN and from there to the upper part of the thoracic spinal cord, the superior cervical ganglia and the PGL. The main endocrine effector of the central circadian system is the fundamental synchronizing MLT. MLT from the PGL acts directly through MLT receptors (MT) MT1/MT2 on the electrical activity in SCN neurons, as SCN expresses a high level of expression of MTs, thus modulating circadian rhythms and adjustment to environmental photoperiod changes. MLT secretion follows a strict circadian rhythm with high levels at night (peak plasma levels between 0200 h and 0400 h), coinciding with decreases in core body temperature, alertness and performance. MLT modulates central and peripheral oscillators mainly by cell-specific control through MLT membrane receptors MT1/MT2   and GABAergic mechanisms. MT are widely distributed in the body and crucial for modulation of immune, endocrine, reproductive and cardiovascular activity, as well as for cancerogenesis and aging. Through these multidimensional chronobiotic actions, MLT has emerged as one of the most pleiotropic biological signals in photoperiodic species. 
All “slave clocks” of the peripheral circadian system show also a tissue-specific and cell-autonomous molecular rhythm generation, which, however, is kept synchronized by the main integrative SCN rhythm via different pathways. 
For a further overview, see references [11, 139-149].











Figure S3. Schematic overview of the cell’s molecular clockwork main and auxiliary transcriptional/translational feedback loop (TTFL).
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Figure Legend: BMAL: brain-muscle-ARNT-like protein; CLOCK: circadian locomotor output cycle kaput; CRY: cryptochrome; Csnk: casein kinase; E-box: enhancer box; PER: period; REV-ERB: reverse viral erythroblastosis oncogene product; ROR: retinoic acid receptor-related orphan receptor.
The intrinsic circadian rhythmicity of the biological clock is based on a core set of clock genes intertwined with an autoregulatory, delayed, interlocking transcriptional/translational feedback loop (TTFL) machinery, coupled to several auxiliary mechanisms and leading to mutual transcriptional activation and repression, ultimately maintaining an approximately 24-hour oscillation, thus, reinforcing robustness and stability of the clock . Central among the core TTFL are the transcriptional activator CLOCK, its heterodimer partner BMAL1, and the essential negative regulating circadian genes PER1-3 and CRY1/2. The activated CLOCK/BMAL1 heterodimer binds to the E-box response elements located in the promoter region and stimulates the transcription of PER1-3 and CRY1/2 at circadian dawn (circadian time 0, CT0). PER1-3 and CRY1/2 mRNA gets translated into proteins, which accumulate by the end of the circadian day (CT12). Over the course of the circadian night (CT12–CT0), inhibitory complexes of PER1-3 and CRY1/2 with the Csnk 1ε and δ, are phosphorylated and translocate from the cytoplasm into the nucleus and repress the transcriptional activity of the CLOCK/BMAL1 in the SCN, shutting down PER1-3/CRY1/2 transcription. After degradation of nuclear PER1-3/CRY1/2 complexes the next morning (CT0), the inhibition on CLOCK/BMAL1 transcriptional activity is released and thereby a new cycle starts over after approximately 24 hours. During the circadian day, PER1-3 and CRY1/2 transcription is high in the SCN, leading also to high SCN electrical activity. Besides this core negative feedback loop, there are also auxiliary TTFL that stabilize the transcriptional activity of the core regulatory loop. CLOCK/BMAL1 upregulates, for example, the expression of other clock-related proteins, such as the REV-ERBα/β and the RORα, which, in turn, regulate BMAL1 expression. Genetic polymorphisms in these clock genes are responsible for a great distribution of entrained phases (chronotypes) between individuals, ranging from “larks” to “owls”, with most individuals falling between these extremes. For a further overview, see references [150-161].
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