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This supplementary appendix consists of three parts. Appendix A first provides ad-

ditional details about uniform-axis-random-spin (UARS) models for random rotations, as

explained in Section 2 of the main manuscript. Appendix B supplies further numerical

summaries for the simulations of Section 3.3 of the main manuscript. An EM algorithm

approach for computing point estimators in models for unlabeled orientations is described

in Appendix C. A final reference section provides citations appearing in this Appendix.

A UARS(S, κ) Models for Rotation Matrices

Let Ω be the collection of all 3× 3 rotation matrices, i.e., SO(3). Bingham, Nordman, and

Vardeman (2009) and Hielscher, Schaeben, and Siemes (2010) identified a class of UARS

models on Ω, which are useful for describing random rotations symmetrically distributed

around a fixed, mean rotation (i.e., central location) parameter S ∈ Ω, and where the

amount of variability in rotations can be directly controlled by a concentration parameter

κ > 0 in the model. Rotations in the UARS model class have a single simple, geometric

construction as follows. Suppose we have a unit vector u ∈ R3, and we spin the axes of
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the standard coordinate system (represented by the columns of the identity matrix I3×3)

around the direction u (i.e., a signed axis) counter-clockwise through angle r. Upon this

rotation, the columns of I3×3 move to positions given by a corresponding rotation matrix

M(u, r) = uuT + (I3×3 − uuT )cos r +


0 −u3 u2

u3 0 −u1

−u2 u1 0

 sin r, (A.1)

which is Euler’s angle-axis representation of a 3-D rotation; see Figure 1 of the main

manuscript for illustration.

UARS models are a stochastic version of this angle-axis representation. If we now

take u as uniformly distributed on the unit sphere and independent of a random angle

r ∼ Cir(κ), where Cir(κ) is a circular distribution on (−π, π], symmetric around 0 and

with a positive concentration parameter κ (with concentration increasing in κ), then we

obtain a random rotation matrix denoted by M (u, r) whose distribution we denote as

UARS(I, κ). For S ∈ Ω, S ·M(u, r) ∼ UARS(S, κ) gives a so-called UARS random

rotation with location and concentration parameters respectively S and κ. Different choices

of the circular distribution for r produce different models for symmetric random rotations.

If the Cir(κ) distribution for the angle r has a density C(r|κ) (with respect to the usual

Lebesgue measure), then a UARS(S, κ) rotation has a corresponding density

f(O|S, κ) =
4π

3− tr(STO)
C

(
arccos(

tr(STO)− 1
2

)|κ
)
, O,S ∈ Ω, κ > 0, (A.2)

with respect to the “uniform distribution” on Ω (or Haar measure), which provides a

dominating measure for defining densities on Ω (see Downs, 1972).

B Additional Numerical Summaries

Section 3.3 of the main manuscript describes a simulation study of Bayesian and likelihood-

based methods for computing regions to estimate parameters κ and [S] in models for

unlabeled orientations. Figure 7 there displays plots of coverage accuracies for all methods

for various sample sizes n and concentration parameters κ. The following table reports

these actual numerical values, as summarized in Figure 7.
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(n, κ) Bayes LRT Wald

κ S κ S κ S

(10,1) 98.8 91.0 35.2 82.6 17.8 43.2

(30,1) 99.4 92.1 39.4 87.0 11.6 53.2

(100,1) 99.9 94.1 43.1 84.7 12.6 59.1

(10, 2) 99.7 95.1 62.0 81.6 70.8 31.5

(30, 2) 99.7 97.0 83.4 90.3 83.0 50.4

(100, 2) 98.7 98.5 92.1 90.6 90.0 67.8

(10,3) 99.0 97.7 85.4 87.9 93.9 70.2

(30,3) 97.3 98.3 92.7 93.0 94.9 87.6

(100,3) 96.8 96.8 94.8 94.5 95.5 96.1

(10,4) 96.9 98.9 90.2 90.7 95.8 81.1

(30,4) 96.1 96.1 94.6 93.3 93.7 93.7

(100,4) 95.9 95.0 95.7 93.8 95.7 95.1

(10,5) 95.0 97.5 90.8 91.4 96.4 85.5

(30,5) 95.3 95.1 93.6 94.5 95.6 95.0

(100,5) 95.6 95.4 94.9 95.2 95.3 97.0

(10, 7) 93.5 95.1 90.8 92.4 95.7 86.1

(30, 7) 96.1 95.2 94.5 94.5 95.1 93.2

(100, 7) 95.5 94.2 95.2 94.2 95.4 93.7

(10, 10) 95.6 95.2 92.1 92.3 95.7 89.0

(30, 10) 94.4 95.3 92.8 95.3 94.3 94.5

(100, 10) 95.6 95.6 94.9 96.1 95.1 95.9

(10,20) 94.0 94.7 89.9 93.7 94.0 92.3

(30,20) 94.6 94.5 93.9 94.3 96.1 94.8

(100,20) 95.2 95.0 94.7 95.2 95.4 95.8

Table 2: Coverage rates (as percentages) for κ and [S] for nominally 95% Bayesian (Bayes)

regions, inverted likelihood ratio test (LRT) regions and Wald regions, for some choices of

(n, κ).
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C An EM Algorithm for Unlabeled Orientations

This section provides an EM (Expectation-Maximization) algorithm (cf. Dempster, Laird

and Rubin, 1977; Schafer, 1997; Casella and Berger, 2002) that can be applied to maximize

the log-likelihood function for the concentration κ and location [S] parameters, given by

l(κ, [S]) = −n log (b(κ)) +
n∑
i=1

log

(
24∑
j=1

exp
{
κ tr(STO

(j)
i )
})

+ c, (C.1)

b(κ) = eκ (I0(2κ)− I1(2κ)), (cf. equation (6), Sec. 2.3 of the main manuscript) based on

i.i.d. observed equivalence classes [O1], . . . , [On] following a symmetric matrix Fisher von

Mises distribution of Section 2.2 (denoted by SMF([S];κ)). (Recall in (C.1) that O
(j)
i

runs through elements of the equivalence class [Oi] and S is any element of [S].) That is,

rather than maximizing l(κ, [S]) directly in (C.1), we may iteratively solve an alternative

sequence of maximizations whose limiting solution provides the target maximum likelihood

estimators. We thank a reviewer for suggesting this possibility, which can offer another

computational approach for obtaining point estimators from maximum likelihood. With

a straightforward modification to include the prior π(κ), the same EM algorithm could

also be applied for maximizing the posterior density p(κ, [S]) from Section 3.2 to obtain

Bayesian point estimators (i.e., maximum a posteriori (MAP) estimators).

To avoid confusion, we also note that the main methodology proposed in the manuscript

for inference with unlabeled orientations is a MCMC-based Bayesian approach. Our intent

with this is to go beyond point estimation to provide credible regions having good frequen-

tist coverage accuracies and to also allow geometrically interpretable “cone” regions for the

location parameter [S] (cf. Sec. 3.1) which are not available through maximum likelihood.

Our approach also provides point estimators for κ and [S] parameters, though we achieve

these through MCMC posterior samples in an alternative way than maximizing the poste-

rior density directly. Hence, the following EM algorithm can be viewed as a complement

to point estimation via maximum likelihood or MAP estimation.

We next state an EM algorithm for maximum likelihood, using the modeling conventions

from Section 2. Rather than maximize the log-likelihood (C.1) directly for ([S], κ) based

on equivalence classes of orientations [O1], . . . , [On] under the SMF([S];κ) model, we may

apply an EM algorithm by augmenting or completing these unlabeled orientation data
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with labels. For any element S ∈ [S], define Oi ∼ SMF(S;κ) for i = 1, . . . , n, so that,

upon mapping Oi to its 24-fold equivalence class or its unlabeled counterpart, we have

[Oi] ∼ SMF([S];κ) (see Sec. 2.1 for details). The space of (labeled) orientations Ω (or

SO(3)) can be partitioned into 24 parts and each part, j = 1, . . . , 24, contains exactly

one element O
(j)
i of [Oi]. The EM algorithm then proceeds by treating [O1], . . . , [On]

as “incomplete” data and formulating “complete” data as [O1], . . . , [On], L1, . . . , Ln using

labels Li, i = 1, . . . , n, where Li = j if Oi = O
(j)
i , the jth element of [Oi]. In the following,

an exact labeling of the 24 elements of an equivalence class [O] (see equation (1) of Sec. 2.1)

will be unimportant and unnecessary.

If L([S], κ
∣∣[O],L) denotes the likelihood from the joint density of [O] = ([O1], . . . , [On])

and L = (L1, . . . , Ln) (with respect to the uniform distribution on [Ω]), then, similarly to

(C.1), we may write

logL([S], κ
∣∣[O],L) = −n log (b(κ)) + κ

(
n∑
i=1

24∑
j=1

I(Li = j) · tr(STO(j)
i )

)
+ c, (C.2)

where b(κ) = eκ (I0(2κ)− I1(2κ)), S is any element of [S], and I(·) denotes the indicator

function. We then formulate the EM algorithm as follows. From initial values ([S](0), κ(0)),

we define a sequence ([S](m), κ(m)) according to

([S](m+1), κ(m+1)) ≡ argmax[S],κ E
[
logL([S], κ|[O],L)

∣∣[O], [S](m), κ(m)
]

(C.3)

where the E-step in (C.3) is defined with respect to L, based on (C.2), as

E
[
logL([S], κ|[O],L)

∣∣[O], [S](m), κ(m)
]

(C.4)

= −n log (b(κ)) + κ

(
n∑
i=1

24∑
j=1

P
(
Li = j

∣∣[O], [S](m), κ(m)
)
· tr(STO(j)

i )

)
+ c,

using that, for i = 1, . . . , n and j = 1, . . . , 24,

P
(
Li = j

∣∣[O], [S](m), κ(m)
)

= exp
{
κ(m) tr(STmO

(j)
i )
}/ 24∑

`=1

exp
{
κ(m) tr(STmO

(`)
i )
}

for a given element Sm from [S](m).

From (C.3)-(C.4), the value of κ > 0 does not influence the maximization step for [S] so

that the (m+ 1)th step maximizer [S]m+1 in (C.3) corresponds to [S]m+1 = [Sm+1] where

Sm+1 = argmaxS∈Ω tr(ST Ōn,m) (C.5)
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for a weighted mean

Ōn,m ≡
1

n

n∑
i=1

24∑
j=1

O
(j)
i exp

{
κ(m) tr(STmO

(j)
i )
}/ 24∑

`=1

exp
{
κ(m) tr(STmO

(`)
i )
}
.

Hence, the value Sm+1 corresponds to a type of moment estimator commonly found for

location parameters with rotation data (i.e., a projected mean), which may be solved using

Procrustes techniques (cf. Downs, 1972; Jupp and Mardia, 1979; León et al., 2006, p. 421).

If Ōn,m = Un,mdiag(λ1,n,m, λ2,n,m, λ3,n,m)V T
n,m denotes a singular value decomposition of

Ōn,m corresponding to eigenvalues λ1,n,m > λ2,n,m > |λ3,n,m| > 0 and 3×3 rotation matrices

Un,m and Vn,m, then Sm+1 = Un,mV
T
n,m maximizes the trace in (C.5). Given [S]m+1 =

[Sm+1], the maximizer κm+1 in (C.3) can be found by taking derivatives with respect to κ

in (C.4) and then finding the solution to

1 + tr(STm+1Ōn,m) =
I1(2κ)

κ
· 1

I0(2κ)− I1(2κ)
,

based on derivatives dI0(x)/dx = I1(x) and dI1(x)/dx = I0(x) − x−1I1(x) of the modified

Bessel function. The sequence ([S](m+1), κ(m+1)) in (C.3) is then iteratively determined until

convergence, establishing the EM algorithm for unlabeled orientations. See Wu (1983) and

McLachlan and Krishnan (1997) for more details on the convergence properties of the EM

algorithm.
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