
1

8. Supplementary Materials

8.1 Kd-Tree and Its Nearest Neighbor Search Algorithm

This section provides some descriptions of kd-tree and its nearest neighbor search algorithm.

A kd-tree is a binary tree-like data structure, which was shown to be efficient in data storage and

retrieval. Each kd-tree is constructed by two components. The first is nodes, which store groups of

observations in the dataset. The root node contains the entire dataset. The second component is

splits, each of which splits the observations in the corresponding nonterminal node into two

children nodes based on a selected coordinate, i.e., into two half-spaces. Each of the terminal nodes

contains a small group of observations, and is not split further as its children nodes’ sizes would

be less than some minimal node’ size requirement. Unlike decision trees, which search for the

optimal values to make splits, kd-trees conventionally make each split directly at the coordinate

value of a selected observation (this process is known as point insertion). The splitting observations

are usually selected as the ones having the median values of the splitting coordinate among the

observations in the splitting nodes to produce a more balanced kd-tree, which has about the same

depth on both sides of the root node.

An example of a balanced kd-tree for a 2D dataset with 8 observations is illustrated in Figure

S1(a). The minimal terminal node’s size is 1 in this illustration. Each node in the tree shows the

splitting criterion, with the splitting value selected based on the median as mentioned above. The

splitting coordinate is selected by cycling through each dimension as the tree is grown. The same

coordinate is used for splitting at all nodes at the same level, i.e., having the same distance to the

root node. In each split, observations with smaller values (of the splitting coordinate) than the

splitting value are sent to the left side, and observations with larger (or equal) values are sent to

the right side. Figure S1(b) shows the space partitions corresponding to the kd-tree in Figure S1(a).

The larger, gray square in Figure S1(b) does not belong to the 2D dataset, but is a point to search

neighbors for (discussed below) from among the 8 observations in the 2D dataset.

2

Given a new observation (e.g., the larger, gray square in Figure S1(b)), to find its K nearest

neighbors from among a given dataset with n observations, a kd-tree is first constructed for the

data set. The observation is then queried in the kd-tree according to the splitting rules until it

reaches a terminal node. This process requires a time-complexity of 𝑂(𝑙𝑜𝑔[𝑛]) on average.

Distances of the queried observation to the observations in the terminal node or the node it falls

off from are computed to produce K potential nearest neighbors. These are only potential nearest

neighbors because the true nearest neighbors could lie in the nodes that overlap with the minimal

hypersphere centered at the queried observation (e.g., the circle centered at the larger, gray square

Figure S1(b) overlaps with 4 terminal nodes of the kd-tree in Figure S1(a)), containing the K

potential nearest neighbors. The exact nearest neighbors can be updated after examining all such

overlapping nodes. In general, the expected number of distances that must be computed was shown

to be approximately proportional to 2k. Note that each point cloud is a 3D dataset (i.e. k = 3), and

so is especially suitable for neighbor searches based on kd-trees. Thus, the neighbor search

algorithm based on kd-trees has an extremely fast average time-complexity of 𝑂(𝑙𝑜𝑔[𝑛]) for a

fixed dimension.

Figure S1. Illustration of a kd-tree for a 2D dataset with 8 observations and a minimal terminal node’s size

of 1: (a) the constructured kd-tree, and (b) space partitions corresponding the kd-tree in Panel (a)

x1 < 5

x2 < 5

x1 < 3

(2, 3) (3, 2)

x1 < 4

(1, 7) (4, 5)

x2 < 6

x1 < 8

(6, 1) (8, 4)

x1 < 7

(5, 8) (7, 6)

(a) (b)

x1

x2

3

8.2 Additional Visualization Plots for the Cylindrical Example in Section 5

This section provides the other two visualization plots, in addition to the visualization plot in

Figure 7, for the cylindrical point clouds in Section 5 before removing the rotational registration

variability. For the first discovered manifold coordinate, Figure S2 plots three views (front, side,

and top) of rendered point clouds corresponding to three points along a parallel line with the first

manifold axis. Likewise for the third discovered manifold coordinate, Figure S3 shows the three

views of rendered point clouds corresponding to three points along a parallel line with the third

manifold axis. It appears that the patterns in Figures S2 and S3 are combinations of the two patterns

in the registered data that we see in Figures 9 ad 10.

Figure S2. Each row shows the front (left column), side (middle column) and top (right column) views of

three point clouds selected along the visualization path for the first manifold coordinate. Moving from the

top to the bottom row corresponds to increasing the value of the first coordinate, and the grayscale and

magnification conventions are the same as in Figure 7.

4

Figure S3. Each row shows the front (left column), side (middle column) and top (right column) views of

three point clouds selected along the visualization path for the third manifold coordinate. Moving from the

top to the bottom row corresponds to increasing the value of the third coordinate, and the grayscale and

magnification conventions are the same as in Figure 7.

8.3 Revisiting the Cylinder Data Example but Using the Nominal 𝓜

This section demonstrates the method in Section 6 with the same set of N = 90 cylindrical point

clouds in Section 5 (after rotationally registering them as described in Section 5), but making use

of ℳ. In Step 1, we define n = 420×528 = 221,760 grid points on the nominal cylinder surface.

Then, we structure all the N = 90 cylindrical point clouds based on these grid points, as discussed

in Section 6 and obtain 𝐑𝑔 = [𝐫̂1
𝑔
, 𝐫̂2

𝑔
, … , 𝐫̂𝑁

𝑔
]
𝑇
∈ ℝ𝑁×𝑛, the structured point clouds. There are two

parameters that must be selected: K1 and K2. In the following, we illustrate the results with K1 = 4

(corresponding to a nominal surface mesh with rectangular patches) and K2 = 5 (which was the

value of K we used in Section 5). After structuring, the Euclidean distances between the structured

point clouds 𝐑𝑔 are used as the point cloud dissimilarities.

In Step 2, we again apply cMDS to these point cloud dissimilarities to compute the manifold

coordinates 𝐮̂𝑖 (i = 1, 2, ..., 90) of the 90 cylinders. The plot of the 20 largest eigenvalues from

cMDS in this case is very similar to the right panel of Figure 6 (and therefore is not shown here to

save space). This again suggests a dimension of two for 𝐮̂, the same as in the analysis of the

5

registered point clouds in Section 5. The 2D MDS coordinates {𝐮̂𝑖: 𝑖 = 1,2, … ,𝑁} of the 90

cylinders are plotted in Figure S4, which looks similar to Figure 8 but with the sign of u,2 reversed.

Therefore, we again can observe the same findings described in Section 5. Namely, the learned

manifold coordinates agree with the ground truth, in the sense that u,1 and u,2 correspond roughly

to cutting depth and cutting speed, respectively. As before, the analysis does not use any

knowledge of the two known variation sources (depth of cut and speed) in this example.

Figure S4. Learned manifold coordinates from applying cMDS to the pairwise dissimilarities of the

structured, registered cylindrical point clouds in Section 5 when utilizing the nominal cylinder surface ℳ.

In Step 3 we visualize the two identified variation sources above as follows. First, we use PCA

to reduce the dimension of the N = 90 structured point clouds 𝐑𝑔 to p = 10 principal components,

which account for about 83% of the total variation in the 90 structured point clouds. Then, we use

u,1

u,2

visualization path #2

visualization path #1

6

a neural network to fit the model in (5) using 𝐮̂𝑖 as the input and the reduced-dimension 𝐑̃𝑔 of 𝐑𝑔

as the output. The structure of the neural network is 2/30/10 nodes in its three input/hidden/output

layers, with sigmoidal activation functions. We use leave-one-out cross-validation to determine

the optimal weight decay regularization parameter for the network, which is 0.03 in this example.

Two visualization paths are selected based on the same discussion for the example in Section

5. Traversing along visualization path #1 in Figure S4 corresponds to the circular-to-ellipsoidal

pattern in Figure 13 and the animation in file “pattern 1.gif”. Traversing along visualization path

#2 in Figure S4 corresponds to the smaller-to-larger pattern in Figure 14 and the animation in file

“pattern 2.gif”. Each of these two animations consists of front (left column), side (middle column)

and top (right column) views of reconstructed point clouds using the manifold coordinates

traversing along the corresponding visualization paths in Figure S4, and the grayscale and

magnification conventions are the same as in Figure 7. Note that the directions of both visualization

path arrows correspond to decreasing turning speed; however, the cutting depth is

increasing/decreasing in the directions of path #1/path #2 in Figure S4.

