Supplement to ” Adaptive Inference for Change Points in High-Dimensional

Data”

The supplement contains all the technical proofs in Section 6 and some additional simulation

results on network change-point detection in Section 7.

6 Technical Appendix

In the following, we will denote a,, < b, and b, 7 a, if limsup,, a,, /b, < co.

~

Proof of Theorem 2.2. Recall that under the null, as X;’s have the same mean,

q
Doglrslast) = Y (-1ye(7) Pyl e pl bk, o),
c=0

Therefore, we can calculate the covariance structure of G, based on that of () . given in Theorem

q

var[Gy(r; [a,b])] = Z (Z) g —e)l(r—a)® (b —r)1 = ql(r — a)?(b—r)%(b— a)’.

c=0

When r1 < rg,

cov(Gq(r1;[at, bi]), G4(r2; [az, ba)))

= Y (e (q) (q) (C>c!(q el I
0<c1<e2<q €1/ \C2 c

. (7’1 — al)q761 (bl — Tl)cl (TQ — (J,Q)q762 (b2 — 7"2)62 (T’ — A)C(R — T)Cic(b — R)qic) .
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When r; > ro,

cov(Gy(r1;fat, b1]), G4(r2; [az, ba)))

- 5, (-

0<c2<c1<q

(1 —a1) T (by — 1) (re — az) T2 (by — 12)2(r — A)(R— 1) 7¢(b — R)qic)-
When ry =ry =7,

cov(Gy(r; a1, bi]), G4(r; [az, ba]))

q 2
=3 (%) o= M= )< (o = ) = @) (o =l = A0
c=0

=q¢!(r—A)(b—r)I(B—a)l
For 1 # 75, we have
cov(Gy(r1; a1, b1]), G4(ra; [az, b)) = ¢![(r — A)(b— R)(B —a) — (A —a)(R—7r)(B —b)]".

For g1 # g2, since covariance of Qg ¢, and Qg,.c, is 0, we know the covariance of G4, and G,
is also 0, since their arbitrary linear combinations are also Gaussian by previous proofs, they are
jointly Gaussian and therefore independence is implied by uncorrelation. The rest follows from an

application of the continuous mapping theorem. &

Note that our Assumption 2.1 is a counterpart to the assumption made by Remark 3.2 in Wang
et al. (2019). Their results are derived with some weaker assumption (i.e. Assumption 3.1 therein),

whose L,-norm based counterpart for is given as follows.

ASSUMPTION 6.1. For any q € 2N, the following statements hold:

A.1 Zi,l2,l3,l4:1(Elllzzlzlszlshzldl)Q/Q =0 (”Eng)
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A.2 Zy has up to 8—th moments and there exists a constant C' independent of n such that

P
Z lcum(Zo 1y, -5 Zo,1,,)

l1,...,lp=1

1< ol

forh=2....8.
We claim that Assumption 6.1 is implied by Assumption 2.1.

Proof of the claim. Define
Sm,h (ll) = {1 <lg,...)lp <ppn: maxhlli — lg| — m} )

By triangular inequality, |Iy — lo| + |lo — 3] + I3 — lu| +|la — 1| > 2max;<; j<a |l; — |, and therefore,

p Pn  Pn

Z (2111221213 2131421411)Q/2 = Z Z Z (Elll22l2l3 2131421411)q/2
Iy, ,la=1 l1=1m=015,....14€Sm,4(l1)
Pn  Pn
<30S 1S ()] C2(1LY )~
l1=1m=0
DPn
<pn 3 (1 vyt
m=0

On the other hand,

p Pn  Pn
Z cum? (Xo 1, Xoy,n) = Z Z Z cum? (Xo,1,,n, 5 Xo,1,n)
Iy, ,lp=1 l1=1m=015,...,1,ESm n(l1)
Pn  DPn
<303 S () €LV )
l1=1m=0
Pn
Spn Y (Lvm)h =2,
m=0

RHS has order O (pfl_‘”) if h —gr —1 > 0. Now a simple computation shows that Assumption 6.1

is satisfied if h — qr < h/2 for h=2,...,8, and ¢ = 2,..., which is equivalent to r > 2. &

We are now ready to introduce the following lemma, which is vital in proving the main result.
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LEMMA 6.1. Under Assumption 2.1, for any igh),iéh), ...,igh) that are all distinct, h = 1,...,8, and

c= 172a' 45
p
D O OEZw 2w Ze g 2y )| S IARIREONISIGE (1)
Iodg=1

In particular, for c = q, we have

E[Zi(ll),ll S Z.(1)7l1 RN L Zi(cs)’ls] < HEHéq (2)

(2 Ty "st8

In addition, for any c=1,2,....,q — 1,

p
> 00t eS| = o (A2l ) . (3)

I1,lo=1

Proof of Lemma 6.1. Applying the generalized Holder’s Inequality, we obtain

)

P 8 P
q—c . 8§9-¢ — q—c
> oo OinEZw ) Zyw o Zyw o 2y ] = [E <H > OnieZy oy,
l1,...,lg=1 u=1 Ll,=1
1/8
8 P 8 / p 8
q—c - — q—c ..
< E Z 6n’luZi(1"),lu Zyw 4., E } : 6n,l1Zi§1>,ll Zm
u=1 l,=1 =1
p p ¢
_ g—c gq—c . _ q—c  ¢q—c
= > WOE | Z By B By | = YD 60 (B2 Z )
l1,...,Ig=1 l1,...,Is=1
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since zg ), ;¢ ) £ ) are all different, and {Z;} are i.i.d. Again by Holder’s Inequality,

Z 5n11 5Zl§< [Z(l)l Z(”,lg])

.....

(g—c)/a c/q
P p cq/c
< Z (52 llc 5f1 C)q/ q—c) Z (]E [Zi§1>7l1...Zi§1>7lJ>
l1,..., lg=1 l1,...,lg=1
c/q

SlA, |3 Z S TI cum(Zo,,,i € B)

.,lg=1 m™ Bem

The last line in the above inequalities is due to the CR inequality and the definition of joint cumu-
lants, where 7 runs through the list of all partitions of {1, ...,8}, B runs through the list of all blocks

of the partition 7. As all blocks in a partition are disjoint, we can further bound it as

c/q

p
AR5 ¢ > ST eum(Zog,.i € B)*

l1,...,ls=1 ®™ BeEm
c/q

p c/q
. : e Ypen |BI/2
=3NS Y cwm(Zogie BTy < A5 >{Z||E||3 Be }

m Bernl;=1,ieB

SHAI =g,

where the first inequality in the above is due to Assumption 6.1, A.2, which is a consequence of
Assumption 2.1, and the fact that there are only finite number of distinct partitions over {1, ..., 8}.
This completes the proof of the first result.

For the second result, we first define A°™ as the notation for the element-wise n-th power of any

real matrix A4, i.e. A7 = A7,. Then we have

S S | = AR < AL (57,

n,ly ’I’Ll2 l1,lz
l1,lo=1

where 0. is the largest eigenvalue. First observe that HAZ(q*C)H% =>r, 52(1 =A, ||§EZ 3 By
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properties of Ly norm, [[Anllagg—e) < |Anllg, if ¢ < 2(q — ), and Ay lagg—e) < "2V A, g,
if ¢ > 2(g — ¢). This implies [|A,[|577¢) < max(pe~ /|| A, |50 || A, ][5,
Next, for any symmetric matrix A, omax(A4)|| < ||Alloc = max;=1..._ , Z?Zl |A; ;|. This, together

with Assumption 2.1 (A.2), implies

i=1,.

P P
C C —CT cr
Tone(57) € e D[R] S maxe S (LA =) <1+§%ﬂ1 < oo,
= = m=

for some r > 2. This is equivalent t0 omax(X°¢) = O(1). Note that [|X]|Z > tr(X°?) 2 p, which leads

to p/? < [[Z[l¢. So

Z GO s 2,0, | S max(pC VAL AL F97) = o[ An 17O IZIIR),

nl1 nlz
l1,lo=1

since (2¢ — q)/q = ¢/q+ (¢ —q)/q < ¢/q, for ¢ = 1,2,...,q — 1. This completes the proof for the

second result.

o

This lemma is a generalization to its counterpart in Wang et al. (2019), in which we only have
q = 2. To prove Theorem 2.1, we need the following lemmas to show tightness and finite dimensional

convergence.

LEMMA 6.2. Under Assumption 2.1, for any ¢ = 0,1,2...,q, and define the 3-dimensional index set

G i {(i/nd/m.k/n) 0.4,k = 0,1, o),
E[ar_Lg(Sn,q,c(’H; [alvbl]) - Sn,q,c(r% [a27 bZ]))S} < C|(a1,71,b1) — (az,r2, b2)||4?

for some constant C, any (a1,71,b1), (az,79,b2) € G, such that ||(a1,71,b1) — (az,72,b)|| > 6/n*.
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Proof of Lemma 6.2. By CR-inequality,

E[(Sn,q,c(r15 a1, b1]) = Shn.g,c(r2; [az, 62]))8] SC{E[(Sn,q,C(TIQ [a1,b1]) = Sn,q,c(r1; [a1, bQ]))S]
+ E[(Sn.q,c(r1; [a1,b2]) = Sn.g,.e(r1; [az, b2))®]

o+ E[(Shgc(r13 a2, ba]) = S el [a, )] }.

We shall only analyze E[(Sy, (7 [a,b]) — Sp.q.c(r;[a,b]))8], and the analysis of the other 2 terms
are similar.

Note that for any a,r,b,b' € [0,1] and b < V',

E[(Sn.q.c(r; [a,b]) = Sn.q.c(7s [a, b']))"]

E|l@-0Y ¥ 3 3 < [ 710 Ul Z; 07,

I=1 [nb|+1<j< | nb'| [na|+1<is - Fic< nr] [nr|+1<j1 7 HEjg—e1<j—1 \t=

q—c—1

H Zj.gh)Jh
s=1

S o (€ e

GO0 50O L ls=1 h=1

(&
H Zii’”,lh
t=1

E [Zﬂh),lh])
1

< D ([l | — b)) B[ < e [(b’ Cuty ] 1=,
n

where we have applied Lemma 6.1-(2) to igh), . ,igh),jéh), . ,jé}i)c_l,j(h), and the summation
2j<->,z‘§'),j§') is over [nb] +1 < jM < |nb/|, |nal +1 < i(lh) £ £ < nr], [nr]+1< j§h) #

R j;@c_l <j™ —1for h=1,...,8. Therefore, we have

Bl (7310, B]) — e [, D)) S (6 — 0+

LEMMA 6.3. Fiz q,c, for any 0 <a; <71 <b; <1,0< asy <71y <by, any a1, as € R, we have

- «
—Snge(rizlas bi) + =

an n

Spge (72 [az, ba]) — 01 Qq.e (11; a1, b1]) + 02Qq.c (ra; [az, ba]) ,
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where

cov (Qq,e(r1; [a1,01]), Qq.c(re; [az, ba])) = g — )l (r — A)°(b— R)*™,

Proof of Lemma 6.8. WLOG, we can assume a1 < ay < r; < 79 < by < by. The other terms are

similar. Define

14 * * c q—c—1
q—-c
§10 = - Z Z Z < Zi, 1 - H Zi1 ZiJ)
" I=1 nay [41<in, e ie <o e J 410, Ggmem1 Si—1 \E=1 s=1
q—=c¢ P * * c qg—c—1
§2i = - Z Z Z < Zi, 1 - H Ziy- ZiJ) ’
=1 [nas|+1<i1, ic<|nra| [nro]+1<41, ,jg—c—1<i—1 \t=1 i1
and
a1 if [nr]+qg—c<i<|[nrg] +qg—c—1
ni =\ a1éri+ oo if [nre] +q—c<i<|nb|
ol if [nbi]+1<i<|nby

Define F; = 0 (Z;, Z;—1,- -+ ), we can see that under the null E[Z;] = 0, an, is a martingale difference

sequence w.r.t. F;, and

I_nbgj
« (6] ~
— S ge (ri;lan,b1]) + —Snge (ra,lag, ba]) = D &

a
n n i=|nri]+qg—c

To apply the martingale CLT (Theorem 35.12 in Billingsley (2008)), we need to verify the following

two conditions
Ln b2 J

(1) Ye>0, Y E[Efm.l{

i=|nr1]+qg—c

gn,i

> e} ‘.7-},1} 5.
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[nb2 ]
(2) V= Z E [5271|Fi_1} 2 52, To prove (1), it suffices to show that

i=|nry]+qg—c

LanJ

> E [Ef”} — 0.

i=|nr1]+qg—c
Observe that
\_TLsz

S EJE]

i=|nry|+qg—c

[nra|+q—c—1 [nb1] [nb2]
=l > E[gd]+ Y E[@éitas)|+el Y E[d]
i=|nry]+q—c i=|nra]+qg—c i=|nby |+1
[nb1] [nb2]
<8 Y E[]+80 ) E[g].
i=|nry|+q—c i=[nrz]+q—c

Straightforward calculations show that

E [¢1,]

XY (e

i G 112l la=1h=1

1
n2

q—c—1

Z .(n
H jg}),lh
s=1

[Zi,lh]>

1 _

S D)2 = O
n?4|[Xlg

The same result holds for &, ;. Therefore,

|nbs ] [nb1] [nb2]

> oElE]s Y EE)+ Y El]=00)-0

i=|nri|+g—c i=|nr1|+q—c i=|nra|+q—c
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As regards (2), we decompose V;, as follows,

Lnbgj

> E[EFi]

i=|nry|+g—c

[nr2|+q—c—1 [nb1] [nb2]
=} >  E[§JFia]+ > E [(04151,@‘ +asa,)’ |]Fi—1} +o3 Y E[&IF ]
i=|nri|+g—c i=|nra]4+g—c i=|nby |+1
[nb1] [nb2] [nb1 ]

:Oz? Z E [fii|Fi_1] =+ Oz% Z E [€§7i|Fi_1] + 20[10[2

i=|nry]+g—c i=|nra]+g—c

2 2
=:a7Vin +a3Vay, + 20002V3 5.

We still focus on the case a1 < ag < r1 <19 < by < bo.

Lnblj

Z E [} :Fi1]

i=|nri]4+qg—c

(q— o) pa S
AR DD DD DR
q

i=|nri]+qg—c (h) i la,la=1

2 Lnb1J

qullzi)q c(g—c—1)! Z Z i
q e

i=|nri]4+qg—c (h) PIQNEE

1

(q . C)2 [nb1] (2) p

4_
= Vl(,iz) + V1(,2n)a

(1)
where Z denotes the summation over terms s.t. ¢
gh)7 éh)
the other terms.

>
]t
]

C
h)lh'
t= 1

nq|\z||q( —e=Dt ) ZEhzzH

i=|nry]4+g—c (h) (h)ll lo=1

Z E[£1,i2,4|Fi—1]

i=|nra|+g—c

qg—c—1
HZ“”l H Zj_ﬁh),zh

(2)
,Vt, s, and E is over
iih)ngh)

It is straightforward to see that E[V(Q)] =0 as Z;’s are independent, and
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[nby]—|nri]

p
(1) (¢ — 0)2 AV o E g—c—1 P
E[Vl,n] - nq||E||q ( c 1)” (Tl al) Z k Z Elllz + 0(1)

k=1 I1,la=1

=c(g—c)l(r1 —a1)(b1 — )T+ o(1).

Note that
|nb1] |nb1]

—c) p
wa,m:M[cuq—c—w )SENED SN DI Dl A

l1,l2,l3,la=1i=|nry |+q—cj=|nri]+qg—c Eh)’ gh)

+o(1),

where the summation E:§h>,jgh> is over the range of igh),j‘gh),h =1,2,3,4 s.t. zgl) = z§2),j£ ) =
j£2),i§3) = i§4),j£3) = j§4),Vt, s. Note that RHS can be further decomposed into 2 parts. The first
part corresponds to the summation of the terms s.t. {igh),j(s)} for h = 1 and has no intersection

with that for A = 3, which has order

(g — o)t [nby]—|nr ] [nb1]—[nr]
2 2 2 -q—c—1 1
W[C!(q_ c—DI"n"(ry — a1)™ Z “e Z 7 Z AR
q i=1 j=1 l1,l2,l3,la

=[e!(q — )!(r1 — a1)°(by — r1)?]% + o(1) = E2[V)] + o(1).

For the second part, it corresponds to the summation of the terms s.t. {igh),j(s)} for h = 1 and
has at least one intersection with that for h = 3. Since at least one ”"degree of freedom” for n is
lost, the summation still has the form Zﬁ,lz,l&u:l E [Zigl),ll ~~Zi511)7l1 "‘Zigh)Jh '--Zigh,>7lh} as in
Lemma 6.1-(2), which has order O(||X[|27). We can conclude that the second part has order O(2),
and hence goes to 0.

Therefore, lim sup (E[(Vl(ln))Q] — E? [V1(,1n)]) < 0, which implies lim Var(Vl(;L)) = 0. Therefore, we
can conclude that V1(,1n) 2 lim E[V1(,1n)] =cl(qg—c)(r —a1)¢(by — 1)), It remains to show that

‘/1(2)
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It suffices to show that E [(V(z))ﬂ — 0. Based on the same argument as before, by applying

1,n

Lemma 6.1-(2) we know that every kind of summation has the same order O(=) no matter how

1
n
z’ih),jﬁh),i, j intersects with each other. Therefore, the terms in the expansion of E {(Vl(?n))z] for

which n has highest degree of freedom should dominate. For these terms, each index in igh), j §h), i,

should have exactly one pair. The number of these terms is of order O(n??). The summation has

e »f o»f

Lol 1372l

zd

l1ls

p d d
forms 327, 1, 10, 10=1 (5L, 3

l1l2l3ly

),st. d>0,e+ f>0and d+e+ f =q. We need
to show that it is of order o([|%[|27) to complete the proof. By symmetry, we can assume e > 0, and

therefore d,e < 1. Note that for ¢ > 2,

p
d d e e f f
§ (2111221314 1114212132111321214)
l1,l2,l3,l4=1
p

= Z (21112212132131421411)(Eijszdilzeilze*lzlflhZlf2l4)

l3la “lila Tlals

l1,l2,03,la=1
2/q 1-2
P / p /q
q/2 d—1lyvd—1gye—1lye—1xf f 1q9/(g=2)
< E |Elll22l2l3 Elsl4zl4l1| § |Elllg El3l4 lel4 Elglg Zl1l3212l4‘ /
l1,l2,l3,l4=1 l1,l2,03,la=1

So(lI=lg) - IBIZ*=* = o(IIZI1Z),

where we have used Holder’s inequality, along with A.1 and the fact that

P
d—lyd—1ye—lye—1xf sf q/(q—2)
E |El1l2 El3l4 El1l4 lel?, 21113 El2l4|
l1,l2,l3,l4=1
P
< q q q q q q — 2q
S Y BT, LI, L2, = 31T
l1,l2,l3,l4=1

When ¢ = 2, it must be the case that d = e = 1, the term becomes Y7 | 1 1 [¥1,1, X515 X151, Dty |5

la,l3,

and directly applying A.1 can yield the desired order.

We can then conclude that ]E[Vl(Z)

N n

] — 0 and hence V1(,2) % 0. Combining what we have proved

so far, we obtain V; ,, % ¢!(q — ¢)!(r1 — a1)¢(by —r1)97¢.
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Similar argument shows that
Voo B elg — e)l(ry — ag)C(by — 12)97°, Vs Belg—e)l(r — ag)¢(by — ).
Therefore, we conclude that

Va ﬁ>cu%c!(q — )y —a1)%(by — 1)1+ a2cl(q — )l (ro — ag)®(by — )T ¢
+ 2010 (q — )Y (r1 — a2)(by — 12)77C,
which completes the proof. &
We can generalize the above lemma to the case when c¢;, ¢; are not identical.

LEMMA 6.4. Fix q1,c1,q2,¢c2 for any 0 < a3 <r; <by < 1,0 < as <19 < by, any ay,as € R, we

have
« «
715”,(11701 (Tl; [al’ bl]) + ?2‘9717112,62 (TQ’ [a27 b2]) & alQ(IhCl (’/‘1; [ah bl]) + aQQq27(/’2 (T2§ [a27 bQ]) ,

where Qgy v, and Qg, r, are independent Gaussian processes if q1 # qz, or (c1 — ¢c2)(r1 —r2) <0 or

r1 = 19,01 # ca. And when q1 = g2 = q, (c1 — ¢2)(r1 — r2) >= 0, we have

oV (@ (33 101,01]), Quarasloa D) = (el = O = (=10 = Ry,

Proof of Lemma 6.4. We use the same notations in proving last lemma, as the proof is similar to
the previous one and involves applying martingale CLT, where we have decomposed V,, into 2 parts.
Since the argument there can be directly applied, the only additional work is about calculating the
mean.

To prove the second statement, we take ¢; < co,a1 < ag < 11 < r9 < by < by, as the example

case, since the proof for other cases are similar. With the same technique we have used, it can be
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shown that

E[V,] —aiei!(q — e1)(r — ar)® (b — 1) + ajea!(q — c2)!(ra — ag) ™ (by — 1)~

C
+ 20&10&2 (02) Cﬂ(q — Cl)!(T'1 — (12)61 (7”'2 — 7"1)62761 (bl — 7”‘2)q762.
1

To derive the convergence in the statement, we can follow the same argument as before to show the
variance goes to 0, and therefore, we have the convergence in distribution, with desired covariance
structure.

As for the first statement, it is straightforward to see that the expectation for the crossing term
(corresponding to ajaz) is 0 for each of the cases in the first statement, which implies that the

Gaussian processes have to be independent due to asymptotic normality. &
Now we are ready to complete the proof of Theorem 2.1.

Proof of Theorem 2.1. The tightness is guaranteed by Lemma 6.2 and applying Lemma 7.1 in Kley
et al. (2016) with ®(x) = 2*, T = T),, d(u,u’) = |[u—u'||*/4, 7 = n=3/* /2. We omit the detailed proof
as the argument is similar to the tightness proof in Wang et al. (2019). Lemma 6.4 has provided
finite dimensional convergence of S, 4., which has asymptotic covariance structure as @4 . after

normalization. Therefore, we have derived desired process convergence. &

Proof Theorem 2.3. Let (s, k,m) = (lan] + 1, |rn], [bn]) and define
p * *

DY (riab)=>" > > (Zisa = Zj0) - (Ziga — Zi,1) -

1=1 5<in . yiq <k k+1<j1,....j<m

Recall that Theorem 2.2 holds for DTZL’q since under the null Diq =Dy q.

Now we are under the alternative, with the location point k1 = |[n7i| and the change of mean
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equal to A,,. Suppose WLOG s < k; < k < m.

* *

P
Dpg(ria,b) =Y > > (X = X500 - (Xigt — X5, )
=1 <1, ... iq<k kt1<G1, . ja<m

*

p
=¢!) > > (Xiy = X500 - (Xiga — X5, 1)
1=1 5<i1 <...<ig <k k+1<j1,....ja<m

*

p
:q' Z Z Z (Zihl + 5n,l - Zjl,l) e (Ziqvl + 5n,l - qu,l)

=1 s<i1<...<ig<k1 k+1<j1,...,jg<m
p q—1 *

O 2. 2.

1=1 c=1  5<i1<...<0o<h1<iet1<...<ig<k k+1<j1,....jq<m

(Zisa+0ng—Zj ) (Ziog+0ng— 25 0) Ziirg — Zjorna) - (Zigg — qu,l)}

qs

*

p
+q!Z Z Z (Ziva = Zj0) - (Ziqal _qu’l)

1=1 k1 4+1<i1 <...<iq<k k+1<j1,....jg<m

=Dy, + PP PP AGlld + Ruyg. (%)

First suppose v,,,4 — 7 € [0, 00), which is equivalent to n?/2 1ALlT < IS]19/2. 1t suffices to show

that in this case,
{n 10 Daali LD = { a1 D #9701 D | i o (0,1%)
Since n~%,, t, DZ (r;[a,b]) converges to some non-degenerate process, and
n”a, L PE PR A |2 = (rt — a)?(b— 1) + o(1),

it remains to show that n~=%a,, ¢ Ry ¢ ~ 0.

Note that R,, 4 consists of terms that are each ratio consistent to
p

Cn@=) " 697°D,, (i a,b),
=1
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for some constant C' depending on ¢,a,b,7 and ¢ =1,...,q — 1, where

*

Dnei(riab)= > > (Ziva = Zja) - (Zica = Zjoa) s

§<i1<...<ie<k k+1<j1,....je<m

which can be further decomposed as

* *

d c—d
Drtran =3 cor ¥ ([laull.)
t=1 s=1

§<i1eeyiq <k k+1<j1,....Je—a<m

for some constants depending on d, ¢, q. Therefore, it suffices to show

* *

d c—d
c —1
Zé > > [1%:.11 2.
§<i1eyia <k k+1<j1 s foa<m \t=1 s=1

* *

P
e D CZED S L > HZzt,lHZsl ~ 0.

1=1 §<i1,.0eyia <k k+1<j1 o joma<m \t=1

Similar argument for showing tightness and finite dimensional convergence in proving Theorem
2.1 can be applied. More precisely, we can get a similar moment bound as in Lemma 6.2 and follow

the argument there to show the tightness, since we have

p
4q 8c —4q,,4c § q—c q .
||EH n |:5n I 5n lsZ (1) 1 Zigl),ll Zi(lg)7lh Zi£8)718:|
I, lg=1
p
—nila—c) —4q q—c q . e -
=n ||E||q E 6n.,ll -0 ZSZ Wy, Zl.(an1 Zi§8),l8 Zigs),lg
Ly, ls=1
p
—8(g—c) —4c q—c q
SHAan HZHq E |6, a1 ° 0, ng SN 'Zi§1>,ll "'Zi(f",lg o 'Ziﬁs),lg S

Iy, ls=1

by Lemma 6.1-(1).

Furthermore, following the proof of Lemma 6.3, Lemma 6.1-(3) implies finite dimensional con-
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vergence to 0, as

p
nq—QC”EHq—qnc Z 5q_65q_czil2

n,l1 " n,la
l1,lo=1

p
=Sl Y e Sh,

n,l1 7 n,la
l1,la=1

P
SIAFZ NN D 0o %, — 0.

n,ly “n,ls
li,la=1
We have the desired process convergence for v, , — 7 < oco., which along with the continuous

mapping theorem further implies the convergence of the statistic.

Un q(k1;1,n)?

When = +OO7 note that Tn,q 2 Wn‘q(kl;Ln) :

Since k; is the location of the change point,
the denominator has the same value as the null. On the contrary, it is immediate to see that the

numerator diverges to infinity after normalizing (with n~9a,, ). Therefore, we have Tq — +00. &

Before we prove the convergence rate for SN-based estimator, we state the following useful
propositions.
PROPOSITION 6.1. Forany 1 <Il<k<m<n,k>1l+1andm > k+ 2, we have:

1. 4fk* <l ork* >m, Up2(k;l,m) = U%Q(k;l,m),'

n

2. ifl<k<k*<m,

Up2(k;l,m) :UnZ,Q(k;;l,m) +(k—1+1)(k—D(m—E)(m—k* —1)||A,|I3

k m
=2k =1+ 1)(m k) m—k)Y ATZ +2(k—1)(k—1+1)(m—-k) > AlZ
=l i=k+1
k m
+2k—D)(m—k)Y ALz —2(k—1+1)(k—1+1) > AlZ;
i=l i=k*+1
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3. ifl <k*<k<m,

Un2(k;l,m) =UZ,(k;l,m) + (k" = 1+ 1)(k* = 1)(m — k) (m — k — 1)|| Ay |13

k m
=2k =1+ D) (m—k)(m—k-1)Y AlZ+2m—k-1)(k* =1+ 1)(k—1+1) Y AlZ
1=l i=k+1
k* m
+2m—k=1)(m—k)Y ALZ —2(m—-k—-1)(k"—1+1) > AlZ,
=l i=k+1

Let €, = ny,, 12/ 4% We have the following result.

PROPOSITION 6.2. Under Assumption 3.1,

1. P (Supkeﬂn Un,2(k; la ’I’L)2 - Un,?(k*; ]-777/)2 > 0) — 0;

2. P(Wy2(k*;1,n) — infreq, Wna(k;1,n) > 0) = 0,
where Q, = {k : |k — k*| > €, }.
Now we are ready to prove the convergence rate for SN-based statistic 7.

Proof of Theorem 3.1. Due to the fact that k is the global maximizer, we have

Upao(k;1,n)2  Upa(k*;1,n)2

: 771) Wn,2<k*; 1) n)
2 Uno(k*51,n)%  Upo(k*;1,n)2  Upa(k*;1,n)?

Woolk;1,n)  Wyaa(k;1,n)  Wya(k;1,n)  Waz(k*1n)

1 - Upo(k*;1,n)? .
= (Upa(k;1,n)? = Uy o(k*;1,n)?) + — — Wiao(k™;1,n) — W, 2(k;1,n)).
o Ul 1) = U0 1)) 4 o D205 1,m) = W)

Since U, 2(k*;1,n)2, ng(l%; 1,n) and W, 2(k*;1,n) are all strictly positive almost surely, we
can then conclude that U, o(k;1,n)% — Uno(k*1,1)% > 0 or Wya(k*;1,n) — Wyo(k;1,n) > 0.
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Define Q, = {k : |k — k*| > e,}. If k € Q,, then there exists at least one k € Q, such that

Un2(k;1,n)? = Up2(k*;1,n)% > 0 or Wy, 2(k*;1,n) — Wy 2(k;1,n) > 0. This implies

P(fc eQ,) <P ( sup U, 2(k; 1,n)? — 2 (k™ 1,n)? > O) +P (Wnyz(k*; 1,n) — klean Wio(k;1,n) > O) .
ke, n

By Proposition 6.2, it is straightforward to see that P(l% € Q,) — 0, and this completes the

proof. &

Proof of Proposition 6.1. If k* < or k* > m, then E[X;] are all identical, for ¢ =1,...,m. This im-
plies that Uy, 2 (ks 1, m) = 3 21<; i, < Zk+1§j17ﬁj2§m(Xi1 —X5) " (X0, —Xj,) = Zl§i17éi2§k Zk+1§j1¢j2§m(zi -
Zj )T(Zi - ij) = UnZ,2(k7l’m)

When [ < k* < m, there are two scenarios depending on the value of k. If kK < k*, note that

E[X;] = A, for any ¢ > k* and zero otherwise, then by straightforward calculation we have

Uno(kil,m) = Y > (X = X)X - Xy

1<iria <k k+1<j1 £j2<m

= > > (2, - Zj, - EBIX;))(Zi, - Zj, — EB[X,,])

1<ir£ia<k k+1<j1#£j2<m

k E*
=Upa(k;l,m) + (k= 1+ 1)(k = D)(m — k*)(m — k" = D) Ap]l3 = 20k = )(m — k%)Y~ Y~ Al(Zi - Z))
i=l j=k+1

k m
—2k=D(m—k"=1)>_ > Al(z -2z
i=l j=k*+1
k
=UZ,(k;l,m) + (k= 1+ 1) (k = 1)(m — k*)(m — k* = D[|Anll3 = 2(k — ))(m — k") (m — k) Y_ Al'Z;

i=l

m k
+2(k—D(m—k)(k—1+1) Y AlZi+2(k—1)(m—k")> ALz
i=k+1 =l
—2k=0)(k—1+1) Y AlZ.
i=k*+1
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Similarly if k¥ > k* we have

Un,2(k;lvm) = Z Z (Xil _Xj1)T(Xi1 _ij)
I<ir#i2<k k+1<j1#j2<m

= Z Z (Zn - Zjl + ]E[Xll] - A’n)T(ZZl - Zj2 + E[Xlz] - An)
I<i1#i2<k k+1<j1#j2<m

(ks om) + (1 DK — D — B)Ym— k— D AE —20m — k)~ )Y S AT(Z~ 2)
i=l j=k-+1
k m
—2m—k—1)(k —1+1) Y > Alz-z)
i=k*+1 j=k+1

k

zUiQ(k;l,m)—l—(k:*—l—&—l)(k*—l)(m—k)(m—k‘—1)||An\|§—2(k*—l—&—l)(m—k)(m—k—l)ZAZZi
i=l

-
+2m—k—1)(k —1+1)(k—1+1) ZATZ +2(m—k—1)(m—k)Y_ ALZ
1=k+1 1=l

—2m—k-1)(k" —1+1) Y AlZ,
i=k+1

¢

Proof of Proposition 6.2. To show the first result, we first assume k£ < k* — €¢,. Then according to

Proposition 6.1,
k
Una(kil,n) = UZy(k;1,n) + k(k —1)(n — k*)(n — k* — 1)[|[An I3 — 2(k — 1)(n — k*)(n — k) Z AT 7,

+2k(k —1)(n — k* Z ATZ 420k —1)(n—k ZATZ—% —1) Z AT Z;.
i=k+1 i=k*+1
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Similarly we have

.
Uno(k*;1,n) = UZ,(k*;1,n) + E*(E* = 1)(n — k") (n — k* = 1)||A, |53 = 2(k* = 1)(n — k*)(n —k* — 1 ATz,
s n,2
=1

+2kT (B = D(n—k"—1) Y Al'z.
i=k*+1

It is easy to verify that E[U, 2(k; 1,n)] = k(k—1)(n—k*)(n—k* —1)||A, |3, for k < k*. Furthermore,

by Theorem 2.1 in Wang et al. (2019) and the argument therein, we have

sup |U75 (ks 1,n)| = OS] F) = 0p(n*°V/[[Sll [ Anll2)

k=2,...,n—2

since /|| X||r = o(v/n]|An|2) by Assumption 3.1 (3), and

sup ZA Zi| = Op(Vn\[ ATZA,) < Op(Vn|[Zl2l|An]l2) < Op(Vrl ][ An]l2)-

1<a<b<n i—a

These imply that

Una(k*;1,n) =k*(k* = 1)(n — k") (n — k" = DI A3 + Op(n*?[| A2/ 5] F)

=k (k" = 1)(n = k*)(n = k* = D[ Anll3 + 0p(n*[|An]3),
since v/||X||F = o(v/n]|Ar||2) by Assumption 3.1 (3). Therefore, we have

P( sup ‘Un,2<k;17n)|+Un,2(k*;17n) >0)%1
k<k*—en
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In addition,

sup  |Un2(k;1,n)| — Upo(k*;1,n)

k<k*—ep,
<, S k(k —1)(n — k") (n = k* = D[ A3 + Op (0| A2/ [1Z]] )

— k(" = 1)(n = k) (n = K = DIIAL3 = Op(n*?| Al [5] F)
== (2" —en = (= k") (n = k" = V]| A3 + Op(n*? | An |2 /[IZ]]7)

=— (2" —en —1)(n = k") (n — k" — 1)||An||§ + Op(n4||AnH§/\/’Yn,2)'
—1/4+k

Since n//Yn2 = o(nv, 5 ) = o(€y,), we have

P( sup |Upzo(k;1l,n)| —U,.2(k*;1,n) <0)
k<k*—ep,

>P (= en @k = e = 1)(n = k)~ K = 1) A3 + Oy (0 Anl3/Fmz) < 0) = 1.
Finally, it is straightforward to see that

2
sup  Uno(k;1,n)? — Upa(k*;1,n)? < < sup Un’g(lc;l,n)|> — Up2(k*;1,n)?

E<k*—en E<k*—en
= < sup |Upo(k;1,n)| — Uy 2(k"; 1,n)> ( sup  |Upo(k;1,n)| + Upa(k*; 1, n)) .
E<k*—en k<k*—en

And

r << sup |Up2(k;1,n)| — Un,g(k*;lm)) ( sup |Up2(k;1,n)| + Unyz(k*;l,n)> < O)

k<k*—en k<k*—cn
>P ({ sup  |Upa(k;1,n)| —Upa(k™;1,n) < O} ﬂ { sup |Up2(k;1,n)| + Upo(k*;1,n) > 0}) — 1,

k<k*—ep k<k*—en,

since both P(supy oy« |Un2(k; 1,n)[+Uy 2(k*;1,n) > 0) and P(supy,j_., |Un2(k;1,n)|=Un2(k*;1,n) <
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0) converge to 1. This is equivalent to

P (( sup |Up2(k;1,n)| — Up2(k"; 1,n)> ( sup |Up2(k;1,n)| + Uy 2(k"; 1,n)> > 0) — 0,
k<k*—e, k<k*—ep

and it implies that P (supk<k* Uno(k;1,n)? — Uy, 2(k*;1,n)% > O) — 0. Similar tactics can be ap-

—€n

plied to the case k > k*+¢, and by combining the two parts we have P (supkeQ” Uno(k;1,n)? — Up2(k*;1,n)% > 0) —

0. Therefore this completes the proof for the first result.

It remains to show the second part. Let us again assume k < k* — ¢, first. By Proposition 6.1

we have
1k*72
W * *
wa(k51,n) = nZUMmk ZUMtan)
t k*+2
1k*—2 1 n—2
== ULt LE)? += Y Ul +1,n)°,
[t nt:k*+2
and
1k—2 n—2
Woolk;1,n) ==Y U,a(t;1,k)? +1 > Una(tik+1,n)?
nt:? nt k+2
1 k—2 1 n—2
= =N UZ,(t:1,k)? +—ZUn2tk+1n)
nt:Q t=k+2

When ¢ is between k + 2 and £*, by Proposition 6.1 we have

Una(tik+1,n) =UZy(tik+1,n) + (t — k)t —k —1)(n— k") (n — k* — 1)|| Ay I3

t n
—2t—k-D)(n—k)n—t) Y AlZi+2t-k-1)n-k)t-k Y ALz
i=k+1 1=t+1
t n
F2t—k—Dn—k) > AlZ —20t-k-1)(t—k) > AlZ,
i=k+1 i=k*+1

and from the above decomposition we observe that E[U, o(t;k+1,n)] = (t—k)(t—k—1)(n—k*)(n—
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k* —1)||A,]|3, which is the second term in the above equality. Then

Upo(t; k + l,n)2 = (Un2(t;k+1,n) —E[U,2(t; k+ 1,n)] + E[U, 2(t; k + 1,71)])2
> E[Una(t;k+1,n)]2 + 2E[U, 2(t; k + 1,0)](Una(t; k + 1,n) — E[Un2(t; k + 1,n)])

> E[U, 2 (t; k+1, n)]2 —2E[U, 2(t; k + 1,n)] sup |Up2(t; k+1,n) — E[U, 2(t; &+ 1,n)]|,
t=k+2,....n—2

since E[U,, 2(t; k + 1,n)] > 0. Furthermore,

sup |Un2(t; k4 1,n) — E[U, 2(t; k + 1,n)]|

t=k+2,....n—2
b
< sup |UnZ,2(t; k+1,n)| + 8n? sup AZZi
t=k+2,...,n—2 a<b,a,b=1,...,n i—a

=0, (n’||Z]|F) + Op(n*4/ ATSAL) = 0y (n*| Aul[*/v/an),

due to Assumption 3.1, Theorem 2.1 and the argument in Wang et al. (2019).

Similarly when t is between £* and n — 2, we have

Una2(t;k+1,n)% > ElU,o(t; k + 1,n)]* — 2E[U,, 2(t; k + 1,n)] sup |Una(t;k+1,n) — E[Un2(t; k + 1,n)]],
t=k+2,....n—2

where E[U, 2(t;k + 1,n)] = (k* — k)(k* =k —1)(n —t)(n —t — 1)||A,||3 > 0, and

sup  |Una(t;k+1,n) = E[Un2(t; K+ 1,n)]|
t=k+2,...,.n—2

<0y (n*|[Bl|F) + Op(n*°/ ATTAL) = Op(n*[| Anll?/v/an)
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Therefore by combining the above results we obtain that

Wh2(k;1,n)
1 e 1 2
Z Tat LR+ 3 E[Una(t:k +1,n)]" + — > ElUna(tik+1,n))2
t=k+2 t=k*+1
2

- — sup |Up2(t; k4 1,n) — E[Uy, 2(t; k + 1,n)]| Z [Un,2(t; k+1,n))
N t=k42,...,n—2 t—hro

n—2

2
- sup |Un2(t; k4 1,n) — E[U, 2(t; k + 1,n)]| g E[Un2(t; k+1,n)]
N t=k+2,...,n—2 — a1

~

>(k* — k)°n?||Anlls — (K* —k)3n||ALl3 sup ) \Un2(t;k+1,n) — E[Uno(t; k + 1,n)]]

t=k+2,....n—

+ (K = k)" A3 — (K = k)*n?| A3 LS [Un2(t;k+1,n) —E[Un2(t; k + 1,n)]]
t=k+2,...n—2

2
(sup sup IUf,z(t;l,k)>

k t=2,..,k—2
= (k" — R A4k = k)2 = 0p(n/ )] + (K = k2n* AL B[ — k) — 0p(n®/Fmz)] — Op(nCIIS[13)
>(k = KYP 3| An 412 — 0p(n/\An)] + (K = k)2n* [ AL — 0p(n®/Fmz)] — Op(nEIS]13)

=((k* = k)°n® + (" — k)*n") | An 365 (1 = 0,(1)) — Op(n®|| 1),

—~1/4
since €, = nan /4t . And

Anf Wo(ki1n) 2 (0 + n)[Anfl26 (1= 0p(1) = Op(n°|[Z]1F) = n[An]*(1 = 0p(1)),

since €, = o(n) and ein*||A,[*/(n%|2]%) = 7%24” — 00. By very similar arguments, we can
obtain the same bound for infys g4 W, 2(k; 1,n), and hence infreq, Wno(k;1,n) 2 eftnt||A, |14 (1 -
0p(1)). On the other hand, Theorem 2.1 implies that W, o(k*;1,n) = Zk - UZ,(t; 1, k%)?

1 Et e io ULtk 4+ 1,n)2 = Op(n8||2|%). This indicates that Wi, 2(k*;1,n) = epn*|| Ay [[*op(1),

58



and consequently,
P (Wn,g(k*; Ln) = inf Woa(kiln) > o) < P(e;w*||An||4op(1)—e;§n4||An||4(1—op(1)) > o) 0.

This completes the whole proof. &

7 Application to network change-point detection

Our change-point testing and estimation methods are applicable to network change-point detection
in the following sense. Suppose we observe n independent networks {A;}7; over time with m nodes.
Here A; is the m xm adjacency matrix at time t. We assume the edges in each network are generated

from Bernoulli random variables and are un-directed. That is,
Aij+ = 1if nodes ¢ and j are connected at time ¢ and 0 otherwise.

Let A; = (Aij7t);’fj:1 and assume E(A;j ) = piji. Let E(4;) =0, = (pij,t):'?’j:l-

Suppose that we are interested in testing
Hy:0,=---=0,

versus certain change point alternatives. Here we can convert the adjacency matrix into a high-
dimensional vector, and apply our test and estimation procedures. Note that a mean shift in
vech(©) implies a shift in variance matrix of vech(A;), so the variance matrix is not constant
under the alternative. However, the asymptotic distribution of our SN-based test statistics still
holds under the null, and our change-point detection method is applicable. Note that our method
allows the edges to be weakly dependent, which can be satisfied by many popular network models;
see Wang et al. (2020).

To examine the finite sample performance of our change-point testing and estimation in the

network framework, we consider the following stochastic block model as in Wang et al. (2020).
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We generate A; as a matrix with entries being i.i.d. Bernoulli variables with mean matrix ©; =
wZQZT — diag(us ZQZ™T) where Z € R™*" is the membership matrix and Q € [0,1]"*" is the
connectivity matrix. We set Z to be the first 7 columuns of identity matrix I, so that rank(Z) = r,
and Q =1, - 1? be a matrix of ones.

Table 6 presents the size with 1000 Monte Carlo repetitions. We take r = em, yuy = 0.1/¢ with

c=02,1.
DGP (n,m) Ho,5% Ho,10%
c ’ q=2 q=4 q==6 q=2,4 q=2,6 q=2 q=4 q==6 q=2,4 q=2,6
1 (200,10) 0.035 0.096 0.068 0.08 0.048 0.075 0.152 0.135 0.124 0.096
(400,20) 0.054 0.084 0.049 0.071 0.048 0.097 0.142 0.094 0.135 0.099
0.2 (200,10) 0.065 0.117 0.08 0.116 0.062 0.095 0.153 0.151 0.147 0.121
) (400,20) 0.05 0.101 0.043 0.09 0.047 0.099 0.153 0.096 0.137 0.083

Table 6: Size for testing one change point of network time series

As regards the power simulation, we generate the network data with a change point located at
|n/2|, which leads to py = p+ 0I(t > n/2) - u. We take p = 0.1/¢,r = em with ¢ = 0.2,1 and

0 =0.2,0.5. We obtain the empirical power based on 1000 Monte Carlo repetitions.

DGP Ho,5% Ho,10%
(8, ¢) (n,m) q=21q=4]q=6[q¢q=2,4]q¢q=2,6 | g=2]q=4]q=61q¢=2,4] ¢q=2,6
(0.2,1) (200,10) 0.152 0.172 0.116 0.19 0.145 0.223 0.254 0.225 0.265 0.222
o (400,20) 0.83 0.309 0.238 0.787 0.775 0.908 0.411 0.364 0.865 0.85
(0.5,1) (200,10) 0.93 0.628 0.527 0.917 0.904 0.963 0.723 0.666 0.952 0.937
o (400,20) 1 0.995 0.97 1 1 1 0.997 0.99 1 1
(0.2,0.2) (200,10) 0.804 0.677 0.61 0.798 0.755 0.866 0.75 0.708 0.86 0.829
e (400,20) 1 0.994 0.991 1 1 1 0.997 0.999 1 1
(200,10) 1 1 1 1 1 1 1 1 1 1
(0.5,0.2) (400,20) 1 1 1 1 1 1 1 1 1 1

Table 7: Power for testing one change point of network time series

We can see that our method exhibits similar size behavior as compared to the setting for Gaussian
distributed data in Section 4.1. The power also appears to be quite good and increases when the
signal increases. Unfortunately, we are not aware of any particular testing method tailored for single
network change-point so we did not include any other method into the comparison.

To estimate the change-points in the network time series, we also combine our method with WBS.
We generate 100 samples of networks with connection probability p; and sparsity parameter r. The
3 change points are located at 30,60 and 90. We take p; = p+ 6 -1(30 < ¢ < 60 or t > 90) - u. We

report the MSE and ARI of 100 Monte Carlo simulations as before. We compare our method with
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modified neighborhood smoothing (MNBS) algorithm in Zhao et al. (2019) and the graph-based
test in Chen and Zhang (2015) combined with the binary segmentation (denoted as CZ). We do not
include a comparison with Wang et al. (2020) as their method requires two iid samples. We can
see that CZ performs worse than the other two methods as our simulation involves non-monotonic
changes in the mean that does not favor binary segmentation. When the network becomes sparse,
i.e. ¢ = 0.3, our method also has better performance than MNBS. Overall the performance of
our method (e.g., WBS-SN(2), WBS-SN(2,6)) seem quite stable. Of course, the scope of this
simulation is quite limited, and we leave a more in-depth investigation of network change-point

estimation to near future.

N - N
(1,0, ¢) =5 1 0 1 3 3 MSE | ARI
WBS—SN(?) 0 1 14 74 10 1 0] 0.32 0.865
WBS-SN(4) 90 9 1 0 0 0 0] 847 | 0.0373
(0.2,1,1) WBS-SN(6) 32 23 24 16 4 1 0| 4.12 0.278
e WBS-SN(2,6) | 1 2 18 39 32 8 0] 0.99 0.728
CZ 46 50 4 0 0 0 0] 6.18 0.165
MNBS 0 2 17 55 23 3 O 0.6 0.847
WBS-SN(2) 0 0 4 82 14 0 0] 0.18 0.893
WBS-SN(4) 12 17 38 33 0 0 0] 214 0.604
(0.1, 1,0.3) WBS-SN(6) 28 27 27 14 4 0 0| 391 0.383
o WBS-SN(2,6) | 0 1 8 60 29 2 0] 049 0.852
CZ 55 33 6 4 1 1 0] 6.38 0.156
MNBS 97 0 2 1 0 0 0] 875 0.019

Table 8: Multiple change point location estimations for network time series
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