Crystal structures of amino acids: from bond lengths in glycine to metal complexes and high pressure polymorphs

Carl Henrik Görbitz

Department of Chemistry, University of Oslo, N-0315 Oslo, Norway

Schematic illustrations of amino acids in the Cambridge Structural Database identified by their refcodes.

For organic structures the following applies to the listed refcodes:

REFCOD	racemic structure
REFCOD	enantiopure structure
REFCOD	achiral compound
<u>REFCOD</u>	hydrate
REFCOD	complex
REFCOD	compound of biological relevance, common name given directly below if available
+REFCOD	polar head with positive charge $[c(0), c(1) \text{ or } c(2)]$
-REFCOD	polar head with negative charge $[a(0), a(-1) \text{ or } a(-2)]$

If a substance has been crystallized in different states, the illustration will appear under z(0) (if applicable). For metalloorganic structures other font codes apply, see page 18.

z(0)	acyclic	110 structures	page 2
z(-2), z(-1) and z(1)	acyclic	3 + 7 + 9 = 19 structures	page 6
c(0)	acyclic	22 structures	page 7
c(1)	acyclic	21 structures	page 8
c(2)	acyclic	6 structures	page 9
z(0), z(1)	acyclic, dimeric	8 + 3 = 11 structures	page 10
z(0)	cyclic	40 structures	page 11
c(1), n(0), a(-1), a(0)	cyclic	5 + 11 + 3 + 4 = 23 structures	page 13
z(0)	C^{α} -alkylated cyclic	30 structures	page 14
z(0)	C^{α} -alkylated other	12 + 2 + 1 = 15 structures	page 15
c(1)	C^{α} -alkylated all	11 + 1 + 1 = 13 structures	page 16
n(0), c(1)	acyclic esters	14 structures (+ 8 from standard acids)	page 17
a(0)	acyclic metal ligands	42 structures	page 18

KUKMAF

,OH

ÓН LDOPAS03 L-dopa +LDOPAC01

LTXPSE

KURCOQ

METTSO10

S

LOZPAR

OBEKUB

O

MATVIM

OCAZOI

Ν

MTYROS01

<u>NANYIK</u>

OCAZUO

PAZHEE

PYRZAL10

QAJXOQ

HO'

S

+UMURAW*

+VIGBUI

+XPSERC

+ZIGJII +ZIGJOO

