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Abstract

This supplementary material contains mathematical proofs and extended results. Ap-
pendix A presents mathematical proofs of the main results presented in the main text.
Appendix B presents a couple of useful auxiliary lemmas. Appendix C presents extended
results for the case of general multiway clustering. Appendix D presents mathematical

proofs of the extended results. Appendix E presents a generalization of Lemma 1.
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Appendix

A Proofs of the Main Results

For any (i,7) € Iy x J;, we use the shorthand notation Ep[f(W;;)|I; x Jf] to denote the

conditional expectation Ep[f(Wi;)|(Wiry ) s < (] whenever one exists.

A.1 Proof of Theorem 1

Proof. In this proof we try to follow as closely as possible the five steps of the proof of Theorem
3.1 of CCDDHNR (2018) although all the asymptotic arguments are properly modified to
account for multiway cluster sampling.

Denote &, for the event 7y, € T, for all k,¢ € [K]>. Assumption 3 (i) implies P(&,) >
1— K2A,.
Step 1. This is the main step showing linear representation and asymptotic normality for the
proposed estimator. Denote

Z E, ke[ (W5 Tke)], R,1 = J = Jo,
ke)e K]?

1
Rn,Q = ) En,k€[¢(w 807 nk@ Z Z ¢ VVZ]) 907 T]O

(k,£)e[K)2 =1 j=1

We will later show in Steps 2, 3, 4 and 5, respectively, that

| Rl = Op, (C7V2 +1,), (A1)

|Rns2ll = Op, (C7Y2! + Xy + X)), (A.2)

“@(NM)_IiZ¢(MjQQOaUO)‘) = Op, (1), (A.3)

i=1 j=1

lo™" | = Ok, (1). (A.4)
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Then, under Assumptions 2 and 3, Qil/ 24y < pn = o(1) and all singular values of Jy are
bounded away from zero. Therefore, with P,-probability at least 1 — o(1), all singular values of
J are bounded away from zero. Thus with the same P, probability, the multiway DML solution

is uniquely written as

1 .
0=—J 1ﬁ Z Eo e [0 (W3 ke
(k,0)€[K]?

and

V(0 — ) = \/_J‘ Z <nu "(Wiil)] + J60)
:_\/_J— Z En ke[t (W5 00, Tie)]

€[K]?

- (Jo + Rn,l) (LJ\C; f: i Y (Wij; 00,m0) + \/ERM)- (A.5)

i=1 j=1

Using the fact that
<J0 + Rn,l) L = —(Jo+ Run)  Raa i,
we have
1(Jo+ Rut) ™" = Jo 'l =11(Jo + Rua) ™ Run Jg Ml < 1(Jo + Root) " R[] 157
=0p, (1)O0p, (C7Y2 4 1,)0p, (1) = Op, (C7Y2 4 1,).

Furthermore, 7/, + /C (A, + \,) < p, = o(1), it holds that

5 SUTTTARY S B EL:S w) S TONNI B W

i=1 j=1

:OPn(l> + Opn(l) = OPn(1)7

where the first equality is due to (A.3) and (A.4). Combining above two bounds gives

HNMZZw Wij; 6o, o) +\/_Rn2

H (JO + R’“) =0p,(C"? +7,)0p, (1)

=0p, (C7V%2+71,). (A6)
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Therefore, from (A.4), (A.5) and (A.6), we have
s N Mo
VG T~ 00) = S0 B0 + Or (o)

The first term on the RHS above can be written as G,1). Applying Lemma 1, we obtain the

independent linear representation

2\3

M

VC

z] ’U’LO + Z WEPn l])‘UOJ]
7j=1

and it holds P,-a.s. that

V(Gu) =V (H ) +0(C™Y) = J,'T(JyYY +0(C™")  and
Gntp =H, ) + Op(C™/?)
under Assumption 3 (iv). Recall that ¢ > 4, the third moments of both summands of H,1) are

bounded over n under Assumptions 2(v) and 3 (ii) (iv). We have verified all the conditions for

Lyapunov’s CLT. An application of Lyapunov’s CLT and Cramer-Wold device gives

H,p ~~ N(0,14,)

and an application of Theorem 2.7 of van der Vaart (1998) concludes the proof.

Step 2. Since K is fixed, it suffices to show for any (k,¢) € [K]?,

|

]En,kz[wa(w; ﬁk@)] - EPWQ(WHQ 770)]

= Op,(C7V2 47y
Fix (k, () € [K]?,

Ep ke[ (W3 0ke)] — Ep, [0 (Wij5m0)] ” < Ty e + Ly s

|

where

Ly je = ‘ Ep ke[ (W3 0ke)] — Ep, [0 (Wijs ke [ I % Jf]

Loje i= HEP,LWG(WQ;%DHE x J;] —Ep, Wa(Wll;ﬁo)]H-
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Notice that Z jy < r,, with P,-probability 1 —o(1) follows directly from Assumptions 1 (ii) and

3 (ii1). Now denote 9f; ., = ¥% (Wijs fiee) — Ep, [0, (Wiji fiee) | I x J¢] and ¥¢ = (98 ) )mefap)- To

bound Z; ¢, note that conditional on I}; x Jy, it holds that

Er, (Tl % J5] =, [[Buadld*OWsio] — B, 6" (Woss ) 1 x J5)| |1 %
1 C C
NI EP“[Z_( > ) |1 ]
= (4,5)EL X Jg
1
T 5 e[St
(4,)€lxJp §'€Je,5' #J
1
e 2 2 EP"[Z% b 15 % 7|

(4,) €I x Jg V€1 i #i

1 do
e 2 B o[ x ] + 0
(,5)E€Ix X Jy m=1

1
=T > 2 Bl il

(1,4)€lexJg 3’ €J0,5'#5

1
+—(\I|UD2 Z Z Ep, (48, 05,) | I x Jf]

(3,5)EL X Jp ©/ €1 i/ #4

]. CX
S T IR L e

(1,3) €I x J¢

2
‘wa(Wij;ﬁkﬂ) — Ep, [*(Wigs tie) | I % J{]

1
<—E |: C JC:|
STA e

S|I|/\]J| Ep, [||[v* (Wi Tke) 1P 15 % J§]

<ci/H|n1J|

under an application of Cauchy-Schwarz’s inequality and Assumptions 1 and 3 (ii). Note that
C < I A|J| < C. Hence an application of Lemma 2 (i) implies Z; o = Op, (C~'/?). This

completes a proof of (A.1).
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Step 3. It again suffices to show that for any (k,¢) € [K]?, one has

1

17771 > @D(Wz‘j%@o»no)HZOP"(Q_I/QTZJr)\nJr)\%)
(

i,5)€lx X Jy

Eo ke [t0(W5 60, Te)| —

Denote

GuadoW] = X (o07) ~ [ a(wiar,),

’ (1,9) €I x J¢

where ¢ is P, an integrable function on supp(WW'). Then

1

B Ls e + Laje
7,

Z ¢<Wij?90,770)H < Ve

1,5)ELL X Jp

Eo ke[t (W5 60, Tie)]
where

Ts e =||Gune[ (W3 00, 1ke)] — Ge[to (W 60, m0)]],

Ly e ZZ\/EHEPnW(Wij; o, Mke) | I, X Jo] — Ep, [(Wh1; 90#70)]“-

Denote @Zzgm = Y (Wij; 0o, Mke) — Vm (Wij; 60, m0) and @Zz‘j = (?Zij,m)me[de]- To bound Z3 j,, notice

that using a similar argument as for the bound of Z; ¢, one has

Ep, (1 Zs kell* 115 % J§] = Ep, (|G kel (Wis 00, Tike) = (Wigs 00, m0)llI*| 1§ % J¢)

c & ~ N o0
=Ep, [W Z { Z (@Z}ij,m - EPn@Dij,m)} I x Jg]
m=1  (i,5)€lpxJy
C do N - )
:W Z Z Ep, { Z (¢ij,m - EPnl/)ij,m) (%j/,m — Epn'[ﬂij/7m> I¢ x Jﬂ
(1:3)€le X Jg ' €J0,3'#] m=1
C do N N )
+ W Z Z Ep, { (¢ij,m - Epnwij,m) (%Im —Ep, z/;i,j’m> IE x JEC]
(i,j)ElkXJg S P m=1
C do 9
e > En| Y (G~ Brdim) [T x J] +0
(i.4)€lr % Jg m=1
C ~ ~ ~ ~
:(|I\I]|)2 > >, Ern [@ij — Ep,vij, ¥ijs — Ep, i) | I ¥ JE]
(1,§)ELxJg 3 €Je,5' #J
C ~ ~ ~ ~
TamE . > 2 Em (G5 = Br, g, g — B, )| I < JE]

(4,9) €l x Jy 7' €Tx i #i
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bij — Ep, i

cae. 2 b i< gt

(4,3) €l x Jg

SEp, [ ‘¢(Wij; 00, 1) — »(Wij;00,m0) — Ep, [t0(Wij; 00,7) — (Wij; 907770)]”2’11(5 X Jec}

<Ep, [|[¥(Wij; 60, 7) — ¥(Wij3 00, m0)||* |15 % J¢]

< Su$ Ep, [1v(Woo; 60, 1) — ¥ (Woo; 80, no) | *| I x J¢]
neTn

= sup Ep, [1v(Woo; 60, 1) — ¥ (Woo; 80, n0)[1*] = (1},)%,
ne n

where the first inequality follows from Cauchy-Schwarz’s inequality, the second-to-last equality
is due to Assumption 1, and the last equality is due to Assumption 3 (iii).

Hence, Z5 k¢ = Op, (r],). To bound Z, ks, let
fre(r) == Ep, [0 (Wij; 00, m0 + (ke — 10)) [ L X Ji] — Ep, [0(Wi1; 00, m0)], r € [0,1].
An application of the mean value expansion coordinate-wise gives

fre(1) = fire(0) + fr0(0) + f10(7)/2,

where 7 € (0,1). Note that fx,(0) = 0 under Assumption 2 (i), and

1 ¢6(O) 1 = ||, W3 80,m0) e = | < o

under Assumption 2 (iv). Moreover, under Assumption 3 (iii), on the event &,, we have

1fre ) < sup [[fig(r)ll < A

re(0,1)
This completes a proof of (A.2).

Step 4. Note that

Ep, [

% iv: f: ¥(Wigs 00, 1m0) HZ]
i=1 j=1
do N

ZﬁEm [ Z (Z Z Ui (Wig; 0o, 770))1

m=1 =1 j=1
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2 Z Z Ep, [Z Vi (Wig; 00, m0) Y (Wige a007n0)i|

=1 1<j<j'<M

+<N%4> 3 ZEPn[Zwm Wiji 00, 10) Um ( uﬂomoﬂ

1<i<i/<N j=1
N M dy

Zw (sz;907770)i| +O

=1 ]:1 m=1

<EPn[||77Z)(VVZJ7907770)|| ] < Cl

_l’_
2 2
M=
M=
3l
-

under Assumptions 1 and 3 (ii). Therefore, an application of Markov’s inequality implies

R 9) SR TN

=1 j=1

This completes a proof of (A.3).
Step 5. Note that all singular values of J; are bounded from above by ¢; under Assumption 2
(v) and all eigenvalues of I" are bounded from below by ¢y under Assumption 3 (iv). Therefore,

we have [|o7!| < ¢1/4/co and thus ||[o~!|| = Op,(1). This completes a proof of (A.4). O

A.2 Proof of Theorem 2

Proof. Step 2 of the proof of Theorem 1 proves ||j— Joll = O,(C~'? +7,,) and Assumption 2

(v) implies ||.J; || < cy'. Therefore, to prove the claim of the theorem, it suffices to show

1 IIN 1T ~
Hﬁ Z {||[|HJ” |Z Z Wiy 0, 0ke) 0 (Wijr; 0, 1e)

I| AT 0.7
‘|[‘||J|‘ ’ Z Z¢ WU,H Tlke) (M/i'j;e’nke),}
1,4/ €Iy, jETp

— iNEp[(Wir; 00, 10)0 (Wha; 00, m0)'] — fiarEp[1(Wii; 00, m0) 1 (War; 6o, 770)/]H = Op(pn)-

Moreover, since K and dy are constants and uy — gy < 1 and uy — iy < 1, it suffices to

show that for each (k,¢) € [K]* and [,m € [dy], it holds that

‘U! AL
(712

DI IR Wis 0, )V (Wi 0, 1e) — tinEp [n(Wis; 0, 10) i (Wiz; 60, 70)] ‘ = Op(pn)

i€l 4,7 €Jy
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and

‘UM\JI

IR 2 2o (Wi 0, e) o (Wt 0.7 = s 4n(Wasi o, o) (Wors o, )| = O (o).

i3/ €l jEJIy
We will show the second statement since the first one follows analogously. Denote the left-
hand side of the equation as Zy . First, note that (|Z| A|J|)/|J| = g, and apply the triangle

inequality to get

Lroim < Lioim,1 + Lreim 2,

where

1 Y ) N ~
Trtim, = ‘W Z > {%(Wij; 0, 1) 0 (Wi 0, 1) — he(Wigs 0o, 10 ) thm (W5 90,770)}‘

i1/ €1, JEJp

1
Lkt jm,2 = ‘W Z > (Wi 0, m0)m (Wit5 60, m0) — Ep[tou(War; 60, 70)m (War 6, 770)]‘-

i€l jEJTp

We first find a bound for Zy,, 2. Since ¢ > 4, it holds that

1 2
Ep[Lis im.2) :WEPH Z Z¢l(Wij; 00, 10)Vm (Wirj; 00, m0) — Ep[th(Wiy; 007”0)¢m(W21;00a770)]‘ }

i1 €I, JEJp

1
S |I|4|J|2EP [ Z Z wl<Wz]7 607 n0>wm(Wz/j, 90, HO)wl(sz’; 90, n0>wm(m’/j’; 607 770)]

ivilvinelk j7j/€J£

1
+WEP[ > Z@DZ(WM;@O,UO)@%(WM;QO,UO)M(WM;907U0)¢m(m”’j;907ﬁ0)]

i,i’,i",il”le jeJé
+o(((I|AJJ))™H +0
1
[T| A J|

S Ep[[l(W; 00, m0)|I'] S ¢1/C =0(C™).

Now, to bound Zys .1, we make use of the following identity coming from the proof of
Theorem 3.2 in CCDDHNR (2018): for any numbers a, b, da, db such that |a| V || < ¢ and
|dal V [6b] < r, it holds that |(a + da)(b+ 6b) — ab| < 2r(c + r). Denote ;5 := Yi(Wij; 00, m0)

and @ij,h = U (W3 5, Mie) for h € {l,m} and apply the above identity with a = 1;;,, b = Vi1 m,
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a+da =11, b+ 6b = Yirjm, 7= iz — Vija| V [Yirjm — Yirjm| and ¢ = [¢iz] V |[irjm|. Then

1 o~
Lit,im,1 :‘ LER Z Z {¢ij7lwi’j7m — %j,l%”j,m}’

i3/ €l, jJE€EJp

1 BN
SW Z Z i1 j,m — Vijingm]

i,i'€ly jEJI,

2 o~ ~
SW Z > (Wiza = igal V [Yitjn — Crml)

1,3/ €l jEJ,
X <|¢ij,l| VA Yirjm| + [Wija — Yijal V [itjm — ¢i/j,m|>
2 i ~ 1/2
= (W Z Z [iza = Yigal® V [$irjm — ¢¢'j,m|2>

1,1’ €l jeJp
1/2

2 ~ ~
X <|I|2U| Z Z {|wz’j,l| V ‘wi’j,m‘ + W}ij,l - ¢z‘j,l| V Wi'j,m — wi/jjm’}z)

1,0/ €l jEJp

2 ~ ~ 1/2
< (W Z Z Wii = ijal* V [irjm — ¢i'j,m|2>

i€l jeJy

X {(ﬁ Z > il v Wv:'j,m|2>l/2

i,/ €I jEJy

2 -~ ~ 1/2
+ <|I‘2|J‘ Z Z i1 = Pigal® V |Wirjm — z/zilj,m\z) },

i7i/61k JEJZ

where the second to the last inequality follows from Cauchy-Schwarz’s inequality and Minkowski’s

inequality. Notice that

N M
DD il V Wil <D D (Wi 6o, m0) |17,

Wil €T i=1 j=1
DD i = il V i — Girganl® <Y Y N1(Wis; 0, 7ke) — (Wi 60, m0) |-
id'ely, jed, i=1 j=1

Thus, the above bound for Zy,, 1 implies that

1
2 . 2
Thaima S % (g 2 10 Wis o)l + R ).

(4,7)Elpx Jg

where

1 >
Ry = Z (Wi 0, 7re) — w(WiﬁHOWO)Hz'

(4,5)€lpx Jg

10
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Notice that

1
T Z ||7/)(W/ij;907770)||22013(1)7

i,
J)EIR X Jg

which is implied by Markov’s inequality and the calculations

1
B[ 3 IVt ] =Bl )] <
(i,j)elkx-]e

under Assumptions 1 and 3 (ii). Finally, to bound R,,, using Assumption 2 (ii),

1 PN 1 ~
R, Sm > I (Wi i) (0 — 60)|” + 7 > (Wi Oo, Fee) — (Wi 0o, m0) 1>
(4,5)ElKX Je (4,5)ElK X Je

The first term on RHS is bounded by

1 - ~ _ _
(7 2 W Vis@oll) x 18— 6ol = 0p(1) x Op(C™) = Op(CT)
(i,j)elk XJ@
due to Assumption 3 (ii), Markov’s inequality, and Theorem 1. Furthermore, given that

(Wij)(igyerex e satisfies Ty € T,

EP[’W(VVij; 0o, Tke) — Y (Wij; 0o, m0) ||

I¢ Jﬂ

<sup Ep [\W(sz; 00, 1) — V(Wij; 0o, m0) ||>

7767;

I¢ % Jﬂ
< (7’/ )2

— n

due to Assumptions 1 and 3 (iii). Also, the event 7, € T, happens with probability 1 — o(1),

we have R, = Op(C~"' + (1/)?). Thus we conclude that
Titima = Op(CTV2 +1),).

This completes the proof. O

11
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B Useful Lemmas

We collect some of the useful auxiliary results in this section.
First, for any f : supp(W) — R for a fixed d € N, we use
| NoMm
G.f = {—M;;f Eplf (W)}
to denote its multiway empirical process. The following is a multivariate version of Chiang and

Sasaki (2019), Lemma 1; see also Lemma D.2 in Davezies, D’Haultfoeuille, and Guyonvarch

(2018).

Lemma 1 (Independentization via Héjek Projections). If Assumption 1 holds and f : supp(W) —
RY for some fized d € N and suppose Ep||f(W11)||> < K for a finite constant K that is inde-
pendent of n, then there exist i.1.d. uniform random variables Uy and Uy; such that the Hdjek
projection H,f of G, f on
N M
Gn = { ZgiO(UiO) + ZQOJ'(UOJ') * gio, Joj € L2(Pn>}
i=1 j=1

15 equal to

%i [ —Epf(Wn)|U, ]—F%% [ (W;) — Epf(Wn)

»
for each n. Furthermore,

V(G f) = V(H.f) +O0(C™") = inCou(f (W), f(W2)) + fiss Cov(f (W), f(War)) +O(C™)
holds a.s.

Proof. The proof is essentially the same as the proof for Lemma 1 of Chiang and Sasaki (2019)

and is therefore omitted. O
The following re-states Lemma 6.1. of CCDDHNR (2018):

12
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Lemma 2 (Conditional Convergence Implies Unconditional). Let (X,,) and (Y,) be sequences

of random wvectors.

(i) If for e, — 0, P(|| X,|| > €n|Yn) = op(1) in probability, then P(||X,| > €,) = o(1). In

particular, this occurs if Ep|[||X,]|9/€2]Y,] = op(1) for some ¢ > 1.

(ii) Let (A,) be a sequence of positive constants. If || X,|| = Op(A,) conditional on'Y,,, then

| X.|| = Op(A,) unconditional, namely, for any l,, — oo, P(|| X,.|| > l,A,) = o(1).

C Extension to General Multiway Clustering

In this section, we extend the main results to general multiway cluster sampling framework.
Notations in the current section are independent of those in the remaining parts of the paper
— we introduce different notations in order to enhance the readability of the main results of
the paper while economizing complicated notations in the current extension section. Consider
the (-way clustered data for a fixed dimension ¢ € N. With C; € N denoting the number of
clusters in the i-th cluster dimension for each i € {1,...,¢}, each cell of the ¢-way clustered
sample is indexed by the (-dimensional multiway cluster indices 7 = (j1, ..., j¢) € x{_,[C;]. The
(-dimensional size (Cy,...,C;) € N¢ of the (-way clustered sample will be index by n € N as
(Cy,...,Co) = (C1(n),...,Ce(n)), where C;(n) is non-decreasing in n for each ¢ € {1,...,¢} and

¢
[] Ci(n) is increasing in n. With this said, we will suppress the index notation and write
=1

(Ch, ..., Cy) without n for simplicity. Also define the notations C = (C4,...,Cy), [ = ﬁ C;,
C = min<;<¢ C;, C = max;<;<, C;, and p; = C/C; for each i € {1, ..., ¢}. Suppose that u::—l> [
for some constant g; for each i € {1,...,¢}. The number of observations in the jth cell is
denoted by Nj, which is treated as an {0, 1, ..., N}-valued random variable for some N € N

not depending on n. When [-] takes the random variable N; as an argument, we extend the

definition of [-] to [N;] := {1,..., N;} if N; > 1 and := ) if N; = 0. The observed vector for unit

13



[Supplementary Material]

1 € [Nj] in the jth cell is denoted by W, ;. Let {P,},, be a sequence of sets of probability laws
of (Nj,(Wj)1<,<w)jz1, where 1 := (1,...,1) for a short-hand notation and we write j > j' for

Ji > ji forall i € {1,...,(}.

Example 1. The sampling setting in Section 3.2 fits in the current general framework with
¢ =2, C =N, Cy =M, and (N;,Wy;) = (1,W,,;,) for all j € [N] x [M] with probability

one. OJ

The econometric model has the true parameters (6y, 79) € O x T satisfying the score moment

restriction

N1

EP[Z¢(Wz,1;90,U0)] =0, (C-1>

1=1

where we focus on the linear Neyman orthogonal score of the form
V(w; 0,n) = Y*(w;n)0 + Y (w;n), for all w € supp(W), d € ©,n €T (C.2)

for supp(W):= UN supp(W,1), © C R% and a convex set T

For a fixed integer K > 1, we randomly split the data into K folds in each of the ¢ cluster
dimensions, resulting in K* folds in total. Specifically, randomly partition [C;] into K parts
{1}, ..., I} for each i € {1,...,£}. We use the (-dimensional indices k := (ki, ..., k) to index
the l~way fold Ij, := Iy, X --- X I, and its complementary product Iy := I} X ---x I}, for each
ke [K]‘. Let

M = 1((Wog)eemny)jere)

be a machine learning estimate of 1) using the subsample (W, ;).en;)jers for each k € [K]*. Let

Z ]Enk[Z@b ZJ,nk} where

ze[N

nk[Zf ”]:: |ZZf ;) for each k € [K]*

1E[N] jeI €[N,

14
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for any Borel measurable function f, the sum )  is treated as zero when N; = 0, and
ve[Ng]

| Ix| == LH 1< | With these setup and notations, the multiway DML estimator is defined by

0—=—J 1 — Z Enk[Z@ZJ 2]777k} (C.3)

ke[K]‘»’ 1€V

Let |Ii| = min{|Iy,|, ..., |1,|} for a short-hand notation. Also let I(j) denote the multiway fold
containing the jth multiway cluster, i.e., I(§) C x‘_,[C;] satisfies I}, = I(j) for some k € [K]*

and j € I(j). With these additional notations, we propose to estimate the asymptotic variance

of \/C(6 — 6o) by
[_’ ‘ a o~ 0 oSN TV
_J |:Kg Z ﬂz Z ¢ 2,50 eank)w(m,j’;eank)]< ) : (04)
c[K]¢ =1 g’ €l €[NV E[N;/]
Iz( Li(3")
Example 1, Continued. The two-way DML in Section 3 is a special case of the current general
methodological framework with {17, ..., I} = {I1, .., Ix}, {13, ... 5} = {1, oo, TR}y Nkr ) =

~

(Wi, 5) Grg) VN )% (Mg )5 T = T2 D ko) [K]2 Bt ko) [0 (Wi Tk ) )] Where oy g 1)
[f(w/jl]é)] - m Z(j17j2)61leJk2 f(Vle]é) ‘9 - _‘] K2 Z(kl k2)€[K]? E J(k1,k2) wb(VVjUé; ﬁ(khkz))]’
and 6% = J-'T(J~1) where

n_ 1 [ L | A ks | ~
I'= K2 {(’ ; Tk, ) ) Z Z ]1]279 (ks kz))¢(Wj1j§§97 (k‘l,k‘g))/
(k1,k2)€[K]? ! 2 JIEIk 32,55€ Tk,
Ly | A |Jk:
+ |]; 176 D > Wi 0, k) ) (W3 0, ks ) }
1 2

J1,41€lx, J2€Tky

]

We now state assumptions under which (C.4) is an asymptotically valid variance estimator
for /C(f — 6y) with the multiway DML estimator (C.3). We write a < b to mean a < cb for
some ¢ > 0 that does not depend on n. We also write a <p b to mean a = Op(b). For any
finite dimensional vector v, ||v|| denotes the ¢5 or Euclidean norm of v. For any matrix A, || A||
denotes the induced fs-norm of the matrix. The following assumption concerns the multiway

clustered sampling.
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Assumption 1 (Sampling). The following conditions hold for each n.

(i) The array (Nj, (Wy;)1<,<¥)j>1 is an infinite sequence of separately exchangeable random

vector. That is, for any ¢-tuple of permutations (7, ..., ;) of N, we have

d
(Nj, Woi)i<ocw)izt = (Nay G Ge)s (Wi (1) (Ge) ) 1<0< W ) 321

(i) (Nj, (W) 1<<w)s>1 s dissociated. That is, for any ¢ > 1, (N}, (W, 5)1<,<w)1<j<e is inde-

pendent of (NjH (M/z/,j’)lnggﬁ)j’zcﬂ
(iii) E(Ny) >0 and N; < N for each 1 < j < C, where N € N does not depend on n.
(iv) The econometrician observes (Nj, (W, j)1<.<n;)1<j<c-

Remark 1. The dependence among (W, ;) ., in each cell j is left unrestricted in this assump-

1>1
tion. Assumption 1 is similar to Assumption 1 of Davezies et al. (2018), except for N. We

introduce N to simplify some concentration arguments.

Let ¢g > 0, ¢y > 0, s > 0, ¢ > 4 be some finite constants with ¢g < ¢;. Let {d,}n>1
(estimation errors) and {A,},>1 (probability bounds) be sequences of positive constants that
converge to zero such that 6, > C~/2. Let K > 2 be a fixed integer. Let (No, (We0)o<,<w)
denote an independent copy of (Ni, (W, 1),<,<x) and therefore is independent from the data
and the random set 7, of nuisance realization. With these notations, we state the following

assumptions for the model.

Assumption 2 (Linear Neyman Orthogonal Score). For all C' > 3 and P € P, the following

conditions hold.
(i) The true parameter value 6 satisfies (C.1).

(ii) ® is linear in the sense that it satisfies (C.2).

16
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(iii) The map n — Ep[ > p(W.0;0, 77)} is twice continuously Gateaux differentiable on T
ZG[N()}

(iv) 1 satisfies the Neyman near orthogonality condition at (6y,19) as

Ap 1= sup H&;EP[ > 0(Wa0;60,m0)[n — 770]} H < 0,071,

n€Tn +€[No]

(v) The identification condition holds as the singular values of the matrix Jy := Ep| > ¢*(W,; 770)]
ZG[N()}
are between ¢y and ¢;.

Assumption 3 (Score Regularity and Nuisance Parameter Estimators). For all C' > 3 and

P € P,, the following conditions hold.

(i) The realization set 7, contains 7, and the nuisance parameter estimator 7y = 7((W. ;).e(n; )jere

belongs to the realization set 7,, for each k € [K]* with probability at least 1 — A,,.

(ii) The following moment conditions hold:

my, = sup (E [HZ?#WO,QO, ‘H )1 < ey,
]

N€Tn +€[No
= sup (E [H Zw“ || e < e
N€ETn

(iii) The following conditions on the rates r,, 7/, and A/, hold:

—SUP"EP[Z¢ Wi0in ] EP[Z@D 10,770]H<5m

N€Tn

1€ N()} 1€ N()}
1/2
o= swp (|[Be 32 wWaoitom] —En[ 3 vWioibom)] ) <6
n€Tn
1€[No] 1€[No]
A= sup ‘82EP[ > (Wi0: 60,10 + (1 — 10) H’ < 6./V/C.
re(0,1),neTn +€[No]
(iv) All eigenvalues of the matrix
Ny Ny
I = Zml“ = ZmEp ZZw W15 00, 10) (W 2,5 00, 70)'
1=1 /=1

17
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are bounded from below by ¢y, where 2; denotes the /-tuple vector with 2 in each entry
but for 1 in the ¢-th entry.

The following theorems generalize Theorems 1 and 2 to cover general /-way cluster sampling.

Their proofs are contained in Section D.

Theorem 1 (Main Result). Suppose that Assumptions 1, 2 and 3 are satisfied. If 6, > Cc12

for all C > 1, then

\/50’71(9 90 Zl Z Z w .J +OP(pn> (Ovjde)

Ca=1 j= 11€[Vg]

¢
holds uniformly for all P € P,, where [[, = [] C;, the influence function takes the form
i=1

V() = —o Vg (- 00,m0), the size of the remainder terms follows
pn = C 2 pr, 4ol 4 CV2N, 4+ CYVAN, S 6y,
and the asymptotic variance is given by
o= Jy'T(JyhY. (C.5)
Theorem 2 (Variance Estimator). Under the assumptions required by Theorem 1, we have

6’2 = 0'2 + Op(pn)

Furthermore, the statement of Theorem 1 holds true with 62 in place of o>.

D Proofs of the Extended Results

D.1 Proof of Theorem 1

Proof. Let &, denote the event 7, € T, for all (ky,...k;) € [K]* and define k := (ky, ..., k¢).

.....

Assumption 3 (i) implies P,(&,) > 1 — KKAH. Let e € {0,1}¢, and define A := {(4,7') : 1 <

18
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5,5 <C:Vi=1,...le,=1%j=j} and e, = {ec {0,1} : 3\_ e =m}.
Step 1. This is the main step showing linear representation and asymptotic normality for the
proposed estimator. Denote

Kt Z Enk[Z@D 2]777k} Ryq = J — Jo,

1€[N,

n2 - ZEnk[ZszJa90>nk:|__Z Zszz]aGmUO

kE[K]" 1€[Nj] Cii=1 je=l[N,

We will later show in Steps 2, 3, 4 and 5, respectively, that

[Rpall = Op, (C™% + 1), (D.1)

||Rn2|| = OP (O 1/2 ! +)\ —{-)\/) (DQ)

H\/— Z Z Z b (Wag 0o, 10) H = Op,(1 (D.3)
Chn=1 j= 12€[N;

lo™" ]| = Op,(1). (D.4)

Then, under Assumptions 2 and 3, ¢~/

+ 7y < p, = o(1) and all singular values of J, are
bounded away from zero. Therefore, with P,-probability at least 1 —o(1), all singular values of
J are bounded away from zero. Thus with the same P, probability, the multiway DML solution

is uniquely written as

:—J — ZEnk[Zw 1]777ki|

ke[K]é 1€[N}]
and
JCl —0y) = —/CT 1K€ > (k. [Z (W) + 6 )
ke[K]* €[NV]
:_\/_‘]_ K@ Z [Z Wzme[),nk]
ke[K]¢ €[Nyl

() (RS s ) 00

C =1 j= 1[Ny
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Using the fact that
-1
(Jo+ Bout) = Ji* = =(o+ Rut) " Runi"

we have

1(Jo + Rug) ™ = Jo I =l1(Jo + Rua) ™ R Jg L < (o + Boogt) ™ IRl 157l

=0p,(1)0p, (C™? +1,)0p, (1) = Op, (C™V* +1,).

Furthermore, 7/, + v/C(\, + \,) < pn, = o(1), it holds that

‘ Z ZZw W5 00, 10) + /C R

C =1 j,= 1.€[N,

BEE -5 3 st + Vs

Je=1€[N.

:Opn(l) + 0pn(1) = Opn(l),

where the first equality is due to (D.3) and (D.4). Combining above two bounds gives

[ (9o+ Raa) ™ = 57| = HV_Z 22¢m,,eo,no VR,

= Je=11€[N,

=0p, (CY2 +1,)0p, (1)

=0p, (C7Y2 4 1,). (D.6)

Therefore, from (D.4), (D.5) and (D.6), we have
VCo (0 b) = Z Zzw )+ O, (pa):
Cii=1  ji=1€[N,
The first term on the RHS above can be written as G,1. Applying Lemma 3, we obtain the
independent linear representation

Ho) = Z Epn[Zw )| Ui o] + - +Z Epn[Zw )

ji=1 1E[N] Je=1 1€[Nj]

NWUo.. 0]@]
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and it holds P,-a.s. that

Vn(Gn&) :Vn(HnJ]) + O(Q_l) = J()_lr(‘]()_l)/ + O(Q_l) and

Gutb =H,ip + Op(C™Y?),

where V,(-) = Ep,[(- — Ep,[])?]. Under Assumption 3 (iv). Recall that ¢ > 4, the third
moments of both summands of H,1 are bounded over n under Assumptions 2(v) and 3 (ii)

(iv). We have verified all the conditions for Lyapunov’s CLT. An application of Lyapunov’s

CLT and Cramer-Wold device gives

H,p ~ N(0,14,)

and an application of Theorem 2.7 of van der Vaart (1998) concludes the proof.

Step 2. Since K is fixed, it suffices to show for any k € [K]’,

nk[ > (W i } - EP[ > ¢G(Wz,0;ﬁo)} H = Op, (C2 +1,).

1E[NV] 1€[No]
Fix k € [K],
‘ Enk|: Z YW ﬁk)} - Epn[ Z wa(VVz,o;Uo)} H <Tix+ Lo,
ZG[N]'] ZG[NO]

where
[ Z ¢ uﬂ?k :| - EPn|: Z /l/}a(VV%J'; ﬁk)‘I/; X X Ilgz:| H’
1€[NV}] 1E[N]

Ly = HEPn[ > (W ﬁk)‘fz(él X .. X I}?J - EPn[ > wa(Wl,o;Uo)] H

ZG[N]‘} 7JG[]\IO]

Notice that Zy < r, with P,-probability 1 — o(1) follows directly from Assumptions 1 (ii)

and 3 (iii). Now denote ~;f > e (W, 5 k) — Epn|: > Un (W) | 1§

1€[NV] 1E[NV]

QZ; = (sz)me[de}, and |I| = min{|Iy, |, ..., [I,|}. Let us denote Iy, := (I, x ... x Iy,) and I}, :=

X ... X I,‘;E] and

(Ig, % . x If,). Let j > () € T, and define Be := {(§,§') : Vi = 1,.., L, e; = 1 & L,(§) = L,(5') -

21



[Supplementary Material]

5,5 € T}, where T := {I}, ..., IF} x .. x {1}, ..., IF}, and €, := {e € {0,1}' : 3\ es = m}.
To bound Z, x, note that conditional on I}, it holds that

boa[ 3 0] | 3 g

1€[N}] 1E[N;]

|I B [Z(ZW"L) 1

m=1 jel

L X o[ S i

6661 ] JEBe

,WZZ Z EPH[Zw?m¢;m

r=2 ece, (J J)EBe

|[k|2 Z Z [X:I%Im%’l’,m

8660 J JEBe

|QZ > Ep[(U5, ) I + R+ 0

6661 J ]EBe

| Z U (Wi ) — Epn[ Z s o ]|

Ep, [Z24/15] =, |

d

d

1,3]

d

<1g {

gl

|fk| [ } |]k|

1[]]

In the third equility, the last term corresponds to the covariance between cells sharing no
common cluster. By independence, the last term is zero. Let us denote the second term in the

third equality by R. Under Cauchy-Schwarz inequality and Assumption 1 (ii),

dg
RI< s 2 IBER [ |1 (D.7)
eGUf:2el m=1

For r > 1 and e € €,, we have

1Bo| = |1l x [T (14, (D.8)

1:¢,=0

Therefore, R = O(@J). Note that C' < |Ix] S C. Hence an application of Lemma 2 (i)

implies Z; , = Op, (C~'/?). This completes a proof of (D.1).
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Step 3. It again suffices to show that for any k € [K], one has

|

En,k[ Z w(w/z7j;90777k:| - |I | Z Z ’17/) VVzg,Ho,’I]o H _OP o2, AN +/\/)

€[N JEIk €[N,
Denote
Ve
Gua 32 009)] = Y= 3 5 (00 - [ otwiar,)
1€[N}] ]EI 1€[Nj]
Then
Isi+ 1.
[Enal 32 ottt o] - g 32 35 ettt < 27
’LG[N]‘] ]EIkZE -
where

ey ::HGn,k[ > (W eoﬁk)] - Gn,k|: > (W 907770)” ;

1€ [N]] S [N]]

Lo =VC B[ 3 0Wo 0, |1] B [ 32 6(Weoi0,m0)] |

1E[N}] 1€[No]

Denote {Ej,m = Z wm( 2,49 907 nk) Z 2ﬂm( 2,49 907 770) and % (@j,m)me[dg]- To bound I3,k7

1€[N] 1€[Nj]
notice that using a similar argument as for the bound of Z; , one has

Ep, [[|Zs.xl1*| I]

‘Gn,k[ Z V(W45 00, k) — ZG[ZN‘]WWM; ‘90,770)] 2

1€[Nj]

ey, |

d

5153 ;(%m 0} 1]
+%|2 > (J%&Em[i(i — Br i ) (Virm = By ) | 1]
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= Z Epn[ — Ep 0, 0y — Ep,0y) } YR 40
| k| ecer (5,5')€Be
<E}Pn |:‘ Z ’l/} 1, 907 Z w 11760 770 EPn[ Z ’l/} 1,7 907 Z w(WZﬁeOunO)]
1€[N] 1E[NV}] 1E[N] 1E[NV]
<t [| 32 w07 3 w0 )| 5]
1€[N;) 1€[Nj]
< sup EPn[ Z V»(W,0;60,1m) Z (W03 00, m0) H ‘[}
n€Tn 1€[No) 1€[No]
= sup EPnH Z V(W,0:60,1m) Z (W03 00, m0) H ] ;
n€Tn 1€[No) 1€[No]

where the first inequality follows from Cauchy-Schwarz’s inequality, the second-to-last equality

is due to Assumption 1, and the last equality is due to Assumption 3 (iii). Using the similar

argument for R, we have R’ = O(C™).

Hence, 75, = Op,(r},). To bound Zy , let

—Epn[ Z V(Wi b0, m0 + 7 (7 — 10)) ‘I} EPn[ Z w(m,o;eo,no)]a r€[0,1].

1E[NV] 1€[No]

An application of the mean value expansion coordinate-wise gives

Ji(1) = fr(0) + fr(0) + £ (7) /2,

where 7 € (0,1). Note that fi(0) = 0 under Assumption 2 (i), and

1O = [0nEr.[ D= w0300, m0) e = ] || < Ao
1E[V]

under Assumption 2 (iv). Moreover, under Assumption 3 (iii), on the event &,, we have

17 (M < sup (I ()] < A

re(0,1)
This completes a proof of (D.2).

Step 4. Note that

e (I

z Y st

Ci=1 ji= 12€[Nj]
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0

ﬁ%w;QiZZ%mmmH

Ji1=1  ji=11€[N}]

:—ZZ%EZZMWMMM%M

Ceeal (]J YEAe m=1:¢€] ]]ze[ /]
2 ZZ Z EPn[Z Z Z wm WzyeO?T/O)wm( g ﬁoﬂ?o)}
C r=2 e€er (jj')EAe m= lze[N}ze[N,]
Z Z Ep, [Z Z Z Vi (Wi 005 10) Y (W, ';Qoyﬁoﬂ
eeeo (4,3")EAe m=14€] ]]ZG[N /]
<EPn|:‘ Z ¢ I/sza(gOanO) ] S C%‘

(V5]

Step 5. Note that all singular values of J; are bounded from above by ¢; under Assumption 2
(v) and all eigenvalues of I" are bounded from below by ¢y under Assumption 3 (iv). Therefore,

we have [|o7!]| < ¢1/4/co and thus [|[o™!|| = Op,(1). This completes a proof of (D.4). O

D.2 Proof of Theorem 2

Proof. Step 2 of the proof of Theorem 1 proves ||J — Jo|| = 0,(C™"? +r,,) and Assumption 2

(v) implies ||.J; || < cy*'. Therefore, to prove the claim of the theorem, it suffices to show

1 | 1| ~
Hﬁ 2. i kPZ Yoo > (Wb, (W5 0,7)
ke[K]¢ 33" €y €[NV E[N;/]
L(H=L(")
Ny Nz
- ZM@EP[ZZ¢ W 1a00>770 @D(Wz’,?i;e()vno),} H = OP(IOR)
=1 /=1

Moreover, since K and dy are constants and u; — p; < 1, it suffices to show that for each

k€ [K]* and I, m € [dy], it holds that

Na.

|Ik’ ~ ~ Nl [3
LE 2 X X Wi (Wi, - Br [ > u(Wa; 00,m0) b (W 2,3 00,m0)] |

MU jiten, vy veln;)] =1 =1

Li(5)=I:(")
=Op (pn)-
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Denote the left-hand side of the equation as Zj,,,. First, note that |I|/|I},| = p;. We denote
i’ for I, such that |I;,| = |Ii|, and apply the triangle inequality to get

Lijim < Tiim,1 + Liim,2,

where

1 ~
Tima = Hi;ﬁi’ |Iki|2|[ki/ Z { Z Z @Zjl I/VU,H ﬁk)wm(Wz/ 9,77k)

gg' €l 1€[N] v €[N;/]
Li(5)=IL")

=SS Wi 0, o) (W i B0,0) .

1€[N;] V€[N, /]

1
Tkimz2 = 2 Z Z Z V(W 90,770)%(% 00, 70)
Hi#i’ |]kz| ’]kll 2 [ ]]Z 6[ }

Iz(]) (J )

N DNz

—EpD Y (Was 0o, 10) b (Wor 2,3 60, m0)] .

1=1 /=1
We first find a bound for Zj, 2. Since g > 4, it holds that

BelTh e =] Y D D s o)W

e
Hz#z | /ﬂ' ij le €[N ]ZE[
Li(5)=1:(3")
Nl N2i 9
_ EP[Z Zwl(m,lé ‘90,770>¢m(Wz’,2i; 0o, 770)} ’ }
1=1 /=1
1
< E [
T > > Z )IED DS
1£1 K 7 J/]//]///GI Is(]) //) ]Ze[ ] HE[NN]Z”IG[N///]

2
L()=LG"),L;G")=L({") s;ﬁz

Vi (Wojs 00, 10) Y (W i3 00, 10 )0t (W =3 00,10 ) 0 (W 223 6o, 770)}

1
B |
BT Y P IRDIND S
e ’ 33" 3" J’”EI vE[Ng] /€[N ] €[Nyr] " €[Ny ]
Li(@=LG")=LG")=L3G")

@/)l(VVz,j; to, Uo)@/fm(ngj'; o, Uo)%bl(m”,j”; 0o, no)@/)m(Ww,j”’; 6o, 770)]

+ 0<|Ik|_1) + 0

|fkyEP[H Z V(Wi 00m)|| ] S etfc = 0.
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Now, to bound Z;,, 1, we make use of the following identity coming from the proof of
Theorem 3.2 in CCDDHNR (2018): for any numbers a, b, da, db such that |a| V |b] < ¢ and
|da| V |6b] < r, it holds that |(a + da)(b+ 6b) — ab| < 2r(c+ r). Denote ¥, := Y (W, 00, m0)

and 1@7;1 = YW, 0, ni) for h € {l,m} and apply the above identity with a = Y 1,

ZE[N]‘]
b= Z % m7a+5a'_ Z ¢Jlab+5b_ Z ¢J ,m Z wjl Z wj/,m_
Y €[N;/] Nj] V' E[N;/] €[Nj] 1€[Nj] V' €[N;/]
> @/)j',m‘ and ¢ = Z @/)]l‘ > ¥jm|- Then
V' E[N;] 1€[N}] SN
1
Thina =| T {Z Z ity = D D batyrm }|
Hi;éi’ ’]kzl |Ik?2/ Y 147
1(3‘37 il(k'/) €[N;] V€[N, 1€[N;] o/ €[N;/]
(=1
1
e I PO SETINED P SR
i#i ¢ 1() e](k y 1€[Nj] 2/ €[N, 1€[N;] 2/ €[N;1]
i J
2
o 5 (55 Sl e T o)
i |1ks j'e [k €[N} 1€[Nj] Z/E[Nj/}
IZ(J) i(7")
(] 2 vl v| PR CRPIESIT U PRI IEL)
1€[Nj] 1€[Nj] ' €[N;/] /' €[N;/]
2 1/2
§<Hi;éi’ L, ||, ) Z it - Z %l‘ \/’ 2 U ,Z @Z)j,’m‘ )
i I(J) ( ) 1€[N; 1€[N; v €[N;/] v E[N;/]
2
(momem 2 X wlv] X vl
Hi#i/ ’[kz’ |Ik/ s ZE[NJ]
I; (J) Li(5")
2\ 1/2
#| 20t 3| v| 30 - Py i)
1€[Nj] 1€[Nj] V' €[N;/]
2 2\ 1/2
(o & S-S ulv] % - 5 )
Hi;&i’ |‘[k1| |Ik1/ ,
EI 1E[N; 1E[N; V' €[N;/] V' E[N;/]

I(J) L")

- {<Hi;«éi’ ’IQkJQUkA Z ’ Z wj’l‘zv) Z Vj'm

43l 1E[N] V' E[N;]
L()=L(")

2> 1/2
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)"

where the second to the last inequality follows from Cauchy-Schwarz’s inequality and Minkowski’s

+(Hi7éi/ |I2ki|2|]ki, Z ’Zwﬂ_ Zwﬂl’ \/‘ Z wﬂ m Z Vi’ m

5.3’ €I}, 1E[N; 1E[N; /' €[N;/] V' E[N;/]
Li(G)=1:(")

inequality. Notice that

Yo V] 3 v < mas 1} Y- ZHZWM,%,W I

JJ GIk 1E[N; VE[N;/] J1i=1  je=1 €[N,
L(H=L(")
2
DI WIRIP LD o
3:J Elk 1€[N}] V€[N;/]
L(5)=1:(")
1 2
< max{| w3071 = D 0 (Wegi b0, 10)
j1=1  je=1 €[N, 1€[Nj]

Thus, the above bound for 7, ; implies that

22, SR (\Ik\ > Z (W, b0, 1m0) H + R,

J€lr €[N,

where

R, = ] Z ” Z ¥ VVZJ,Q k) Z V(W QO’UO)HQ'

JE€Le €[Ny 1E[N}]

Notice that

Tl ZH Z V(W3 00, m0) H = Op(1),

Jj€lr €[N,

which is implied by Markov’s inequality and the calculations

No
Ep [[L > H > (W QO,HO)HQ} :EP[H Z%U(Wz,o;@o,no)HQ] <
i jely 1[N =1

under Assumptions 1 and 3 (ii). Finally, to bound R,,, using Assumption 2 (ii),

T |ZHZ¢’ W) (0 90)“

jely  €[N.
‘Ik‘ZHZ’szpQOank Zfﬂmg,eo,%‘
J€lr €[N, 1€[N]
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The first term on RHS is bounded by
2 -1y _ —1
QMEjuxyﬁ Wi ) x 18— 0l = 0p(1) x Op(C™) = Op(C)
g€l ZG
due to Assumption 3 (ii), Markov’s inequality, and Theorem 1. Furthermore, given that
(Wj)jere satisfies Ty € Ty,
sz 13;9077716 Z?ﬁ 217907770 H }[]
1€[N, ]

»(Wag00,m) Z (W5 00, 10) H ‘]k} <(r

1€[N] €[N

<o |
N€Tn

due to Assumptions 1 and 3 (iii). Also, the event 7y € T, happens with probability 1 — o(1),

we have R, = Op(C~' + (r/)?). Thus we conclude that
Tiima = Op(C71% +1).

This completes the proof. O

E Additional Lemma

In this section, we establish a multiway generalization of Lemma 1, which is a minor mod-
ification of Lemma D.2 in Davezies et al. (2018). We include its proof for completeness
purpose. For any r = 1,...,¢,we let Z.(C) = {c =JjOe:ec &1 <5< C} and

= {e € {0;1}*: zl Le; =m} , with ® the Hadamard product on R’

For each n € N, let (N}, (W}%),<,«x)j>1 be a set of random variables. For any f :
supp(W") — R? for a fixed d € N, let us define the multiway empirical process

G f { Zzzf "= Eel Y- FVT)
i=1 ji=1.eN]' 1€[ND]

Lemma 3 (Independentization via Hijek Projections). For eachn € N, suppose that (NJ*, (W,s)1<,<¥)j>1

satisfies Assumption 1. Let F,, |F.| = d, be a family of functions f : supp(W"™) — R that
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satisfies E[( > f<VV1"1>)2} < K < > for some K independent of n. In addition, assume
1[N
that C' — oo c[mlc} for every e € ey, l_% — ; > 0, where i is the nonzero coordinate of e.
Then there ezists a family of mutually independent standard uniform r.v.’s (U.)eso such that
the H, f, the Hdjek projection of G, f on the set of statistics of the form ZCGIT(C) 9c(Ue) (with
9c(U.) square integrable, satisfies
Ny
> H el Ll DORAUHY o —E| S s ). @Y
ceT,(0) Lic 1€[N?]

In addition, it holds uniformly over F, that

V(Gnf) = V(Huf) +0(C™") = uCou( Zf W), Zf lase)) +O(CT).

eceq

Proof. Throughout the proof, we drop the superscript n for simplicity. Under Assumption 1(i)
and (ii), for each n, one can apply Lemma 7.35 of Kallenberg (2006) and obtain a measurable

function 7,, such that

(Njs Woihzoew)izt = (0(Ujoe)1<e=1) 4 (E.2)

where (Ue)e>o denote a family of mutually independent uniform random variables on [0, 1].
The rest of our proof closely follows that of Lemma D.2 in Davezies et al. (2018) with
r =1r = 1. The Hajek projection H, f is characterized by
B[(Gnf = Haf) x> ge(Ue)] =0 for any (ge)ees, (o) € (£(1051]) ™.
ceZ1(C)
As a result,we have

B (G f|Ue] = E[H,f|Ue] for any ¢ € Z,(C).
Because the range H,, is closed subspace of square integrable random variables,

> E(Huf|Uo).

cely (C)
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Next
H.f = Y E(Guf|U).
cely (C)
Note that for any ¢ € Z;(C), c A1 is the unique element €; such that ¢ = j© e for some j (note

that j is not unique). Moreover, for any ¢ € Z;(C) independence between the U’ s ensures that

> f(W,;) 1L U if §© e # c. This implies

€[N

\/_
EGuflUe) =11 D, E| D FWy)—E| > f(Wu)||Ve
Ca<i<e ey 1€[N1]
:—Z]l{g@e—c}E Zf ~E| > f(Wa)]| |Ue
1<j<C 1€[N1]
The representation of (Nj, (W, ;),<,<7)j>1 in terms of the U’s implies that
Nj Neva
D FW) =B D (N, W) | [Ue| =E D f(Waen) —E | Y fF(Wia)| |Ue
=1 1€[N1] =1 1€[N1]
for any 7 such that 7 e = c¢. Moreover,
\/U Neva
E(anlUC):H__ Z {joe=c}E Zf vevl) Z fw, Ue
1<j<C =1 €[M1]
VLo G [ 22
—0 Z f zc\/l Z f Uc
lE N]_ i
Nevi
= H Z f 'chl Z f
i:c; 750 1€[N1]

It follows that

Neva

\/_ Z f zcvl

H,f =
ceZ;(C) HZ Ci 7&0

E|> fw,

1E€[N1]

This shows the first claim of the lemma.
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Since F,, is a finite family, we are left to prove that for each f € F,,

V(G0f) = V(H,f) +O(C Zm&w Zf 0. FWa) 4 0C),

where 2; denotes the /—tuple vector with 2 in each entry but for 1 in the :—th entry. Note that

e€ey 1 el_l 1€[N1]

(E.3)

To conclude, it suffices to show that for each e € e,

N27e
Y FW)|Ue| | =Cov [ > f(Wia), > fF(Wize)
V€[V 1€[N1] =1

Z f(WZ,l) Ue =

ZG[Nl]

Zf( i) |U

[V;]

As (Nj, (Wi j)1cpen)ion = (T ((Uer)eeueﬂsJ) with i.i.d. U’s, we have E
for any 7 such that j©e =1 ® e = e. Because 2 —e ® e = e, we have
> f (W) |U. > [ (W) |U.

j=>1
N2 e
=Cov |E [Zf( Wia—e) e} . For any
1€[N1] 1€[N1]

e € g1, we have 2 — e # 1. The independence of the U’s ensures

(Ul(De’)e’eUf:ler\e L (U(zfe)Qe/)e’eUﬁzls,-\e |Ue

N]_ N2 —e
and thus ) f (W, )J_LZf( W, 2-e)|Ue. Hence, for e €
1=1
N2 e
E (Cov Zﬂ Zfz 12—e) = 0.
1E€[N1]
By the law of total covariance, we obtain
N2—e
VIE | fWa)|Ue| | =Cov | D f(Wir), > f(Wiae)
ZE[N]_] e N]_] 1=1
This establishes the second claim of the lemma. O]
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F Additional Details on Discussions in Section 3.1.1

In this section, we provide additional details on (3.1) in the discussion in Section 3.1.1. Letting
E, =n"'Y"",, we have the following concrete expression for the influence function represen-

tation (3.1) in the main text.

V(0 — 6,)
= Bl(D — g20(X))(Z = mo(X))] V(B — B)(Y — (D — g20(X))bo — g10(X))(Z — mo(X))]
+ BI(D — g0())Z — mo(X)]VAB [(@(X) — mo(X)) G (X) — g10(X))]
— E[(D — g:(X))(Z — m0<X>>rVﬁE;[<m<X> — mp(X))(G2(X) — ga20(X))]
— E[(D — g(X))(Z — m(X))]%EnE(m({) — mp(X))(Y — (D — ga0(X))f — g10(X)]
oy
= EI(D — g0 (X)(Z = mo(X))] VB (G (X) — g10(X))(Z — mo(X))]
&5
+ EID — g (X)(Z = mo(X))] VB (@(X) — 920(X))(Z — mol(X))o] +0,(1).
Cy

Term A* above is the part that is asymptotically normal as mentioned in the main text. Terms
B} and —B; above consist B* in the main text. Terms —C}, —C5 and Cj consist C* in the

mailn text.
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