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1 Kriging models and sequential designs

In this Section, we briefly introduce the kriging model and some classical sequential de-

sign criteria. Then, we will present our sequential strategies to enhance kriging models

considering the region with large Leave-One-Out Cross-Validation (LOO-CV) errors.

1.1 The Kriging model

The kriging model is a widely used method to surrogate the output of a computer code

from few simulations (Sacks et al. (1989)). Let us denote by y(x) the output of the code at

point x ∈ Q. Here, y(x) is a scalar and Q ⊂ R
d is a compact. Furthermore, we denote by

D = {x1, . . . , xn} the experimental design set and yn = y(D) the value of y(x) at points

in D.

In the kriging framework, we assume that the prior knowledge about the code can be

modeled by a Gaussian process Y0(x) indexed by x ∈ Q and with values in R. Usually,

we consider a Gaussian process with mean of the form m0(x) = f ′(x)β, with f ′(x) =

(f1(x), . . . , fp(x)) and with covariance function k0(x, x̃) = σ2r (x, x̃) where r (x, x̃) is a

symmetric positive definite kernel such that r(x, x) = 1 for all x ∈ Q. Then, the kriging

equations are given by the Gaussian process Y0(x) conditioned by its known values yn at
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points in D

Yn(x) ∼ [Y0(x)|Y0(D) = yn] = GP (mn(x), kn(x, x̃)) , (1)

where

mn(x) = f ′(x)β̂ + r′(x)R−1(yn − Fβ̂), (2)

and

kn(x, x̃) = σ2



r(x, x̃)−
(

f ′(x) r′(x)
)





0 F′

F R





−1



f(x̃)

r(x̃)







 , (3)

where ′ stands for the transpose, GP denotes a Gaussian process, F are the values of

f ′(x) at points in D, r(x) is the correlation vector between D and x with respect to the

correlation function r(x, x̃), R is the correlation matrix of D with respect to r(x, x̃) and

β̂ = (F′R−1F)−1F′R−1yn is the usual least-squares estimate of β. We note that x, x̃ ∈ Q

can be either the same point or different points since Yn(x) is a Gaussian process. For

x = x̃, kn(x, x) is the variance of Yn(x) and it represents the uncertainty on the predictive

mean mn(x). Furthermore, the restricted Maximum Likelihood Estimate (MLE) of σ2 is

given by σ̂2 = (yn − Fβ̂)′R−1(yn − Fβ̂)/(n− p) (see Santner et al. (2003)).

1.1.1 One point at-a-time Sequential design

Now, let us suppose that we want to add a new point xn+1 in D in order to enhance the

accuracy of the kriging model. From the kriging variance kn(x, x) - representing the model

MSE - sequential design methods have been derived Sacks et al. (1989), Bates et al. (1996)

and Picheny et al. (2010). A first one consists of adding xn+1 where the kriging variance is

the largest (see Sacks et al. (1989))

xn+1 = argmax
x

kn(x, x). (4)

However, as presented in Kleijnen and van Beers (2004), its performance is poor. Then, it

has been improved with a criterion which consists of adding the new point which gives the

most important Integrated Mean Squared Error (IMSE) reduction (see Bates et al. (1996)

and Picheny et al. (2010))

xn+1 = argmax
x

∫

u∈Q

kn(u, u)− kn+1(u, u; x) du, (5)
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where

kn+1(u, ũ; x) = σ2











r(u, ũ)−











f(u)

r(u)

r(u, x)











′









0 F′ f(x)

F R r(x)

f ′(x) r′(x) 1











−1









f(ũ)

r(ũ)

r(ũ, x)





















.

Here, the covariance kernel kn+1(u, ũ; x) corresponds to the one of the Gaussian process

Yn(u) (1) conditioned on a new observation at x. Furthermore, (3) shows that the kriging

variance does not depend on the observations if we consider that the parameter σ2 is known.

Therefore, in that case, kn+1(u, u; x) can be computed without evaluating y(x) at the new

point x. We denote by MinIMSE this criterion. Finally, we also consider the criterion

presented by Kleijnen and van Beers (2004) using a Jackknife estimator for the predictor’s

variance. Its principle is the following one. Let us consider mn,−i(x) the kriging mean built

without the ith observation, the jackknife variance is given by

s2jack(x) =
1

n(n− 1)

n
∑

i=1

(ỹi − ¯̃y)2, (6)

where ỹi = nmn(x) − (n − 1)mn,−i(x) and ¯̃y =
∑n

i=1 ỹi/n. Then, we consider candidate

points coming from a maximin LHS Design (Fang et al. (2006)) and we add those which

maximize the jackknife variance. We denote by KleiCrit this criterion.

1.1.2 q points at-a-time Sequential design

There is a natural way to extend these algorithms when the simulations can be performed

simultaneously. Indeed, the covariance kernel kn+1(x, x̃; xn+1) of the Gaussian process Yn(x)

conditioned by the new observation at point xn+1 can be computed without knowing y(xn+1)

when we consider the model parameter σ2 as known. Then, from kn+1(x, x̃; xn+1), we can

find a new point xn+2 where to perform a new simulation (i.e. a new evaluation of y()̇)

using the same criterion as in (5) and the kernel kn+2(x, x̃; xn+1, xn+2). Thus, considering

the parameter σ2 as known (they are fixed to their estimated values), we can determine

with this procedure q good locations where to perform simulations. We call this method the

“liar” sequential kriging. We highlight that one can also decide to perform the optimization

by adding the q points simultaneously. However, it is not relevant for the criterion (4) since

they will be concentrated around the maximum of kn(x, x). Furthermore, it is extremely
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complex and time-consuming for the criterion (5) since for each set of q points we have to

compute kn+1(u, u; x) and integrate it over Q with a d-dimensional integration.

1.2 LOO-CV based strategies for kriging sequential design

We present in this subsection original sequential-kriging strategies. The main difference

between these new strategies and the previous ones is that they take into account the

model errors through the Leave-One-Out Cross-Validation (LOO-CV) equations. First, let

us introduce some notations.

Notations: Ai,i is the ith element of the main diagonal of A, Ai is the ith row of the

matrix A, A−i is the matrix A without its ith row, A−i,i is the i
th column of A without its

ith element, Ai,−i = A′
−i,i and A−i,−i is the matrix A without the ith row and column.

Let us denote by Yn,−i(x) the Gaussian process Y0(x) conditioned by the values yn,−i =

y(D) \ y(xi). Then, the predictive mean of Yn,−i(x) at point xi is given by

mn,−i(xi) = y(xi)−
[

R−1(yn − Fβ̂−i)
]

i
/
[

R−1
]

i,i
, (7)

(see Dubrule (1983) and Fasshauer and Zhang (2007)) where β̂−i = (F′
−iKiF−i)

−1F′
−iKiyn,−i

and Ki = [R−1]
−i,−i−[R−1]

−i,i [R
−1]i,−i / [R

−1]i,i. This result is presented in Fasshauer and

Zhang (2007)) to estimate the shape parameter of the correlation kernel. These equations

allow for avoiding the computation of [R−i,−i]
−1 corresponding to the correlation matrix

of yn,−i. Since the inverse R−1 has been already computed during the model building, the

computation only requires matrix products.

Furthermore, the predictive variance of Yn,−i(x) at point xi is given by

kn,−i(xi) = σ2/
[

R−1
]

i,i
+ ς−i(xi), (8)

where ς−i(xi) =
(

[R−1F]i / [R
−1]i,i

)′

(F′
−iKiF−i)

−1
(

[R−1F]i / [R
−1]i,i

)

.

The variance parameter σ2 in (8) is here considered as known. In fact, we can easily

re-estimate it by noticing the equality Ki = (R−i,−i)
−1. Therefore, we have the following

MLE of σ2 when we do not consider the ith observation y(xi)

σ̂2
−i =

(

yn,−i − F−iβ̂−i

)′

Ki

(

yn,−i − F−iβ̂−i

)

/(n− p− 1). (9)
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The previous results provide a powerful tool to compute the LOO-CV predictive means

and variances. Indeed, the complexity for computing (7) and (8) for all i = 1, . . . , n isO(n3)

whereas the one of a direct LOO-CV procedure with (2) and (3) is O(n4). Consequently,

the LOO-CV equations are fast to compute and can be easily recomputed at each step of

the sequential strategy. We note that as the value of kn,−i(xi) is strongly dependent on

σ̂2
−i, in our forthcoming developments it is important to re-estimate it.

Now, let us denote by e2LOO−CV =
[

((y(xi)−mn,−i(xi))
2]

i=1,...,n
the vector of the LOO-

CV squared errors and s2LOO−CV = [kn,−i(xi)]i=1,...,n the vector of the LOO-CV variances.

Furthermore, let us consider the Voronoi cells (Vi)i=1,...,n associated with the points (xi)i=1,...,n

Vi = {x ∈ Q, ||x− xi|| ≤ ||x− xj ||, ∀j 6= i}, i, j = 1, . . . , n. (10)

In the remainder of this section, we present two strategies to sequentially add simulations

which use e2LOO−CV, s
2
LOO−CV and Vi. Their are based on the criterion presented in (11).

The intuitive idea of the suggested criterion is to minimize the predictive variance in the

locations where the LOO-CV errors are important. The implicit assumption is to consider

that the LOO predictive error and variance at point xi is a proxy for the actual error for

all points in the Voronoi cells of xi.

1.2.1 LOO-CV-based one point at-a-time Sequential design

Let us denote by xn+1 the new point that we want to add to D. We consider the point

solving the following problem

xn+1 = argmax
x

kn(x, x)

(

1 +

n
∑

i=1

[e2LOO−CV]i
[s2LOO−CV]i

1x∈Vi

)

, (11)

where 1 stands for the indicator function.

This criterion considers the predictor’s Mean Squared Error (MSE) kn(x, x) adjusted

with the LOO-CV errors and variances. For equivalent kn(x, x), the criterion favors the

points close to an experimental design point with large LOO-CV errors. Furthermore,

if two points are in the same Voronoi cell, the one with the largest predictor’s MSE is

considered. Therefore, a sequential strategy with this criterion focuses on the regions of Q

where the LOO-CV errors are the largest. We note that the normalization with s2LOO−CV is
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important since it is not necessary to enlarge the predictor’s MSE in the regions where it

is well or over estimated. As an example, [e2LOO−CV]i ≪ [s2LOO−CV]i means that the kriging

variance is over-estimated around the point xi, i.e. kn(x, x) is too large for x ∈ Vi. In that

case, the normalization with [s2LOO−CV]i implies that
∑n

i=1

[e2
LOO−CV

]i

[s2
LOO−CV

]i
1x∈Vi

≈ 0 for x ∈ Vi

and thus the term in (11) is approximately equal to kn(x, x).

We illustrate in Figure 1 the adjusted variance presented in (11) and the classical kriging

variance (3) in a 1-dimensional example. The considered function is f(x) = (sin(7x) +

cos(14x))x2 exp(−4x), x ∈ [0, 4]. We use a kriging model with a 5/2-Matérn kernel with

σ2 = 1.10−3 and θ = 1 (see Rasmussen and Williams (2006) p.84) and the experimental

design set is a regular grid of 8 points between 0 and 4. We see in Figure 1 that the kriging

model is not accurate in the domain [0, 2] where the function variations are important and

the adjusted kriging variance (11) focuses on that region.
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Figure 1: Illustration of the adjusted kriging variance in a 1-dimensional example. We

see that the kriging variance is enlarged in the domain where the function variations are

important.

As illustrated in Figure 1, the adjusted kriging variance allows for taking into account

the LOO-CV error in a sequential procedure focusing on the large error domain. Never-

theless, it does not entirely fix the issue of the relevance of kn(x, x) to represent the model

error. Indeed, our criterion enlarges the kriging variance around points where kn(x, x) is

under-estimated but it does not reduce it at locations where it is over-estimated. How-

ever, it gives more information about the relevance of mn(x) since it highlights the regions

where it is not accurate. Furthermore, it also helps in the interpretation of kn(x, x) since

6



it emphasizes whether it is under-estimated or not.

An efficient method to solve the problem in (11) is to use an evolutionary algorithm

coupled with a descent algorithm. To explore different Voronoi cells (Vi)i=1,...,n, we can

use a genetic algorithm or simply a Monte-Carlo sample for low-dimensional problems (i.e.

d < 10). Then, for a given Voronoi cell, the criterion to optimize is continuous. Therefore,

we can solve the problem with classical optimization methods (direct or simplex methods).

Furthermore, it is common to have covariance kernel such that the criterion is once or twice

continuously differentiable. In this case, we can use a gradient method, a conjugate method

or a Newton method (for the twice differentiable case). We note that it is not necessary

to compute the Voronoi tessellation since the criterion only requires to determine in which

Voronoi cell a given point x ∈ Q ⊂ R
d lies. This is computationally simple and cheap even

for high dimension d.

1.2.2 LOO-CV-based q points at-a-time Sequential design

We extend here the previous criterion for a q points at-a-time sequential design. First, we

emphasize that the liar sequential kriging is not relevant for this new criterion. Indeed,

conditioning on model parameters, with a liar method we can compute the kriging variances

(kn+i(x, x))i=1,...,q but not the LOO-CV (7) and (8). Therefore, we use another strategy to

propose q new locations where to perform the simulations. This approach is proposed in

Dubourg et al. (2011) in a different framework. The idea of the suggested method is to

select the q best points with respect to the criterion (11) from N candidate points. These

N candidate points are chosen with the following algorithm.

1. Generate NMCMC samples with respect to the probability density function propor-

tional to kn(x, x) with a suitable Markov Chain Monte Carlo (MCMC) technique

Robert and Casella (2004).

2. Extract from these samples N representative points with a N -means clustering tech-

nique MacQueen (1967).

As presented in Dubourg et al. (2011) the use of this algorithm to select N can-

didate points in a kriging framework is efficient. Indeed, it allows us to concentrate
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the points at the modes of the kriging variance. In the proposed strategy, we always

take N ≥ q and we choose from the N cluster centers (Ci)i=1...,N the q points where

kn,adj(x, x) = kn(x, x)
(

1 +
∑n

i=1

[e2
LOO−CV

]i

[s2
LOO−CV

]i
1x∈Vi

)

is the largest. For the MCMC procedure,

we use a Metropolis-Hastings (M-H) algorithm with a Gaussian proposal distribution. It

is centered on the last sample point and has a standard deviation such that the acceptance

rate is around 30% (see Robert and Casella (2004)). Furthermore, we set NMCMC such that

NMCMC ≫ N . For the N -means procedure, we choose the value of N with respect to the

criterion

max
N≥q

min
x∈(Ci)i

kn(x, x), (12)

where (Ci)i=1...,N are the cluster centers. This criterion prevents from having a cluster center

Ci in a region where the kriging variance is close to zero. Furthermore, if the number of

clusters is too high, the cluster centers get away from the modes and consequently the value

of minx∈(Ci)i=1...,N
kn(x, x) decreases. Therefore, this criterion also prevents the number of

clusters from being too large. In practice, we choose N on a finite sequence from q to 2n

where n is the number of observations and we run the N -means procedure several times for

each N . Then, we select the cluster centers minimizing (12). We note that the MCMC plus

N -means procedure requires careful implementation and appropriate diagnostics. For the

N -means procedure, we use the algorithm suggested by Hartigan and Wong (1979) with

complexity O(NNMCMC). For the M-H procedure we use the package mcmc.

To avoid computational issues, one could instead extract the q-points from candidates

generated with space-filling design techniques Fang et al. (2006). However, with this tech-

nique, the candidate points will not anymore be concentrated in the regions of high mean

square error and the method will be less efficient.

2 Numerical study

We compare in this Section the MinIMSE, KleiCrit and AdjMMSE criteria on toy examples

and on an application concerning a spherical tank under pressure. We present both the

cases of 1 point at-a-time and q points at-a-time sequential kriging. The purpose of this

section is to emphasize the efficiency of the LOO-CV-based criteria for kriging models
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compared to the ones presented by Bates et al. (1996), Kleijnen and van Beers (2004) and

Picheny et al. (2010).

2.1 Comparison between sequential kriging criteria

The 1 point at-a-time sequential kriging criteria (MinIMSE, KleiCrit, AdjMMSE) are com-

pared on three tabulated functions:

• Ackley’s function on [−2, 2]2:

f(x1, x2) = −20exp

(

−0.2

√

x2
1 + x2

2

2

)

− exp

(

cos(2πx1) + cos(2πx2)

2

)

+ 20 + exp(1).

• Shubert’s function on [−2, 2]2:

f(x1, x2) =

(

5
∑

k=1

kcos ((k + 1)x1 + k)

)(

5
∑

k=1

kcos ((k + 1)x2 + k)

)

.

• Michalewicz’s function on [0, π]2 (Michalewicz (1992)):

f(x1, x2) = −sin (x1)

(

sin

(

x2
1

π

))20

− sin (x2)

(

sin

(

x2
2

π

))20

.

The comparison is performed on a test set Dtest composed of ntest = 1, 000 points uniformly

spread on the input parameter space and from 50 different initial experimental design sets.

We compare the different methods with respect to the Normalized RMSE

NormRMSE =

√

∑ntest

i=1 (yreal(xi
test)− ypred(x))

2
/ntest

maxx∈Dtest
yreal(x)−minx∈Dtest

yreal(x)
,

where yreal(x) is the real value of the output and ypred(x) the predicted one. The 50 initial

experimental design sets are LHS designs of 10 points optimized with respect to the S-

optimality (Stocki (2005)). From these designs, 50 sequential krigings are performed and

the convergence of the mean and the quantiles of the Normalized RMSE are computed

for the three criteria. The mean and confidence intervals of the Normalized RMSE with

respect to these 50 initial design sets are presented in Figure 2. We use for each kriging

a tensorised 5/2-Matérn covariance function (see Rasmussen and Williams (2006)) and a

constant trend. Furthermore, after each point addition, the parameters β, σ2 and θ (see (1),

(2) and (3)) of the kriging models are re-estimated with a maximum likelihood method.
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These estimations are performed thanks to the R library ’DiceKriging’ Roustant et al.

(2012).

Figure 2 illustrates the efficiency of the criterion AdjMMSE. Indeed, for the Shubert’s

and the Michalewicz’s functions, we see that the accuracy of the 1 point at-a-time kriging

with this criterion is significantly better than the other two criteria (both in terms of mean

and quantiles of the Normalized RMSE). In fact, these functions have the particularity to

have important variations in some areas of the input parameter space. Thus, the errors

are more important in these locations and the suggested criterion focuses the new points

on it. Furthermore, the contrast of variations are particulary important for Schubert’s

function. For this reason, the IMSE criterion performed very poorly in that case. Indeed,

this criterion is efficient for functions with homogeneous variations (i.e. when the predictor’s

MSE well predicts the model errors). In contrast, the jackknife predictor’s MSE provided

by the criterion KleiCrit manages to catch this heterogeneity and it performs better than

the IMSE criterion. Moreover, we see that the performance of the AdjMMSE and IMSE

criteria are equivalent for the Ackley’s function. We note that the variations of the Ackley’s

function have the same order of magnitude over the input parameter space.

These examples illustrate the fact that our criterion is more efficient than the other

criteria when the functions have important contrast variations and it remains efficient even

in the cases where the functions have homogeneous variations (its efficiency is equivalent

to the one of the IMSE criterion).

Another point of interest is to compare the gain of CPU-time by using the short cuts of

Leave-One-Out Cross Validation presented in (7) and (8). For the three academic examples,

the CPU-time of the sequential design using the criterion AdjMMSE with (7) and (8) is

around 14s whereas the one without them is around 19s. Therefore, the gain is substancial

(it is approximately 25%).

2.2 Spherical tank under internal pressure example

In this section, we deal with the example about a spherical tank under internal pressure.

Figure 3 compares the different criteria of the 1 point at-a-time and the q = 5 points at-a-

time sequential kriging. We see that the criteria MinIMSE and AdjMMSE give equivalent
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values for the MSE for the 1 point at-a-time procedure and they perform better than the

KleiCrit criterion. There are equivalent since the output y2(x) has homogeneous variations.

Nevertheless, the criterion AdjMMSE is the most efficient for the q = 5 points at-a-time

procedure. We note that the q = 5 points for the MinIMSE criterion are provided by a ’liar’

method whereas those for the AdjMMSE criterion are provided by the MCMC+N -means

procedure suggested in the article. This comparison emphasize that the MCMC+N -means

procedure can be worthwhile. Indeed, the MinIMSE criterion and the AdjMMSE one

having equivalent performance for 1-step at-a-time design, we expect that they are still

equivalent for a q = 5 points at-a-time procedure. The difference is hence explained by the

point selection procedure.

Finally, we note that the 5 at-a-time approach with the AdjMMSE criterion appears

to be as good as the 1 point at-a-time procedure. This highlights the relevance of the

suggested point selection approach.

3 Proofs of equations (17), (18) and (19)

Let us consider xl
i the ith point of Dl and ij the index of the element of Dj corresponding

to the point xl
i. Sorting the experimental design sets such that xl

i corresponds to the last

point of Dl and thanks to the block-wise inversion formula, we have the equality

R−1
l =





A b

b′ Q−1



 ,

with A = [Rl]
−1
−il,−il

+ [Rl]
−1
−il,−il

[Rl]−il,il
[Rl]il,−il

[Rl]
−1
−il,−il

/Q, b′ = − [Rl]il,−il
[Rl]

−1
−il,−il

/Q

and

Q = [Rl]il,il − [Rl]il,−il
[Rl]

−1
−il,−il

[Rl]−il,il
.

We note that

σ2Q =
σ2

[

R−1
l

]

il,il

, (13)

represents the variance at point xl
i with respect to the covariance kernel of a Gaussian

process of kernel σ2rl(x, x̃) conditioned by the points Dl \ xl
i.
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Furthermore, we have the equality

(

[

R−1
l

]

il,il

)−1



R−1
l



yl −Hl





ρl−1

βl













il

= yl(xl
i)− ρl−1y

l−1(xl
i)− f ′l (x

l
i)βl

− [Rl]il,−il
[Rl]

−1
−il,−il

×



yl(Dl
−il

)− [Hl][−il]





ρl−1

βl









. (14)

Now, let us consider σ̂2
l,−il

and





ρ̂l−1,il

β̂l,il



. We have the equality

[Rl]
−1
[−il,−il]

= A− bQb′

= [R−1
l ]−il,−il − [R−1

l ]−il,il[R
−1
l ]il,−il/[R

−1
l ]il,il.

Therefore, we can deduce the inverse of the correlation matrix of the observations at points

in Dl
−il

from the one of the observations at points in Dl. Let us denote by Kl = [Rl]
−1
[−il,−il]

,

σ̂2
l,−il

and





ρ̂l−1,il

β̂l,il



 are given by the equations





ρ̂l−1,il

β̂l,il



 ([H′
l]−ilKl[Hl]−il) = [H′

l]−ilKly
l(Dl

−il
), (15)

and

σ̂2
l,−il

=



yl(Dl
−il

)− [Hl]−il





ρ̂l−1,il

β̂l,il









′

Kl

(

yl(Dl
−il

)− [Hl]−ilλl,−il

)

nl − pl − 2
. (16)

The equation (17) is directly deduced from (14) and (15) and (19) comes from (16). Finally,

we have the equality

(

[Hs]il − [Rl][il,−il]
Ks[Hs]−il

)

Σs

(

Hs]il − [Rl][il,−il]
Ks[Hs]−il

)′

= ςl, (17)

with Σs = ([H′
s]−ilKs[Hs]−il)

−1, ςl = u2
lΣs and ul =

[

R−1
l Hl

]

il
/[R−1

l ]il,il. The equations

(13) and (17) allow to obtain (18).
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Figure 2: Comparison between 1 point at-a-time sequential kriging criteria on toy exam-

ples. The solid lines represent the quantiles of probabilities 10% and 90% of the Normalized

RMSE, the dotted lines represent them for the MinIMSE criterion and the dotted lines rep-

resents them for the KleiCrit criterion. The means and confidence intervals are computed

from 50 different sequential design procedures.
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Figure 3: Comparison between 1 point at-a-time sequential kriging criteria (on left) and

q = 5 points at-a-time sequential kriging criteria (on right) on the spherical tank example.

The solid lines represent the quantiles of probabilities 10% and 90% of the Normalized

RMSE, the dashed lines represent them for the MinIMSE criterion and the dotted lines

represent them for the KleiCrit criterion.
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