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Supplemental material for "Brownian Integrated Covariance Functions 
for Gaussian Process Modeling:  Sigmoidal Versus Localized Basis 

Functions" by Ning Zhang and Daniel W. Apley 

 

Additional Basis Functions and GRF Realizations 

 Figures S1—S4 of this supplement show additional basis functions and GRF realizations, 

analogous to those shown in Figures 4 and 5 of the paper. Results for the PEXP and FBF models 

are in Figures S1 and S2, respectively, and results for the BIPEXP model are in Figures S3 and 

S4. Figure S3 shows the effects of 𝜈 and 𝜙 for p = 1, and Figure S4 shows the effects of p. As in 

Figures 4 and 5, to provide a more common basis for comparison, the PEXP basis functions 

plotted in Figure S1 are also the conditional covariance function gi(x) = Cov[Y(x), Y(xi) | Y(0) = 

0] = R(x, xi) − R(x, 0)R(xi, 0)/R(0, 0), where R(x, x') is the usual PEXP covariance function given 

by (1). Notice that, as the scale parameter 𝜙 → ∞, the colored GRF 𝐶(𝐳) in the definition of the 

BI covariance model (7) approaches white noise, in which case the BI covariance model 

approaches the FBF covariance model with the same p. We can begin to see this for the largest 

value of 𝜙 (the {𝑝 = 1, 𝜈 = 1.95,𝜙 = 3} case) in Figure S3.  

   



 2 

 

 

 

 
Figure S1.  Examples of five random realizations of Y(x) (left column) and two basis functions gi(x) (right column) for PEXP 

models with d = 1, and various {ν, φ}. The two basis functions are for xi = 1 (solid line) and xi =5 (dashed line). 
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Figure S2. Examples of five random realizations of Y(x) (left column) and two basis functions gi(x) (right column) for FBF 

models with d = 1, φ = 1, and various p. The two basis functions are for xi = 1 (solid line) and xi =5 (dashed line). 
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Figure S3.  Examples of five random realizations of Y(x) (left column) and two basis functions gi(x) (right column) for BIPEXP 

models with d = 1, p = 1, and various {ν, φ}. The two basis functions are for xi = 1 (solid line) and xi =5 (dashed line). 
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Figure S4.  Examples of five random realizations of Y(x) (left column) and two basis functions gi(x) (right column) for BIPEXP 

models with d = 1, ν = 1, φ = 1, and various p. The two basis functions are for xi = 1 (solid line) and xi =5 (dashed line). 

Details of the Examples in Section 4.4 

This section provides details on the examples used in Section 4.4 to compare the BIPEXP and 

PEXP performances. Four examples use models of real physical systems, and the remaining 

examples use mathematical test functions. In each of the examples, the PEXP and BIPEXP 

models were fit to a set of data from one or more designed experiments, and the fitted models 

were then used to predict the response values at a separate set of test sites. The test prediction 
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root mean square error (RMSE) results are summarized in Table 1 for the real examples and in 

Table 2 for the mathematical test functions. We first describe the four real examples. 

 Heat Exchanger Example.  Qian, Seepersad, Joseph, Allen and Wu (2006) presented an 

example in which the thermal conditions of a heat exchanger in an electronic cooling application 

are simulated. The d = 4 input variables are the mass flow rate of entry air (𝑥1), temperature of 

entry air (𝑥2), temperature of the heat source (𝑥3), and solid material thermal conductivity (𝑥4). 

The output of the simulation is the heat transfer rate y. Details of the simulation can be found in 

Qian, et al. (2006). They conducted a 64-run orthogonal array-based Latin hypercube design 

(LHD) to fit the kriging predictor, and they chose another 14 test runs randomly over a region 

slightly larger than the original design space to validate the predictor. Fitting a Gaussian 

covariance model (the PEXP model was virtually identical, because the MLE of the PEXP ν was 

1.99) to the LHD data gives MLEs of 𝜙�1 = 0.4695,  𝜙�2 = 2.0913,  𝜙�3 = 0.3777,  𝜙�4 =

2.6914, 𝜇̂ = 20.2426 ,𝜎�2 = 64.2167, and the test RMSE is 5.148, which agrees with the results 

stated in Qian, et al. (2006). For the BIPEXP covariance model, the MLEs were 𝜙�1 =

7.0065,  𝜙�2 = 6.5739,  𝜙�3 = 4.8681,  𝜙�4 = 2.4039,𝜎�2 = 0.9208, 𝜈̂ = 1.9999, and 𝑝̂ = 1.8559, 

and the test RMSE was 2.157, which is less than half that of the PEXP model.  

 The sample standard deviation of the 14 test response values was SD(y) = 9.827, so the ratio 

RMSE/SD(y) is 0.524 for the PEXP model, versus 0.220 for the BIPEXP model. Consequently, 

the test r2 value is r2 = 1− [RMSE/SD(y)]2 = 0.726 for the PEXP model, versus 0.952 for the 

BIPEXP model. Notice that RMSE/SD(y) represents the ratio of the test error standard deviation 

(RMSE) to the standard deviation of the response observations. We prefer this ratio over r2 as a 

measure of fit, because r2 can be misleading when modeling deterministic computer experiments. 

For example, an r2 of 0.99 is considered a nearly perfect fit in many regression modeling 

contexts, but not necessarily for modeling deterministic computer experiments. As a point of 

reference, r2 is 0.9659 for the fit in Figure 1(a) and 0.9854 for the fit in Figure 3.  
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 Borehole example. The borehole example is a higher-dimensional example (d = 8) that was 

introduced by Morris, Mitchell and Ylvisaker (1993). The flow rate (𝑦) of water through a 

borehole that is drilled from the ground surface through two aquifers is modeled as 

𝑦 = 2𝜋𝑇𝑢(𝐻𝑢−𝐻𝑙)

ln� 𝑟
𝑟𝑤
��1+ 2𝐿𝑇𝑢

ln� 𝑟
𝑟𝑤

�𝑟𝑤2 𝐾𝑤
+𝑇𝑢𝑇𝑙

�
  , 

where the eight variables are the radius rw (x1) of the borehole, the radius r (x2) of influence, the 

transmissivity Tu (x3) of the upper aquifer, the potentiometric head Hu (x4) of the upper aquifer, 

the transmissivity Tl (x5) of the lower aquifer, the potentiometric head Hl (x6) of the lower aquifer, 

the length L (x7) of the borehole, and the hydraulic conductivity Kw (x8) of the borehole. Morris, 

et al. (1993) give details of the model and the ranges of the input variables. 

 Joseph, Hung and Sudjianto (2008) used a 27-run, three-level orthogonal array design for the 

borehole example. The MLEs for models fit to the data for this design were 𝜙�1 = 0.144,  𝜙�2 =

9.59 × 10−12,  𝜙�3 = 5.44 × 10−8,  𝜙�4 = 0.00981, 𝜙�5 = 6.37 × 10−5,  𝜙�6 = 0.0141,  𝜙�7 =

0.0161,  𝜙�8 = 1.65 × 10−3, 𝜈̂ = 2, 𝜇̂ = 138.9771 ,  and 𝜎�2 = 2.4611 × 104  for the PEXP 

model and 𝜙�1 = 4.08, 𝜙�2 = 0.0150, 𝜙�3 = 0.0115,𝜙�4 = 1.21, 𝜙�5 = 0.0266,𝜙�6 = 1.02,

𝜙�7 = 1.54, 𝜙�8 = 0.677, 𝑣� = 1.00, 𝑝̂ = 1.12  and 𝜎�2 = 0.0055 for the BIPEXP model. Notice 

that the PEXP model reduced to a Gaussian covariance model (𝜈̂ = 2) for this example, which is 

consistent with the fact that the borehole response surface is known to be quite smooth. To serve 

as test sites, we also used a 5,000-run LHD over the same input domain. The test RMSE for the 

PEXP model was 4.645 (r2 = 0.9894,  RMSE/SD(y) = 0.1030), versus a much lower test RMSE 

of 1.685 (r2 = 0.9986,  RMSE/SD(y) = 0.0374) for the BIPEXP model.  

 We also considered 27-run LHDs for the borehole example. We generated 100 different 27-

run LHDs, and for each, we fit a PEXP model and a BIPEXP model. The average test RMSEs 

over the 100 different designs were 3.295 for the PEXP model, versus 2.507 for the BIPEXP 

model. Zhang and Apley (2014) found that the FBF model performed worse than the PEXP 

model for the borehole example with LHDs, and they concluded that this was because the FBF 
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model has difficulty in handling smooth response surfaces. The fact that the BIPEXP model 

performed even better than the PEXP model for this borehole example indicates that, unlike the 

FBF model, it is capable of handling smooth response surfaces. 

 G-protein example. The G-protein model is a biosystems model for the ligand activation of 

G-protein in yeast and is described in detail in Yi, et al. (2005). The model consists of a system 

of ordinary differential equations (ODEs) 

𝜂̇1 = −𝑢1𝜂1𝑥 + 𝑢2𝜂2 − 𝑢3𝜂1 + 𝑢5 

𝜂̇2 = 𝑢1𝜂1𝑥 − 𝑢2𝜂2 − 𝑢4𝜂2              

                          𝜂̇3 = −𝑢6𝜂2𝜂3 + 𝑢8(𝐺tot − 𝜂3 − 𝜂4)(𝐺tot − 𝜂3) 

𝜂̇4 = 𝑢6𝜂2𝜂3 − 𝑢7𝜂4                         

𝑦 = (𝐺tot − 𝜂3)/𝐺tot                     

where the nine input variables are the concentration x of ligand and a set {𝑢1, … ,𝑢8} of eight 

kinetic parameters, and the response is the normalized concentration y of part of the complex. 

The total concentration 𝐺tot  of G-protein complex after 30 seconds is treated as a known 

parameter. The concentrations {𝜂1, … , 𝜂4} of four chemical species are determined internally in 

the simulation, and 𝜂̇𝑗 ≡ 𝜕𝜂𝑗 𝜕𝜕⁄ .   

 Loeppky, Sacks and Welch (2009) developed computer code to solve the system of ODEs, 

and Jerome Sacks provided to us a set of data that were generated from the code as follows. Five 

of the nine input variables were held fixed, and the other four {𝑥,𝑢1,𝑢6,𝑢7} were treated as the 

experimental inputs (d = 4), after transforming to log-scale and then normalizing to the interval 

[0, 1]. A 41-run maximin LHD served as the design data, and a separate 1000-run maximin LHD 

served as the test data. The ODE solver calculated the response values at each of the training and 

test sites. To the 41-run LHD we fit a PEXP model, for which the MLEs were 𝑣� = 1.9998,𝜙�1 =

0.3632,  𝜙�2 = 0.6675,  𝜙�3 = 0.7130,  𝜙�4 = 1.4399, 𝜇̂ = 0.3758 ,𝜎�2 = 0.1291 , and the test 

RMSE was 0.0162 (r2 = 0.9940, RMSE/SD(y) = 0.0775). We also fit a BIPEXP model, for 

which the MLEs were 𝑣� = 2, 𝑝̂ = 1,𝜙�1 = 0.4672,  𝜙�2 = 0.7784,  𝜙�3 = 0.7882,  𝜙�4 =

1.4135 ,𝜎�2 = 0.0095, and the test RMSE was 0.0145 (r2 = 0.9952, RMSE/SD(y) = 0.0693). 
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 Nilson-Kuusk example. This is an analytical reflectance model for a homogeneous plant 

canopy, which was introduced in Nilson and Kuusk (1989). We used the data from Bastos and 

O’Hagan (2009), which were produced via a simulation with five input variables (d = 5), each of 

which was scaled to the interval [0, 1]. The data are for two independent LHDs, one having 100 

runs, and the other having 150 runs. We first fit a PEXP covariance model to the 100-run LHD, 

for which the MLEs were 𝑣� = 1.8845,𝜙�1 = 0.2196,  𝜙�2 = 0.1521,  𝜙�3 = 0.0151,  𝜙�4 =

0.7286, 𝜙�5 = 0.5506, 𝜇̂ = 0.1778 ,𝜎�2 = 0.0321, and the RMSE over the 150-run LHD was 

0.0187 (r2 = 0.9918, RMSE/SD(y) = 0.0903). A Gaussian covariance model performed worse, 

resulting in a test RMSE of 0.0251 (r2 = 0.9853, RMSE/SD(y) = 0.1212). We also fit a BIPEXP 

model, for which the MLEs were 𝑣� = 1, 𝑝̂ = 1.0855, 𝜙�1 = 6.2696,  𝜙�2 = 2.8906,  𝜙�3 =

0.6210,  𝜙�4 = 0.3922, 𝜙�5 = 16.5217,𝜎�2 = 8.3752 × 10−6, and the test RMSE was 0.0183 (r2 

= 0.9922, RMSE/SD(y) = 0.0883).  

 We then repeated the analysis but with the training and test data reversed. For the PEXP 

model fit to the 150-run LHD, the MLEs were 𝑣� = 1.8443,𝜙�1 = 0.2118,  𝜙�2 = 0.1582,  𝜙�3 =

0.0268,  𝜙�4 = 0.0162, 𝜙�5 = 0.6569, 𝜇̂ = 0.1851 ,𝜎�2 = 0.0285, and the test RMSE over the 

100-run LHD was 0.0169 (r2 = 0.9929, RMSE/SD(y) = 0.0843). The results of using a Gaussian 

covariance model were again worse, with a test RMSE of 0.0192 (r2 = 0.9908, RMSE/SD(y) = 

0.0959). For the BIPEXP model, the MLEs were 𝑣� = 1.2252, 𝑝̂ = 1.4169,𝜙�1 = 4.5639,  𝜙�2 =

3.4626,  𝜙�3 = 0.5428,  𝜙�4 = 0.4914, 𝜙�5 = 16.8493,𝜎�2 = 1.7703 × 10−5, and the test RMSE 

was 0.0168 (r2 = 0.9931, RMSE/SD(y) = 0.0831).  

 The results for all of the preceding examples are summarized in Table 1 of the paper, which 

shows the test RMSEs, the ratio of test RMSE to SD(y), and the percent improvement in test 

RMSE for the BIPEXP model. The latter is defined as (RMSEPEXP 

−RMSEBIPEXP)/RMSEPEXP×100. Across these real examples, the BIPEXP had test RMSE that 

was between 0.6% and 63.7% better than the PEXP test RMSE.  

 In addition to the real examples in Table 1, we also compared the BIPEXP and PEXP 

performances for a number of mathematical test functions that have been considered in the prior 
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literature. Table S1 lists the test functions, prior work that has considered the function (and from 

which further details can be found), and the input domain (a rectangular region in each case) for 

the experiment. For each function, we averaged the test RMSE across 100 replicates. On each 

replicate we generated a different LHD design, fit PEXP and BIPEXP models to the data for the 

design, and then calculated the test RMSE for 1,600 test sites that were evenly spaced over the 

input domain. For Function 3, 48-run LHDs were used. For all other functions, 24-run LHDs 

were used.  More runs were used for Function 3, because it was more difficult to model. Table 2 

of the paper summarizes the results for the mathematical test functions in Table S1, including the 

Xiong et al. (2007) example from Figures 1 and 3. 

 
Function # 
(reference) Function, 𝑦(𝐱) = 

input 
domain 

Function 1 
(Currin et al., 1999) �1 − exp �− 1

2𝑥2
�� ∙ 2300𝑥1

3+1900𝑥12+2092𝑥1+60
100𝑥1

3+500𝑥12+4𝑥1+20
  𝑥1,𝑥2 ∈ [0,1] 

Function 2 
(Sasena et al., 2002) 

2 + 0.01(𝑥2 − 𝑥12)2 + (1 − 𝑥1)2 + 2(2 − 𝑥2)2 +
7 sin(0.5𝑥1) sin(0.7𝑥1𝑥2)  𝑥1,𝑥2 ∈ [0,5] 

Function 3 
(Paciorek, 2003) 

1.9 ∙ {1.35 + exp(𝑥1) ∙ sin[13(𝑥1 − 0.6)2] ∙ exp(−𝑥2) ∙
sin(7𝑥2)}  𝑥1,𝑥2 ∈ [0,1] 

Function 4 
(Xiong et al., 2007) 𝑥1 ∙ exp(−𝑥12 − 𝑥22)  

𝑥1,𝑥2
∈ [−2.5,2.5] 

Function 5 
(Paciorek, 2003) sin � 1

𝑥1𝑥2
�  

𝑥1,𝑥2
∈ [0.3,1] 

Function 6 
(Osio et al., 1996) 

cos[6(𝑥1 − 0.5)] + 3.1|𝑥1 − 0.7| + 2(𝑥1 − 0.5) +
sin � 1

|𝑥1−0.5|+0.31
�+ 0.5𝑥2  𝑥1,𝑥2 ∈ [0,1] 

Function 7 
(Jin et al., 1996) �𝑥2 −

5.1
4𝜋2

𝑥12 + 5
𝜋
𝑥1 − 6�

2
+ 10 �1 − 1

8𝜋
� cos𝑥1 + 10  

𝑥1 ∈ [−5,10] 
𝑥2 ∈ [0,15] 

Function 8 
(Hardy, 1975) �4 − 2.1𝑥12 + 𝑥23

3
� 𝑥12 + 𝑥1𝑥2 + (−4 + 4𝑥22)𝑥22  

𝑥1,𝑥2
∈ [−10,10] 

Function 9 
(Jin et al., 1996) 

[1 + (𝑥1 + 𝑥2 + 1)2(19− 14𝑥1 + 3𝑥12 − 14𝑥2 + 6𝑥1𝑥2 +
3𝑥22)] ∙ [30 + (2𝑥1 − 3𝑥2)2(18− 32𝑥1 + 12𝑥12 + 48𝑥2 −

36𝑥1𝑥2 + 27𝑥22)]  
𝑥1, 𝑥2
∈ [−2,2] 

Table S1.  Mathematical test functions and experimental designs used to compare the PEXP and BIPEXP models.  

Relationship between the PEXP and BIPEXP Models  

 When comparing the performance of the PEXP and the BIPEXP models, one situation that 

favors the PEXP model is when the true response surface is a realization of a GRF whose 
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covariance function is truly PEXP. In this section we show that the BIPEXP model with p 

restricted to [1, 2) does almost as well as the PEXP in this situation, and we draw a loose 

connection between the PEXP model and the BIPEXP model when p is close to zero.  

 Consider the d = 1 case and an input domain of [0, 1]. We conducted a Monte Carlo 

simulation in which, on each replicate, a different true response surface was generated, the PEXP 

and BIPEXP models were fit to a set of training points on the surface, and then the two models 

were used to predict a set of test points on the same surface. For each replicate, the training and 

test data on the response surface were generated from a PEXP covariance model with µ = 0 and 

the parameters v and θ randomly generated (as different values on each replicate) from a uniform 

distribution over the intervals [1, 2] and [1, 6], respectively. The training data were the response 

observations at n evenly spaced input sites over the interval [0, 1], and the test data were the 

response observations at 100 evenly spaced input locations over the interval [0, 1]. For each 

replicate, the parameters of both models were fitted using MLE, and the RMSEs for predicting 

the 100 test sites for both models were calculated. The average RMSE values, and their standard 

errors, over the 100 Monte Carlo replicates are shown in Table 4 for six different values of n (5, 

10, 15, 20, 25, and 30). For larger values of n, both methods experienced numerical difficulties 

when inverting R. The "Difference" column in Table S2 is the average RMSE for the PEXP 

model minus the average RMSE for the BIPEXP model. Because the two models were fit to the 

same randomly generated surface on each replicate, there is an inherent pairing that results in the 

standard error of the average difference being substantially less than the standard errors of the 

average RMSEs for the two models.  

 Overall, Table S2 indicates that the two models perform quite similarly when the true 

response surface is generated as a PEXP random field. For larger n (e.g., above 25), the PEXP 

model performs slightly better than the BIPEXP model, as one would expect. Somewhat 

surprisingly, the BIPEXP model actually performs better than the PEXP model for n < 20. This 

is most likely because the covariance parameters were estimated. If the true covariance 

parameters (i.e., the same ones that were used to generate the response surface) were treated as 
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known and used in the PEXP model when predicting the test points, then the PEXP model would 

obviously have outperformed any other model, because the kriging predictor is defined as the 

best linear unbiased predictor. That the BIPEXP model performed better when the parameters 

were estimated is some indication that it is more robust to parameter estimation errors.   

 

n 
PEXP Model BIPEXP Model Difference 

RMSE RMSE/SD(Y) RMSE RMSE/SD(Y) RMSE 
5 0.4119 (0.0232) 69.32% 0.3315 (0.0161) 56.12% 0.0805 (0.0135) 

10 0.1878 (0.0137) 31.31% 0.1743 (0.0114) 28.47% 0.0135 (0.0047) 
15 0.1384 (0.0090) 23.88% 0.1362 (0.0085) 23.25% 0.0022 (0.0018) 
20 0.1104 (0.0073) 17.36% 0.1102 (0.0072) 17.30% 0.0002 (0.0003) 
25 0.0995 (0.0071) 15.22% 0.0999 (0.0071) 15.29% -0.0005 (0.0002) 
30 0.0862 (0.0067) 13.53% 0.0926 (0.0078) 14.51% -0.0065 (0.0020) 

Table S2.  Comparison of test RMSE values (standard errors are in parentheses) for the PEXP and BIPEXP models when the true 
surface is generated as a random field with PEXP covariance. 

 When we repeated the preceding Monte Carlo simulation using a lower bound of zero for p 

(in the preceding, the lower bound for p was 1.0), we obtained slightly better average RMSE 

results for the BIPEXP model. The average value of 𝑝̂ for the BIPEXP model was quite small 

(0.1554), and 𝑝̂ was less than 0.2 on 80% of the replicates. Consequently, the behavior of a BI 

GRF when p is close to zero may be of some interest. To investigate this, rewrite (7) as  

 𝐵𝑝𝐶(𝐱) = ∫ 𝑘𝑝,𝑑𝑓𝑝,𝐱(𝐳)𝐶(𝐳)𝑑𝐳𝐑𝑑  ,              (S1) 

where we have defined the function 𝑓𝑝,𝐱(𝐳) = ‖𝐱 − 𝐳‖(𝑝−𝑑) 2⁄ − ‖𝐳‖(𝑝−𝑑) 2⁄ . Figure 8 plots 

𝑓𝑝,𝑥(𝑧) as a function of z for various p for the case that d = 1 and x = 6.  Notice that 𝑓𝑝,𝑥(𝑧) = ±∞ 

at z = {0, x} for d = 1 and p < 1. Figure 8 indicates that for small p, 𝑓𝑝,𝑥(𝑧) bears some 

resemblance to the difference between two impulse functions, one at z = x and the other at z = 0. 

If we approximate 𝑓𝑝,𝑥(𝑧) by these two impulse functions, then the integral in (S1) can be 

approximated as 𝐵𝑝𝐶(𝑥)  ≈  𝐶(𝑥) − 𝐶(0) (aside from a constant multiplicative factor), which is 

the same as the underlying stationary random field C(x), except that the value of C(•) at the 

origin is subtracted to preserve the condition that 𝐵𝑝𝐶(𝟎) = 0.  This may partly explain why the 



 13 

BIPEXP basis functions for p = 0.5 in Figure 7 are more peaked than for larger p and, in this 

regard, are more similar to the PEXP basis functions. 

  

Figure 8.  Plot of 𝑓𝑝,𝑥(𝑧) versus z for d = 1, x = 6 and various p. 

 Although the BIPEXP model had slightly better test RMSE in the preceding example when 

the lower bound on p was reduced below 1, we still recommend restricting p to the interval [1, 2). 

When p is close to zero, the numerical integration for calculating RB(x, x') can become poorly 

conditioned. The primary advantage of allowing a smaller p may be that the BIPEXP model can 

better mimic the behavior of the PEXP model, which may be beneficial in the event that the 

response surface is well modeled as PEXP. However, a more reasonable approach may be to fit 

both a PEXP model and a BIPEXP model, with p for the latter restricted to the interval [1, 2), 

and then to choose the better of the two models.   

Computation of the Hypergeometric Function Used in (14) 

To simplify the notation, consider a fixed p, H and r, and define  
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 𝑓(𝑑) = 𝐹 �𝑑−1
2

,−𝑝
2

;𝑑 − 1; 4𝐻𝐻
(𝐻+𝑟)2�. 

The hypergeometric function needed in (14) is 𝑓(𝑑), and this is only needed for odd d ≥ 3. For d 

= 3 and 5,  

 𝑓(3) = (𝐻+𝑟)2+𝑝−|𝐻−𝑟|2+𝑝

2𝐻𝐻(2+𝑝)(𝐻+𝑟)𝑝  , and 

 𝑓(5) = 3�(𝐻+𝑟)2(𝐻−𝑟)2�|𝐻−𝑟|2+𝑝−(𝐻+𝑟)2+𝑝�+𝐻𝐻(2+𝑝)�|𝐻−𝑟|4+𝑝+(𝐻+𝑟)4+𝑝��
2𝐻3𝑟3(2+𝑝)(4+𝑝)(6+𝑝)(𝐻+𝑟)𝑝 . 

For any other odd d ≥ 5, 𝑓(𝑑 + 2) can be calculated recursively via 

 𝑓(𝑑 + 2) = 𝑑(𝑑−2)
(2𝑑−2+𝑝)(2𝑑+𝑝)𝐻2𝑟2

  

   × ��−𝐻4 + 2(3𝑑+2𝑝−4)
(𝑑−2)

𝐻2𝑟2 − 𝑟4� 𝑓(𝑑) + [𝐻4 − 2𝐻2𝑟2 + 𝑟4]𝑓(𝑑 − 2)�. 

Matlab Code for Implementing the BIPEXP model 

 See the Matlab files SFBFmain9dPmse.m (main file) and SFBFcov9dP.m (routine called by 

main file). 
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