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This supplemental appendix provides technical proofs for the main results of the paper. These proofs
make use of several supporting lemmas which are also stated and proved here.

Recall the assumptions.

Assumption 1. The process {x;} is generated by the following data-generating process (DGP): xy =
=+ ve + ug, where p is a finite constant and vy and uz are independent at all leads and lags.

(a) {vi} is strictly stationary and ergodic and vi = 3 72 c(j; 00)er—j, where ¢(0;09) =1, Eles] = 0,
Eleses] = I(t = s)0%(6p) and > i clds 00)% < oo so that the spectrum of {v;} takes the form

a*(fo)

f(Aio) =

g(A\; 00) with g(X\;00) = |Zc e N2,
7=0

(b) © C R® is compact and the following properties hold over ©: (i) g(\;0) is continuous in (A, 0) €
[, 7] x ©; (ii) 0%(0) is continuous and strictly greater than zero over ©; (iii) g(\,0) > 0 for all
(N 0) € [—m,m] xO; () If Oy # 60 € O, g(A\;0) # g(\;0p). Furthermore, for 01,02 € O, if 01 # 02, then
fA; 601) # f(X;02) on a subset of [—m,m| that is of positive Lebesque measure; (v) 0y € ©.

(¢) E[L.(\;)] = O(T/j?) for j € Fi.

Assumption 2. [/T + log* T/l — 0.

Assumption 3. For the process {v;} in Assumption 1, the following hold for its spectrum and innova-

tions:

(a) (i) f(X;0) is twice continuously differentiable in 6 € ©. Forf € ©, 0f(X;0)/00 and 0 f(X;0)/06000'

are continuous in X € [—m,w|; (ii) 8y € interior(O).
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(b) f(X;00) is Holder continuous of maximal degree oo € (1/2,1] in A, i.e., there is a constant H
such that |f(A;60p) — f(w;00)] < HIN —wl|® for all \,w € [—7,7].

(c) Let IT; denote the o-field generated by es, s < t. (i) Ele)|T;_1] = 0 a.s.; (i) Ele?|T_1] = o%(0o)
s.; (i) Ele}|Ti_1] = ps a.s.; (iv) Ele}] = py < 0o.

(d) Z;io le(4560)] < oo.
Assumption 4. [/T 4+ T2/l — 0.

The consistency proof of Theorem 1 uses the following lemma which helps to describe the trimmed
FDQML objective function of the periodogram of the observed process in terms of the untrimmed
objective function of the periodogram of the latent contaminated process. Throughout K > 0 is a finite

constant, the value of which may change from line to line.

Lemma 1. Let n(-;-) : [—m, 7] X © — R be any mapping that satisfies |n(\;0)| < K for all (A, 0) €
[—m, 7] x ©. Let vy be covariance stationary with periodogram I,(A) that satisfies supyepr— ) E[Ly(N)] <
K < oo, and let uy satisfy Assumption 1(c). Then under Assumption 2:

sup | — ZI n(\;; 0) — ZI n(\;;0)| = 0,(1).

feo ]6.7:1 ]6.7:1
Proof: Recall w,(\) = 1/v21T Y1, yee~ and note the decomposition
I,(N\) = L,(A\) + Tu(A) 4+ wy (N wy (=) + wy(=N)wy, (N).

Hence:

sup |= ZI n(\j;0) — TZI n(\;; 6)

€0 ]6.7‘-1 JEF1

< sup |= ZI n(\;; 0) — ZI n(\j; 6) ZI n(\;;6)

0€0 ]6.7'-[ ]6.7:1 jE]:l

sup| 23w wa (=m0 0)| + | 1 3w (A () 0)

T
0€© JEF JEF;

l
<K % Y L)+ K %ZIU(AJ-) +K% D fwe (A wa (=)

J=—1,3#0 JEFL JeF



The first equality follows from supjcpr— - E[lo(A)] < K < oo, the Cauchy-Schwartz inequality and
Assumption 1(c): Ef|wy,(A\)wu(=\)|] < (B[L(A))Y2(E[L.(\)])Y? = O(T/5%)1/2. The last equality
uses Assumption 2 /T + (log* T)/l — 0. B

Proof of Theorem 1: Note that by Assumption 1(b) and the compactness of [—7, 7] X ©, f(\; )
is both bounded and bounded away from zero for all (), 6) € [—m, 7] x O so that log f(A; ) is bounded
for all (A, 0) € [—m, 7] x ©. This implies

— Z log f(A;;0) = Z log f()\;;0) + O(1/T) (1)

36.7:1 j€.7:1

uniformly in § € ©. Similarly, f(\;8)~! < C for some C < oo so that by Lemma 1,

T]€Zfl f(A]79) - TJ'EZ]‘—1 f()\]’e) - p(l) (2)

uniformly in § € ©. Since f(A;#) is continuous, bounded and bounded away from zero for all (A, 0) €
[—m, 7] X ©,

1 _ ™
T Z log f(\;;0) — (27) 1/ log f(X\;0)d\ = log 0?(6) — log 27 (3)
Jj€F o
uniformly in § € ©. A simple adaptation of the uniform law of large numbers Lemma 1 of Hannan

(1973) to our parameter space O also provides that

T f(X; 6
Z f 27r/ J;((A;;))d)\ — 0 a.s. (4)

veo | T
uniformly in 8 € ©. Now, by Assumption 2,

plimsup Ly (A7) < 1nf plimsupLy,;(6)

T— o0 €9 T oo
1 1 I,(Xj)
= inf plimsup ¢ = Z log f(Aj;0) + = Z L= 4 0p(1)
€0 T o0 T jem T jem f()\j, 9)



0c®

= log o%(fy) — log 27 + 1, (5)

where the first equality follows from (1) and (2) (given uniformity in 6 € 0), the second equality follows
from (3) and (4) and the final equality follows from Lemma 3.1(c) of Hosoya and Taniguchi (1982). The
reason that Lemma 3.1(c) of Hosoya and Taniguchi (1982) implies the final equality is because when
the spectrum f(A;6) has an integrable logarithm (which is implied by Assumption 1(b)),

() = 2r exp((27r)_1/ log f(X;0)d\
(see, e.g., Theorem 4.3 on p. 577 of Doob, 1953), so that minimizing
L (™ f(A; o)
logo?(0) + — dX
s (0)+ 5, /_W F(x:6)
with respect to 6 is equivalent to minimizing

T , J(A;00)
/_W[logf()\, 0) + L

By way of contradiction, suppose 0 —%+ 6y. Then, by compactness of ©, there is a subsequence
éM(T) such that éM(T) L5 ¢ € © with ¢ # 6. Note that Assumption 2 implies that | grows
as a function of T so that we can write {(T") and Assumption 2 must also hold for I(M(T)), i.e.,
I(M(T))/M(T) + (log* M(T))/I(M(T)) — 0 as M(T) — oco. Suppressing dependence of M on T and [
on M, if we define the Fourier frequencies Xj = 21j/M and the sets F; = (—M/2, M /2] NZ\ {0} and
Fi=(—M/2,M/2]N7Z\ [~ 4+ 1,1 — 1], we then have

Lar(6) lz{logf %i0)+ m}

jeF f()‘]ae)

Then (1) and (2) imply

I,(\))
lim Ly (0a) = plim — lo )\,9 +
gl L) = pim 3, 57 e 1050 + 200
JEF1
= logo*(#') — 10g27r+/ fiz(’) d\ > log o®(y) — log 2w + 1

where the second equality follows from the continuous mapping theorem, (3) and (4) and the inequality

results from Lemma 3.1(c) of Hosoya and Taniguchi (1982) and Assumption 1(b)(iv). This is in direct



contradiction with (5). H

Lemmas 2-5 support asymptotic normality Theorem 2. The next lemma bounds the influence of
the contaminating component in a trimmed weighted average of the observed periodogram, a quantity

present in the expansion of éT.

Lemma 2. Let n(-) : [-m,m] — R be any mapping that satisfies [n(\)| < K for all X\ € [—m,7].
Let vy be covariance stationary with Y - | Cov(vg,vg)| < oo and periodogram I,(X\) that satisfies
SUPxefr—,a] ElLo(A)] < K < 0o, and let uy satisfy Assumption 1(c). If (log*T)/l = 0 then

T2 1
1/2 Z 1o ( () 1/2 Z Iy ( i)+ Op I + 712 + op(1).

JEFL JEF

Proof: Using the same decomposition as in Lemma 1, we have

s 2 O = g 3 ROn(y) + ﬁ S LOny)

JEF; JjEF JEF
1
+ i3 Z Wy (Aj)wy (=X T1/2 Z Wy (—=Aj)wy (Nj)n(Nf)-
JjeF JEF;

By Assumption 1(c) E[I,()\;)] = O(T/4?), hence by Markov’s inequality the second term satisfies:

T

1

T1/2 Z (W) = T1/2 Z 2| = Op Tl/2z;ﬂ
]:

JjEF; JjEF;

Since

T [e'S) o0
T2 Zjlz — 712y ;2 STV =T x0T T X 0 (1) = 0 (V1 1)
j j j=T+1

it follows
T2 1
1/QZI :OP< I +T1/2>'
JEF

For the third and fourth terms, note by independence of {v;} and {u}:

2

E 1/2 Z Wy (Aj)wu(=A;)n(A;)

JEF

= Z 3" Efw, (A)wo (M) Elwa (=X wa(Ae)ln(\ n(h) = Er,

]€.7:1 keF;



say. In order to find the asymptotic order of £, suppose for now that j # k£ and note that

T T T
1 . : 1
wv(/\j) 7T Z Z Utvsefz/\jtJrl/\ks — 7T Z Z v A (t—s)+i(Ag—Aj)s

t=1 s=1 t=1 s=1
1 T—1 T—|n| '
= oT UtV y|n|€ (Ak=Aj)(t+[n]) g —iXjn
n=1-T t=1
so that
1 T—1 T—|n| ‘
E[U}v()\j) ( )\k)] 7T ’Yne i(Ap—Xj) t+|n|)6_1)\jn
n=1-T t=1
1 T—1 T—|n| .
2T n—l—T7n6 Z <k — j)
since | Y07 e —i(jn—(g— Inl)‘ <3 oIl < o0, and for any r € [0, 1]
T—[Tr] T—|Tr) . .
! iw-ar _ L { (%(k —J)t> - (%(k —m)}
ol Z € == Z cos | —————— | +isin [ ——————
= I = T T

1—r
— / {cos(2m(k — j)s) + isin(2mw(k — j)s)}ds
0

= (,:_)[Sln(QW(k A =7)) —icos(2m(k — 5)(1 — 1)) + 1.

Using the Cauchy-Schwartz inequality, we also have E[|w,(—\;)|[wa(M\r)|] < E[LA)Y2E[L.(\x)]/?
= O (T/jk), while (log?T)/l — 0 by supposition. Hence & can be given the following order:

1
= 3 Bl COID I

J€F T\ F werims
T T T
1 T 1 1
-0 7§ :7 0O .
T 52 + Z Z jki—k
J=l k=l j=k+1



_[logT T ke g g 11
-o(*)+ (Z DN S A VPP DR T

=l j=k+1

—0 <10fT> +0 <1og3Tkzi‘7le> +0 < 12TZT‘;]1§> (k’g T) +0 (1O;T> o(1). m

The next lemma helps to determine the asymptotic behavior of the Hessian matrix.

Lemma 3. Under Assumptions 1, 2 and 3(a), if 07 — 6y, then (02/8989’)LT71(§T) 25 Q where

1 (™ dlog f(X;60) dlog f(A;60)
0= o= 3 i 50 dM.
Proof: We have
62
Haeae)' Lra(br) - QH
l 5 P dlog f(X; 60) 9log f(X; o)
< 80 In f()\ja 00)89/ hlf()\], 90) 27T /—71' 00 00 ax
je]:l
7 00"
JE]:Z

9 Kl
t 1

=Ar + Br+Cr.

By construction of the Fourier frequencies Ar — 0 (e.g., Hannan, 1973: p. 133-134.).
By Lemma 1 and boundedness properties of (0/90)" f(\; 0) for i = 0, 1,2 under Assumptions 1(a)-(b)
and 3(a)

= S {100 - 780} i)

JEF

Br = —I—Op(l).

Hence by boundedness of (9/00)"f()\;6) and the mean-value-theorem:

= S HLOG) ~ i 00) (i)

.76]:1

+ K x H§T—00H +0,(1).




The uniform law of large numbers Lemma 1 in Hannan (1973) can be easily generalized to hold for the
first term since (0/90)w(A; ) is bounded. Hence supgee [[1/1 3 ;7 {1u(Aj)—f(Aj; 00) }(0/00)m (A3 0)]|
20, and therefore By 5 0 given |67 — 6o|| = 0.

The remaining term Cr 50 by a similar argument. Simply note by the mean value theorem and
boundedness Cr < K x ||6r — 6p||. W

The following lemma allows us to replace the spectral density function by the expectation of the

periodogram when summing over Fourier frequencies.

Lemma 4. Let n(:) : [-m, 7| = R be any mapping that satisfies |n(A\)| < K for all X € [—m,w|. Under
Assumptions 1(a) and 3(b):

> B = (i 60)}n(Ag) = O (T~ 1og T).

JEF

Proof: Letting v; denote the k* order autocovariance of {v;}, begin by noting that E[I,(\)] =
(1/27) Z;f:_iTH YN = fr_1(X\;0), the (T — 1) Fourier expansion of f(\;6p). Since f(\;6p) is
Holder continuous of degree o € (1/2,1], Jackson (1930) has shown that supy |f(A;60) — fr(A;00)] =
O(T2 log ). Hence, | 3, s {EIL(A)] — F( 000 1nA)| < K e [EL )] — FOyi )] = O(TH - log T).
|

Lemma 5. Let n(-) : [-7, 7] = R be any mapping that satisfies [n(\)| < K for all X € [—m,w|. Under
Assumptions 1(a) and 3(c)-(d):

Z {Lu(X LA n(A) = Op(17?).
j=-1
Proof: Assumption 3(c)-(d) implies

[e. Sl chNe S Ao ]

Ef]=Y >33 el bo)clh; bo)c(k; 6o)c(m; 60) Eler—jer—ner—ker—m)

m=0 k=0 h=0 j=0

(e e} o0 (e}

Z (j;00)* + 30( Z Z c(j:00)%c(k; 6p)? < 0o

=0 =0 k=0,k#j

since Y22 c(J; 0o)* + D520 2heo ket €U 00)%c(k;0p)? is bounded from above by

4
0o 00 00 00

D023 lelii B0)le(hs 60) (ks o) le(ms o) Zlcﬂ <o

m=0 k=0 h=0 =0



by Assumption 3(d). It is also clear that {v;} is fourth-order stationary by Assumption 3(c)-(d). Define
¢j = c(5;00)I(5 > 0) so that vy = Z?i—ooajet_]“ For any integers m,n, p, define the fourth order joint

cumulant of vg, Viym, Vigrn and vpp:
£(0,m,n,p) = E[00t4mVt4nVitp)— E[0tVt1m| B[Vt n Vet p] = B[00 40| E[Vi4mVttp] — B[Vt p) E[Vt4mVtqn)-

Hence

o x o
~ o~ ~ ~ 4 ~ o~ ~ o~
k(0,m,n,p) = 4 E CiCjtmCitnCitp + " (0o) § E CjCjtmChChip—n

j=—00 j=—00 k=—00,k#j+n
0o 0o 0o 0o
4 e 4 e
+ 0 (6b) E E CjCitnCkChip—m + 0" (00) Z Z CjCj+pChkChin—m
Jj=—00 k=—o00,k#j+m Jj=—00 k=—o00,k#j+m
00 9]
2 ~ =~ 2 ~ ~
— | O (90) Z CiCj+m g (90) Z CkCk+p—n
j=—00 k=—00

— | o%(60) Z CjCitn <02(90) Z Ek5k+p—m>

j=—00 k=—o00

- 02(90) Z fcngj+p <J2(‘90) Z EkEk+n—m)

j=—00 k=—o00

oo oo
_ A 4 A
=pa Y EGCamCienCip — 307 (00) D ECitmCitnCitps
j=—co j=—co

and

Y. > D Is(0.m.n.p)l

M=—00 N=—00 p=—00

<lu=30'0)| S X S EillFml el ol

M=—00 N=—00 p—=—00 j=—00

[c o 2uNe clENe oBNe o]

= lia =30 (00)] DD D> " lelds 00)ille( + ms 00)lle(F + i 00)l[e(d + p; 60))|

m=0n=0 p=0 =0

< 00

by Assumption 3(d).
Hence, under Assumption 3(.c)-(d), all of the conditions of Theorem 9, Chapter V. of Hannan



(1970) are satisfied so that Var(Y'__ {I,(\;) — E[L,(\)]}) = O(1) hence Y-\ __ {I,(A;) — E[L,(A\)]}
= 0,(1"/?) and thus the lemma’s statement. B

Proof of Theorem 2: Using a first order Taylor expansion,

- ok 0L, (6
T1/2(9T - 90) [8986/ TZ(HT):| T1/275l9(0) (6)

for some O7 such that ||67 — 6o]| < ||07 — 6o||. Now, since Assumption 1(b) implies that f(\;6)~! is
bounded for all A € [—7, 7],

OL7.(6o) o
T1/2 Tl 0) _ T1/2 > LA %«90)}(]890)
JEFZ
8f()\‘§90)71 T1/2 1
T1/2 Z{I )\]700)}]870"‘017 T+m +0p(1)
JEF
. Of(N\i;6p) 1
= o 2 o) — BlL ()]} (?960)
Jj€F1
Af(Ni;6p) 1
i > {109 - L)y )
J==L3#0
8f(/\-;90)* T1/2 1
" ; B ( e ) told)
l
df(Nj;00)7" J1/2
T1/2 > L) — BILO R — 40, | 275
JjeF1
- T1/2 1
+O(TY**log T) + O, (z + T1/2> + op(1), -

where the second equality follows from Lemma 2 and the fourth equality follows from Lemmas 4 and
5. Observe a € (1/2,1] from the Hélder continuity condition Assumption 3(b). In view of Assumption
41)T — 0 and T'?/1 — 0 it therefore follows

. -1
aLTﬁle o T1/2 > L (Lo (A1} a‘f()\é’;o) + 0,(1). 8)

JEF1

T1/2

Dunsmuir (1979, Theorem 2.1 and Corollary 2.2) has shown that the first term in the above expression is
asymptotically normal with mean zero and covariance matrix 2§2 + I1. Finally, since 5T LN 0o, Lemma
3 and (6) imply the statement of the theorem. W

Proof of Corollary 1: Assumption ARCH-4 and 1(b) imply Assumption 1(a) since Assumption

10



1(b) implies that f(A;0) has an integrable logarithm (see the proof of Theorem 2.1 in Giraitis and
Robinson, 2001) so that the result follows from Theorem 1. H

We may still use three out of the four lemmas used to prove Theorem 2 to prove the asymptotic
normality of 07 for the ARCH model (Lemmas 2-4). However, Lemma 5 must be proved under an

entirely different set of assumptions, manifest in the following lemma.

Lemma 6. Let n(-) : [-m, 7] = R be any mapping that satisfies [n(\)| < K for all X € [—m,w|. Under
Assumption ARCH-8: Zéz_l{fv(Aj) E[L,(M\)]In(A) = (l1/2)

Proof: Note Y'__ {I,(\;) — E[L,(\)]} = X S0, dr(t — s)(Xe X, — E[XX,]) where dp(t —s) =
(1/27T) Z __,;exp(—iX;(t — s)). Then, using the representation of Giraitis and Robinson (2001, pp.
619-620):

Var | D0 (00~ FILOWIY | =0 3 - 3 Corl@f™) gt (9)
jzf kl 0 k4 0
where
QY = ZZdT t = s)(mu(T) = Elmu(t)]) (mx(t) — Elmy(t)])
t=1 s=1

— ji—1 Ji—1—1
= Z Z Z (T B S L 315352 "'é?l’

J1=—00 jg=—00  jij=—00

for I > 1, and mg(t) = 2. Now, write c(ty,...,t4) = Cov(Yt(lkl)Yt(QkQ)’ y;(BkS)Yth)), where for k1,..., ks
L,

v

- -1 Ji—1—1 *)
_ i 2_2 2 2.2 2
= Z D D 9 i tainy i, €€ S5 — Blefe}, 5 ])
J1=—00 ja=—00 Ji=—00
with 93(1) = ... I(ji>1,...,5 > 1) and Yt(o) = ¢2. Then,
( (ks ka) e -
k1,k2) ks3,ka _
T ’C (Qy"™, Qp )’ = 7 DD dr(ts —ta)dr(ts — ta)e(ty, - - La)
ti=1  t4=1
5 T T
< YD (dr(t = 1)+ dr(ts — 1))l 1))
t1=1 tg=1
o I T T-1 T—lul
= 7 Z Z Z dr(u)? |c(ty, t2, s, s + |ul)|
ti=1to=1u=1-T s=1
o I T T-1 T—lul
2
+ XY dr(u)?|e(s, s + |ul, ts, ta)]
tz3=1tg=1u=1-T s=1



dr(u)? |c (t1,t2,0, [u])]

A
=
™

+K dr(u)?|c(0, |ul, 3, ta)|

IN
=
S
Sy
S
£
no
Y
n
=
S

Z Z ‘C(tl,tg,tg,t4)|>

t35ta t1=—00 ta=—00

+K D dr(u)? (Sup > 2 ’(tl’t2’t3’t4)‘>
T

t1,t2 t3=—00 tg=—00

IA
=

2H{Hg + 1) (Bleg)*/*}

I
=

dp(u)?[(ky +1) ... (kg 4+ 1)]2DFtFha (10)

III
~

where D = E[e§]'/* > ;2195 < 1. The second inequality follows from the stationarity assumption and
the fourth inequality comes from (3.23) of Giraitis and Robinson (2001). Focusing on the sum in (10),
for T large enough that 21 < T, we have

l l

T-1
;TdT('UJ)Q: 2T2 Z Z Z et Ak)u: 2T2 Z Z Z e~ Mu(i—k) (11)

—T j=—lk=—1 j=—lk=—lu=-T

2l +1
2T
27r 2T2 Z T oon2T

since the final sum in (11) is nonzero only when j = k or |j — k| is a multiple of T". Hence, by (9):

o0

l 4
Ve [ 37 (RO - BILOW | < Ko (Z(Hl)zm) = o/T),

j=—1 k=0

which implies Y°'__ {I,();) — E[L,(\))]} = Op(1}/?) as claimed. M
Proof of Theorem 3: Lemma 2 continues to hold since Assumption ARCH-8 implies >~ [v&| < o0
(see Giraitis and Robinson, 2001 and Giraitis et al., 2000 for details). Similarly, Lemmas 3 and 4 still

hold as they rely upon assumptions that are still directly enforced. However, Lemma 5 is no longer

applicable but Lemma 6 can be used in its place for this ARCH context. Hence, the expressions leading

12



up to equations (7) and (8) remain valid so that, given Lemma 3, all that is left to show is

. —1
ﬁ > A{LM) —E[IU(AJ-)]}M %5 N(0,2Q + II).

b 06
But the Holder continuity condition on df(\;6p)~!/06 ensures that

. —1 ™ . -1
ﬁ > L) — BILO)]} W =12 [ {L() - BlL)]} W%’gj)dx +0p(1)

JjEF1

for k=1,...,s (see, e.g., Hannan, 1973), and the proof of Theorem 2.2 of Giraitis and Robinson (2001)
shows TY2 [T {I,(\) — E[L,(\)]}(8/90) f(A; 60) "*dA — N (0,20 + TI) since ' f(); 6p) ~1/00 is square
integrable (see (3.2) of Giraitis and Robinson, 2001 and Parseval’s Theorem). B

13
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