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APPENDIX A: PROOFS AND DERIVATIONS

A.1 Proof of Proposition 3.3.

Denote the set of all coherent information structures with QN . Consider Σ22 ∈ QN and

its associated Borel sets {Bi : i = 1, . . . , N}. Given that Σ22 is coherent, its information

can be represented in a diagram such as the one given by Figure 1 in the main manuscript.

Keeping the diagram representation in mind, partition the unit interval S into 2N disjoint parts

Cv := ∩i∈vBi \ ∪i/∈vBi, where v ⊆ {1, . . . , N} denotes a subset of forecasters and each Cv

represents information used only by the forecasters in v. Given that
∑

v |Cv| = 1, it is possible

to establish a linear function L from the probability simplex

∆N := conv{ev : v ⊆ {1, . . . , N}}

=
{
z ∈ R2N : z ≥ 0,1′z = 1

}
to the space of coherent information structures QN . In particular, the linear function L : z ∈

∆N → Σ22 ∈ QN is defined such that ρij =
∑
{i,j}⊆v zv and δi =

∑
i∈v zv. Therefore
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L(∆N) = QN . Furthermore, given that ∆N is a convex polytope,

L(∆N) = conv{L(ev) : v ⊆ {1, . . . , N}} (6)

= conv
{
xx′ : x ∈ {0, 1}N

}
= COR(N),

which establishes COR(N) = QN . Equality (6) follows from the basic properties of con-

vex polytopes (see, e.g., McMullen and Shephard 1971, pp. 16). Each Σ22 ∈ COR(N) has
N(N+1)

2
=
(
n+1

2

)
parameters and therefore exists in

(
n+1

2

)
dimensions.

A.2 Proof of Proposition 4.1

The proposition is proved by showing E(1A|{XBi
}Ni=1, XB′) = E(1A|XB′). First, append XB′

to the multivariate Gaussian distribution (2) of the main manuscript:



XS

XB′

XB1

XB2

...

XBN


∼ N


0,

Ω11 Ω12

Ω21 Ω22

 =



1 δ′ δ1 δ2 . . . δN

δ′ δ′ δ1 δ2 . . . δN

δ1 δ1 δ1 ρ1,2 . . . ρ1,N

δ2 δ2 ρ2,1 δ2 . . . ρ2,N

...
...

...
... . . . ...

δN δN ρN,1 ρN,2 . . . δN




.

Denote XΩ = (XB′ , XB1 , . . . , XBN
)′. If e1 is the first standard basis vector of length N+1

and the above multivariate Gaussian distribution is non-degenerate, then Ω21 = e′1Ω22 ⇔

Ω21Ω
−1
22 = e′1. This identity together with the well-known results of the conditional Gaussian
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distributions (see, e.g., Ravishanker and Dey 2001, Result 5.2.10) give

E(1A|{XBi
}Ni=1, XB′) = Φ

(
Ω12Ω

−1
21 XΩ√

1−Ω12Ω
−1
21 Ω21

)

= Φ

(
e′1XΩ√

1− e′1Ω21

)

= Φ

(
XB′
√

1− δ′

)
= E(1A|XB′)

A.3 Proof of Proposition 4.2.

Given that

P ′ ∼ N
(

0, σ2
1 :=

δ′

1− δ′

)
1

N

N∑
i=1

Pi ∼ N

(
0, σ2

2 :=
1

N2

{
N∑
i=1

δi
1− δi

+ 2
∑
i,j:i<j

ρij√
(1− δj)(1− δi)

})
,

the amount of extremizing α is a ratio of two correlated Gaussian random variables. The

Pearson product-moment correlation coefficient for them is

κ =

∑N
i=1

δi√
1−δi√

δ′
{∑N

i=1
δi

1−δi + 2
∑

i,j:i<j
ρij√

(1−δj)(1−δi)

}

It follows that α has a Cauchy distribution as long as σ1 6= 1, σ2 6= 1, or κ ± 1 (see, e.g.,

Cedilnik et al. 2004). These conditions are very mild under the Gaussian model. For instance,

3



if no forecaster knows as much as the oracle, the conditions are satisfied. Consequently, the

probability density function of α is

f(α|x0, γ) =
1

π

γ

(α− x0)2 + γ2
,

where x0 = κσ1/σ2 and γ =
√

1− κ2σ1/σ2. The parameter x0 represents the location (the

median and mode) and γ specifies the scale (half the interquartile range) of the Cauchy distri-

bution. The location parameter simplifies to

x0 = κ
σ1

σ2

=
N
∑N

i=1
δi√

(1−δi)(1−δ′)∑N
i=1

δi
1−δi + 2

∑
i,j:i<j

ρij√
(1−δj)(1−δi)

Given that all the remaining terms are positive, the location parameter x0 is also positive.

Compare the N terms with a given subindex i in the numerator with the corresponding terms

in the denominator. From δ′ ≥ δi ≥ ρij , it follows that

δi
1− δi

=
δi√

(1− δi)(1− δi)
≤ δi√

(1− δi)(1− δ′)
(7)

ρij√
(1− δj)(1− δi)

≤ δi√
(1− δi)(1− δ′)

(8)

Therefore

N

N∑
i=1

δi√
(1− δi)(1− δ′)

≥
N∑
i=1

δi
1− δi

+ 2
∑
i,j:i<j

ρij√
(1− δj)(1− δi)

,

which gives that x0 ≥ 1. Given that the Cauchy distribution is symmetric around x0, it must

be the case that P(α > 1|Σ22, δ
′) ≥ 1/2. Based on (7) and (8), the location x0 = 1 only

when all the forecasters know the same information, i.e., when δi = δj for all i 6= j. Under
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this particular setting, the amount of extremizing α is non-random and always equal to one.

Any deviation from this particular information structure makes α random, x0 > 1, and hence

P(α > 1|Σ22, δ
′) > 1/2.

A.4 Derivation of Equation 4

Clearly, any δ ∈ [0, 1] is plausible. Conditional on such δ, however, the overlap parameter

λ must be within a subinterval of [0, 1]. The upper bound of this subinterval is always one

because the forecasters may use the same information under any δ and N . To derive the lower

bound, note that information overlap is unavoidable when δ > 1/N , and that minimum overlap

occurs when all information is used either by everyone or by a single forecaster. In other words,

if δ > 1/N and Bi ∩ Bj = B with |B| = λδ for all i 6= j, the value of λ is minimized when

λδ + N(δ − δλ) = 1. Therefore the lower bound for λ is max {(N − δ−1)/(N − 1), 0}, and

Σ22 is coherent if and only if δ ∈ [0, 1] and λ|δ ∈ [max {(N − δ−1)/(N − 1), 0} , 1].

A.5 Proof of Proposition 5.1.

(i) This follows from direct computation:

α =

 1
(N−1)λ+1

∑N
i=1 XBi√

1− Nδ
(N−1)λ+1

/(
1

N

N∑
i=1

XBi√
1− δ

)

=

N
√

1−δ
(N−1)λ+1√

1− Nδ
(N−1)λ+1

, (9)

which simplifies to the given expression after substituting in γ. Given that this quantity

does not depend on any XBi
, it is non-random.

(ii) For a given δ, the amount of extremizing α is minimized when (N−1)λ+1 is maximized.
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This happens as λ ↑ 1. Plugging this into (9) gives

α =

N
√

1−δ
(N−1)λ+1√

1− Nδ
(N−1)λ+1

↓
√

1− δ√
1− δ

= 1

(iii) Assume without loss of generality that P̄ > 0. If max{p1, p2, . . . , pN} < 1, then setting

δ = 1/N and λ = 0 gives an aggregate probability p′′ = 1 that is outside the convex hull

of the individual probabilities.

APPENDIX B: PARAMETER ESTIMATION UNDER SYMMETRIC

INFORMATION

This section describes how the maximum likelihood estimates of δ and λ can be found accu-

rately and efficiently. Denote aN×N matrix of ones with JN . A matrix Σ is called compound

symmetric if it can be expressed in the form Σ = INA + JNB for some constants A and B.

The inverse matrix (if it exists) and any scalar multiple of a compound symmetric matrix Σ are

also compound symmetric (Dobbin and Simon, 2005). More specifically, for some constant c,

cΣ = IN(cA) + JN(cB)

Σ−1 = IN
1

A
− JN

B

A(A+NB)
(10)

Define

Σ22 := Cov (X) = INAX + JNBX

ΣP := Cov (P ) = Σ22/(1− δ) = INAP + JNBP (11)

Ω := Σ−1
P = INAΩ + JNBΩ

6



To set up the optimization problem, observe that the Jacobian for the map P → Φ (P ) =

(Φ(P1),Φ(P2), . . . ,Φ(PN))′ is J(P ) = (2π)−N/2 exp (−P ′P /2). If h(P ) denotes the multi-

variate Gaussian density of P ∼ NN (0,ΣP ), the density for p = (p1, p2, . . . , pN)′ is

f (p|δ, λ) = h(P )J(P )−1 ∝ |ΣP |−1/2 exp

[
−1

2
P ′Σ−1

P P

]
,

where P = Φ−1(p). Let SP = PP ′ be the (rank one) sample covariance matrix of P . The

log-likelihood then reduces to

log f (p|δ, λ) ∝ − log det ΣP − tr
(
S−1
P ΣP

)
This log-likelihood is not concave in ΣP . It is, however, a concave function of Ω = Σ−1

P .

Making this change of variables gives us the following optimization problem:

minimize − log det Ω + tr (SPΩ) (12)

subject to δ ∈ [0, 1]

λ ∈
[
max

{
N − δ−1

N − 1
, 0

}
, 1

)
,

where the open upper bound on λ ensures a non-singular information structure Σ22. Unfortu-

nately, the feasible region is not convex (see, e.g., Figure 3 in the main manuscript) but can

be made convex by re-expressing the problem as follows: First, let ρ = δλ denote the amount

of information known by a forecaster; that is, let AX = (δ − ρ) and BX = ρ. Solving the

problem in terms of δ and ρ is equivalent to minimizing the original objective (12) but subject

to 0 ≤ ρ ≤ δ and 0 ≤ ρ(N − 1) − Nδ + 1. Given that this region is an intersection of four

half-spaces, it is convex. Furthermore, it can be translated into the corresponding feasible and
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convex set of (AΩ, BΩ) via the following steps:

Σ22 ∈ {Σ22 : 0 ≤ ρ ≤ δ, 0 ≤ ρ(N − 1)−Nδ + 1}

⇔ Σ22 ∈ {Σ22 : 0 ≤ BX , 0 ≤ AX , 0 ≤ 1−BX +NAX , }

⇔ ΣP ∈ {ΣP : 0 ≤ AP ≤ 1/(N − 1), 0 ≤ BP}

⇔ Ω ∈ {Ω : 0 ≤ AΩ −N + 1, 0 ≤ AΩ +BΩN, 0 ≤ −BΩ}

According to Rao (2009), log det(Ω) = N logAΩ + log (1 +NBΩ/AΩ). Plugging this and

the feasible region of (AΩ, BΩ) into the original problem (12) gives an equivalent but convex

optimization problem:

minimize −N logAΩ − log

(
1 +

NBΩ

AΩ

)
+ AΩ tr(SP ) +BΩ tr(SPJN)

subject to 0 ≤ AΩ −N + 1

0 ≤ AΩ +BΩN

0 ≤ −BΩ

The first term of this objective is both convex and non-decreasing. The second term is a com-

position of the same convex, non-decreasing function with a function that is concave over the

feasible region. Such a composition is always convex. The last two terms are affine and hence

also convex. Therefore, given that the objective is a sum of four convex functions, it is convex,

and globally optimal values of (AΩ, BΩ) can be found very efficiently with interior point al-

gorithms such as the barrier method. There are many open software packages that implement

generic versions of these methods. For instance, our implementation uses the standard R func-

tion constrOptim to solve the optimization problem. Denote optimal values with (A∗Ω, B
∗
Ω).
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They can be traced back to (δ, λ) via (10) and (11). The final map simplifies to

δ∗ =
B∗Ω(N − 1) + A∗Ω

A∗Ω(1 + A∗Ω) +B∗Ω(N − 1 +NA∗Ω)
and λ∗ = − B∗Ω

B∗Ω(N − 1) + A∗Ω
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