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Appendix A

Proposition 1. If B, is orthogonal, in iteration k, the subproblem o) = argming, ||y — BO®) — B.0,|> +
Y0all1 has a closed-form solution in the form ofel(lk) =S5y (BT (y—BOW)), in which S.,(z) = sgn(z)(|z|—7)+
is the soft-thresholding operator, and sgn(x) is the sign function and x4 = max(x,0).

Proof. It B, is orthogonal, in each iteration k, we solve 657 = argming ||y — BO®) — B,04]% + 7]|0al/1-
The first Karush-Kuhn—Tucker (KKT) condition of this optimization problem can be expressed as: V|jy —
Hai Hai 0
BO®) — B,0,||? + vg = 0, where V is the gradient operator and g = [g;] = Tgli( 1 ) g 7 0 The square
-5 ai —
is ||y — BO¥) — B,0,|1?> = 60X BT B0, — 20T BT (y — BO*®)) + ||y — BO¥)||2. Since BT B, = I, the loss function
can be simplified to ||y — BO®) — B,0,||> = 676, — 207 BT (y — BO®)) + ||y — BO®)||2. Consequently, after
simplification, the KKT condition gives 6, = BT (y — BO*)) — 29. We consider two cases for this solution,
if 64 # 0, then 04; 4 3sgn(0a;) = BE(y — BOW). 1f §,; = 0, then BT (y — BO®)) = 29 € [-3,3]. The
solution can be given in a compact form of o) = sen(BI (y — BH(k)))(|Bg(y — BQ(k))| — 3)+ , which is a
soft-thresholding operator denoted by Sy (BI'(y — BOW)) . O

Appendix B

Proposition 2. The BCD algorithm attains the global optimum of the SSD loss function in (1).

argmin ||e]|? + 0T RO + 7||04]1, subject to.y = B+ Baf, + e (1)
0,04

Proof. (Tseng, 2001) in page 484, Theorem 5.1 proved that if an objective function f can be decomposed into
the sum of a continuous function fy and some non-differentiable functions f; = 1,--- , N, with some basic
continuity assumptions on fy, the BCD algorithm guarantees to attain a local optimum. It is clear that the
SSD objective function in (1) is comprised of a continuous function |e||* + A0’ R and a non-differentiable
penalty term v||0,|1. Consequently, the BCD algorithm converges to a local optimum. In addition, since
problem (1) is convex, the attained optimum is the global optimum. O

Appendix C:

Proposition 3. The SSD problem in (1) is equivalent to a weighted LASSO problem in the form of

argmin F(0) = (y = Bala)" (I = H)(y = Baba) +7[0all: (2)

a

with H = B(BTB + AR)~'BT.



Proof. We first solve (1) for 0 by fixing 6,. That is § = argmin, ||y—BO—Ba0a ||2+/\9TR9+’YH6‘ |l1, which can
be solved via 6 = (BT B+ AR)~*BT (y — B,0,). Thus, it can be written that B = B(BTB+ AR)~'BT (y —
B.0,) = H(y— B,0,). By plugging in this into (1), we have 6 = argmin, Hy H(y— Baba) — Babal|]? + Ay —
B,0,)THT RH (y — Ba04y) +7||0a/1. After simplification and since (I — H)? + ABK 1RK 1BT(y B 9a)
I — H, where K, = BTB—i—)\R we can show that ||y — B — B,0,]? +)\9TR9+’Y||9 |1 = (y — Babla)T (I —
H)(y — Baba) + 7||0all1, which is the weighted LASSO formulation. O

Appendix D:
Claim 4. The f(6,) = (y — Baba)T (I — H)(y — Bab,,). is convex for 6,,.

Proof. f(04) = (y — Baba)T (I — H)(y — Bafy). To prove f(6,) is convex, we only need to show that I — H
is a positive semi-definite matrix. From Appendix C, it is given that I — H = (I — H)?> + AB(BTB +
AR)"'R(BTB + AR)"!BT. Clearly, the first term (I — H)? is a positive semi-definite matrix. For the
second term, since R is a positive semi-definite matrix, B(BT B+ AR)"*R(BT B + AR) ! BT is also positive
semi-definite. Consequently, f(6,) is a convex function. O

Appendix E:

Claim 5. f(-) is Lipschitz continuos, in which satisfies||V f(«) — Vf(B)|| < L||a — j]| for any «, 8 € R with
L = 2||Ball3

Proof. We first show that H is positive semidefinite matrix. H = B(BTB + AR)"'BT. Since BTB + AR
is positive definite matrix, (BT B + AR)~! is also positive definite matrix, and H is positive semi-definite
matrix.

We then prove that ||I — HH2 <1 Notlce that || X||2 refers to the spectrum norm of matrix X. This
is because that [|[I — H||2 = \/Amaz[(I — H)?] = Apax(I — H) =1 = A\ppin(H) < 1. The last equation hold
because Apin(H) > 0 since H is pos1t1ve serm definite matrix. Note that Ap,..(X) refers to the largest
eigenvalue of matrixX and A,;,(X) refers to the smallest eigenvalue of matrix X.

Consequently, ¥ f(a) = V{y — Boa) (I — H)(y — Bya) = 2BX(I — H)(Baor — ). |V f(a) — VF(B)] =
1287 (I = H)Ba(a = B)|l < 2B (I = H)By|l2 -l — B|| < Lljev = B, in which L = 2||B, |3

The last equation holds because [2BT(I — H)Bulla < |2BT |5 — H)lla|Balls < 127 |ol|Bal
2 Bal.

O

Appendix F:

Proposition 6. The prozimal gradient method for the SSD problem in (1), given by 93 = argminyg, {f( (k= 1))

<0a — Q,Sk_l),Vf(ng_l))> + L6, - 0 V)12 4+ 4)|04]11}, has a closed-form. solution in each iteration k, in
the form of a soft-thresholding function as follows:

_ 2 _
08 = 5308V + 2B (v — Baf" Y — ™)) (3)

with L = 2|| By |13

Proof. Since V f(04 giE—v ) = 2B§’Ba9§1’“*1) — 2BT(y — BOW), in each iteration given 087 the oF) =
argming, |0, — Ht(lk b 2BT(y — BOW — Baﬂt(lk_l))ﬂ2 + v[|0all1}}- Thus, from the result of Appendix
A, it is straightforward to show that this problem can be solved using a soft thresholding operator in the
form of 6" = S (9&’671) + 2B (y - B oY — pF)). O



Appendix G:

Claim 7. Suppose the Cholesky decomposition of Bl B; is given as Bl B; = Z;Z}', the eigen decomposition
Z7'DIDy(Z7 1T is Uydiag(s;) U and V; = B;(Z; )TU It can be shown that H;(\) = VT diag(

and its trace is given by tr(H;) = Y1 7555

1 1 :
T+As1’ 2 T Asn )‘/'“

Proof. The proof of the first part is given below:

Hi(\) Bi(BIB; + A\DI'D;,)*BI = B;(z;ZzF + ADI'D;)"*BF
Bi(Z7 ) (I + Xz DI Di(z7 ")) "W (27 B}
Bi(Z7 1) (I + \U;diag(s:)UT) ™ (2 >BT

= Bi(Z; )TU(I + Mdiag(s:) "' U (2, 1) B

= Vil + Adiag(s;)) " 'V/"
= V! diag(

1
T+ Xs;' 14 As,

Wi

To compute the trace of H;, we first show that V;'V; = U Z;'BI B;(Z;')"U; = U'U; = 1. Thus the

trace of H; becomes tr(H;) = tr(V;(I+Mdiag(s;)) "1V, = tr(VIV;(I+diag(s;)) 1) = tr((I+Adiag(s;))~!) =
Yict H% -

Appendix H:

“In this appendix, we applied the extended-maxima transformationmethod to the simulated images with
line anomalies, clustered anomalies and scattered anomalies. The detection results are reportedin Figure .
Moreover, the FPR, FNR, and computational time for all the benchmark methods are reported in Table 1.
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Figure 1: Anomalies detection comparison result for SSD and extended maxima transformation when § = 3
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Table 1: FPR, FNR, and computation time for line , clustered and scattered anomalies with § = 0.1,0.2,0.3

’ § \ Defect Type \ Criterion \ SSD \ Edge \ Jump | Local \ Global \ Maxima ‘

FPR 0.108 | 0.012 | 0.022 | 0.066 | 0.202 0.045
FNR 0.234 | 0.989 | 0.908 | 0.492 | 0.591 0.791
FPR 0.016 | 0.0003 | 0.086 | 0.539 | 0.211 0.008
FNR 0.035 | 0.979 | 0.837 | 0.756 | 0.799 0.868
FPR 0.011 | 0.008 | 0.179 | 0.019 | 0.204 0.018
FNR 0.076 | 0.858 | 0.722 | 0.567 | 0.752 0.984
FPR 0.027 | 0.016 | 0.037 | 0.058 | 0.202 0.005
FNR 0.021 | 0.900 | 0.126 | 0.181 | 0.507 0.792
FPR 0.017 | 0.0003 | 0.083 | 0.052 | 0.213 0.002
FNR 0.005 0.89 0.127 | 0.462 | 0.673 0.657
FPR 0.0114 | 0.005 | 0.138 0.02 0.203 0.004
FNR 0.0153 | 0.293 | 0.108 | 0.251 | 0.595 0.038
FPR 0.001 | 0.015 | 0.035 | 0.054 | 0.195 0.001
FNR 0.003 | 0.783 | 0.111 | 0.063 | 0.456 0.557
FPR 0.018 | 0.001 | 0.081 | 0.046 | 0.211 0.007
FNR 0.001 | 0.754 | 0.054 | 0.289 | 0.572 0.268
FPR 0.012 | 0.003 0.11 0.02 0.203 0.001
FNR 0.007 | 0.257 | 0.063 | 0.087 | 0.407 0.012
Computational Time 0.19s | 0.667s | 38.43s | 0.043s | 0.048s 0.039s
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’SSD’ for Smooth Sparse Decomposition, ’Edge’ for edge detection, ’Jump’ for jump regression, 'Local’ for local
thresholding, ’Global’ for global thresholding, and 'Maxima’ for extented maxima transformation.



