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Appendix A

Proposition 1. If Ba is orthogonal, in iteration k, the subproblem θ
(k)
a = argminθS ‖y −Bθ(k) −Baθa‖2 +

γ‖θa‖1 has a closed-form solution in the form of θ(k)a = S γ
2
(BTa (y−Bθ(k))), in which Sγ(x) = sgn(x)(|x|−γ)+

is the soft-thresholding operator, and sgn(x) is the sign function and x+ = max(x, 0).

Proof. If Ba is orthogonal, in each iteration k, we solve θ(k)a = argminθS ‖y − Bθ(k) − Baθa‖2 + γ‖θa‖1.
The first Karush–Kuhn–Tucker (KKT) condition of this optimization problem can be expressed as: ∇‖y −

Bθ(k) −Baθa‖2 + γg = 0, where ∇ is the gradient operator and g = [gi] =

{
sgn(θai) θai 6= 0

[−1, 1] θai = 0
. The square

is ‖y−Bθ(k)−Baθa‖2 = θTaB
T
a Baθa− 2θTaB

T
a (y−Bθ(k))+ ‖y−Bθ(k)‖2. Since BTa Ba = I, the loss function

can be simplified to ‖y − Bθ(k) − Baθa‖2 = θTa θa − 2θTaB
T
a (y − Bθ(k)) + ‖y − Bθ(k)‖2. Consequently, after

simplification, the KKT condition gives θa = BTa (y − Bθ(k))−
γ
2 g. We consider two cases for this solution,

if θai 6= 0, then θai +
γ
2 sgn(θai) = BTS (y − Bθ(k)). If θai = 0, then BTa (y − Bθ(k)) = γ

2 g ∈ [−γ2 ,
γ
2 ]. The

solution can be given in a compact form of θ(k)a = sgn(BTa (y − Bθ(k)))(
∣∣BTa (y −Bθ(k))∣∣ − γ

2 )+ , which is a
soft-thresholding operator denoted by S γ

2
(BTa (y −Bθ(k))) .

Appendix B
Proposition 2. The BCD algorithm attains the global optimum of the SSD loss function in (1).

argmin
θ,θa

‖e‖2 + λθTRθ + γ‖θa‖1, subject to. y = Bθ +Baθa + e (1)

Proof. (Tseng, 2001) in page 484, Theorem 5.1 proved that if an objective function f can be decomposed into
the sum of a continuous function f0 and some non-differentiable functions fi = 1, · · · , N , with some basic
continuity assumptions on f0, the BCD algorithm guarantees to attain a local optimum. It is clear that the
SSD objective function in (1) is comprised of a continuous function ‖e‖2 + λθ′Rθ and a non-differentiable
penalty term γ‖θa‖1. Consequently, the BCD algorithm converges to a local optimum. In addition, since
problem (1) is convex, the attained optimum is the global optimum.

Appendix C:
Proposition 3. The SSD problem in (1) is equivalent to a weighted LASSO problem in the form of

argmin
θa

F (θa) = (y −Baθa)T (I −H)(y −Baθa) + γ‖θa‖1 (2)

with H = B(BTB + λR)−1BT .
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Proof. We first solve (1) for θ by fixing θa. That is θ̂ = argminθ ‖y−Bθ−Baθa‖2+λθTRθ+γ‖θa‖1, which can
be solved via θ̂ = (BTB+λR)−1BT (y−Baθa). Thus, it can be written that Bθ̂ = B(BTB+λR)−1BT (y−
Baθa) = H(y−Baθa). By plugging in this into (1), we have θ̂ = argminθ ‖y−H(y−Baθa)−Baθa‖2+λ(y−
Baθa)

THTRH(y−Baθa)+ γ‖θa‖1. After simplification and since (I −H)2 +λBK−1λ RK−1λ BT (y−Baθa) =
I −H, where Kλ = BTB + λR, we can show that ‖y −Bθ −Baθa‖2 + λθTRθ + γ‖θa‖1 = (y −Baθa)T (I −
H)(y −Baθa) + γ‖θa‖1, which is the weighted LASSO formulation.

Appendix D:
Claim 4. The f(θa) = (y −Baθa)T (I −H)(y −Baθa). is convex for θa.

Proof. f(θa) = (y −Baθa)T (I −H)(y −Baθa). To prove f(θa) is convex, we only need to show that I −H
is a positive semi-definite matrix. From Appendix C, it is given that I − H = (I − H)2 + λB(BTB +
λR)−1R(BTB + λR)−1BT . Clearly, the first term (I − H)2 is a positive semi-definite matrix. For the
second term, since R is a positive semi-definite matrix, B(BTB+ λR)−1R(BTB+ λR)−1BT is also positive
semi-definite. Consequently, f(θa) is a convex function.

Appendix E:
Claim 5. f(·) is Lipschitz continuos, in which satisfies‖∇f(α)−∇f(β)‖ ≤ L‖α− β‖ for any α, β ∈ R with
L = 2‖Ba‖22

Proof. We first show that H is positive semidefinite matrix. H = B(BTB + λR)−1BT . Since BTB + λR
is positive definite matrix, (BTB + λR)−1 is also positive definite matrix, and H is positive semi-definite
matrix.

We then prove that ‖I − H‖2 ≤ 1. Notice that ‖X‖2 refers to the spectrum norm of matrix X. This
is because that ‖I −H‖2 =

√
λmax[(I −H)2] = λmax(I −H) = 1 − λmin(H) ≤ 1. The last equation hold

because λmin(H) ≥ 0 since H is positive semi-definite matrix. Note that λmax(X) refers to the largest
eigenvalue of matrixX and λmin(X) refers to the smallest eigenvalue of matrix X.

Consequently, ∇f(α) = ∇(y − Baα)T (I −H)(y − Baα) = 2BTa (I −H)(Baα − y). ‖∇f(α) −∇f(β)‖ =
‖2BTa (I −H)Ba(α− β)‖ ≤ ‖2BTa (I −H)Ba‖2 · ‖α− β‖ ≤ L‖α− β‖, in which L = 2‖Ba‖22

The last equation holds because ‖2BTa (I − H)Ba‖2 ≤ ‖2BTa ‖2‖(I − H)‖2‖Ba‖2 ≤ ‖2BTa ‖2‖Ba‖2 =
2‖Ba‖22.

Appendix F:

Proposition 6. The proximal gradient method for the SSD problem in (1), given by θ(k)a = argminθa{f(θ
(k−1)
a )+〈

θa − θ(k−1)a ,∇f(θ(k−1)a )
〉
+ L

2 ‖θa − θ
(k−1)
a ‖2 + γ‖θa‖1}, has a closed-form solution in each iteration k, in

the form of a soft-thresholding function as follows:

θ(k)a = S γ
L
(θ(k−1)a +

2

L
BTa (y −Baθ(k−1)a − µ(k))) (3)

with L = 2‖Ba‖22.

Proof. Since ∇f(θ(k−1)a ) = 2BTa Baθ
(k−1)
a − 2BTa (y − Bθ(k)), in each iteration given θ

(k−1)
a , the θ

(k)
a =

argminθa‖θa − θ
(k−1)
a − 2

LB
T
a (y − Bθ(k) − Baθ

(k−1)
a )‖2 + γ‖θa‖1}}. Thus, from the result of Appendix

A, it is straightforward to show that this problem can be solved using a soft thresholding operator in the
form of θ(k)a = S γ

L
(θ

(k−1)
a + 2

LB
T
a (y −Baθ

(k−1)
a − µ(k))).
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Appendix G:
Claim 7. Suppose the Cholesky decomposition of BTi Bi is given as BTi Bi = ZiZ

T
i , the eigen decomposition

Z−1i DT
i Di(Z

−1
i )T is Uidiag(si)UTi and Vi = Bi(Z

−1
i )TUi. It can be shown thatHi(λ) = V Ti diag( 1

1+λs1
, · · · , 1

1+λsn
)Vi,

and its trace is given by tr(Hi) =
∑n
i=1

1
1+λsi

Proof. The proof of the first part is given below:

Hi(λ) = Bi(B
T
i Bi + λDT

i Di)
−1BTi = Bi(ZiZ

T
i + λDT

i Di)
−1BTi

= Bi(Z
−1
i )T (I + λZ−1i DT

i Di(Z
−1
i )T )−1(Z−1i )BTi

= Bi(Z
−1
i )T (I + λUidiag(si)U

T
i )
−1(Z−1i )BTi

= Bi(Z
−1
i )TUi(I + λdiag(si))

−1UTi (Z
−1
i )BTi

= Vi(I + λdiag(si))
−1V Ti

= V Ti diag(
1

1 + λs1
, · · · , 1

1 + λsn
)Vi

To compute the trace of Hi, we first show that V Ti Vi = UTi Z
−1
i BTi Bi(Z

−1
i )TUi = UTi Ui = I. Thus the

trace ofHi becomes tr(Hi) = tr(Vi(I+λdiag(si))
−1V Ti ) = tr(V Ti Vi(I+λdiag(si))

−1) = tr((I+λdiag(si))
−1) =∑n

i=1
1

1+λsi

Appendix H:
“In this appendix, we applied the extended-maxima transformationmethod to the simulated images with
line anomalies, clustered anomalies and scattered anomalies. The detection results are reportedin Figure .
Moreover, the FPR, FNR, and computational time for all the benchmark methods are reported in Table 1.
”

Smooth-Sparse Decomposition Extended Maxima Transformation True Anomalies

Figure 1: Anomalies detection comparison result for SSD and extended maxima transformation when δ = 3
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Table 1: FPR, FNR, and computation time for line , clustered and scattered anomalies with δ = 0.1, 0.2, 0.3

δ Defect Type Criterion SSD Edge Jump Local Global Maxima

0.1

Line FPR 0.108 0.012 0.022 0.066 0.202 0.045
FNR 0.234 0.989 0.908 0.492 0.591 0.791

Clustered FPR 0.016 0.0003 0.086 0.539 0.211 0.008
FNR 0.035 0.979 0.837 0.756 0.799 0.868

Scattered FPR 0.011 0.008 0.179 0.019 0.204 0.018
FNR 0.076 0.858 0.722 0.567 0.752 0.984

0.2

Line FPR 0.027 0.016 0.037 0.058 0.202 0.005
FNR 0.021 0.900 0.126 0.181 0.507 0.792

Clustered FPR 0.017 0.0003 0.083 0.052 0.213 0.002
FNR 0.005 0.89 0.127 0.462 0.673 0.657

Scattered FPR 0.0114 0.005 0.138 0.02 0.203 0.004
FNR 0.0153 0.293 0.108 0.251 0.595 0.038

0.3

Line FPR 0.001 0.015 0.035 0.054 0.195 0.001
FNR 0.003 0.783 0.111 0.063 0.456 0.557

Clustered FPR 0.018 0.001 0.081 0.046 0.211 0.007
FNR 0.001 0.754 0.054 0.289 0.572 0.268

Scattered FPR 0.012 0.003 0.11 0.02 0.203 0.001
FNR 0.007 0.257 0.063 0.087 0.407 0.012

Computational Time 0.19s 0.667s 38.43s 0.043s 0.048s 0.039s

’SSD’ for Smooth Sparse Decomposition, ’Edge’ for edge detection, ’Jump’ for jump regression, ’Local’ for local
thresholding, ’Global’ for global thresholding, and ’Maxima’ for extented maxima transformation.
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