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Proof of Proposition 1. To prove statement C1, observe first that Ep, [ﬁh(aj)} = Np(x),

and
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Assumption A5 implies that the sampling design P}, is of asymptotically maximal entropy, so

that the inequalities
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hold, C' being an absolute constant (cfr. Hajek (1981), p. 74). From (1) and Chebyshev
inequality, statement C'1 follows.

The proof of statement C2 is based on the same arguments as in Conti (2014) (Lemmas
1-4 and Proposition 1). First of all, from a first order Taylor expansion and statement C'1, it is

seen that the asymptotic law of Wi ~ () coincides with the asymptotic law of

VN
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Using the same arguments as in Conti (2014) (Lemmas 1-2), and taking into account that

E [L(z=2) Liyni<y) — Fun(y[2))] =0

it is immediate to see that, as N goes to infinity,
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At this point the claimed result can be obtained by using the same technique as in Conti (2014)
(Lemmas 3-4 and Proposition 1). Independence of W{(-) and W3 (-) follows from independence
of W' y(-) and W3 () for each N.

Finally, statement C3 is a consequence of C'2 and the Glivenko-Cantelli theorem.

Proof of Proposition 2. From Theorem 4.2 in Gietl and Reffel (2013), it follows that if IPF
converges than the solution matrix of IPF continuously depends on the starting matrix and on
the marginals. Hence, using Proposition 1 and C3, p* (ylll, yl22 |x) converges in probability to the

solution of IPF procedure that uses pST(ylll, yéﬂx)s as entries of the starting matrix, and with



marginals pp(-|x), i.e. to p* (ylf, yéﬂx), say. This proves the first claim of Proposition 2. The
same arguments also proves that p}*v(ylll, y?\a:) converge a.s. to p*(ylll, yl22|:c)7 from which the

second claim of Proposition 2 follows.

Proof of Proposition 3. The technique of proof is identical to that of Proposition 3 in Conti
et al. (2015), by applying the Skorokhod representation theorem to the processes Wy NG WEC)

in Proposition 1. As far as the asymptotic variance is concerned, define first the sets

7 = {(y1,92) : K§(y1,92) = Fa(iele) b, T3 = {(y1,92) - K (y1,92) = Fo(yy (az)]2) }
75 = {(y1,y2) : K (yi,9) = Fi(ylo) b, TF = {(y1,92) - K (y1,92) = F1(0y, (ba)|2) }
S§ = {1 2) : KZ(y1,92) = 0}, ST = {(y1,52) : K (y1,92) = Fi(y1]2) + Fa(yalz) — 1},
S5 = {(y1,52) : KZ(y1,92) = F1(0y, (bs)|2) + Fa(ylz) — 1},

S5 = {(y1,52) : KZ(y1,32) = Fi(y1l2) + Fa(y, (az)|z) — 1},

Si={(.12) : K2 (y1,y2) = F1(0y, (bz)|x) + Fa(y, (az)|a) — 1}

and the functions
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B*(J; a, b) = min(J(a|z), J(b|z)) = J(alr) J(b|x); J = Fi, Fy

R*(y1,y2) = KZ(y1,y2) — K (y1,92)

Then, V(Fy, Fy; x) possesses the form stated in Proposition 3, with

Vi(Fy, Fo; o) = /4 Fo(ya|x) Fo(zo|z) B (F1;5 y1,21) AR (y1, y2) dR* (21, 22)
R



and
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Proof of Proposition 4. A first order Taylor expansion shows that the asymptotic distribution

of VN (pn(x)

— pn(z)) coincides with the asymptotic distribution of
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It is immediate to see that, as IV goes to infinity,

Ziow = oy = pv(@)) 5 0, 8% 5 p(a)(1 = ()51 — 1)

Hence, the same arguments as in the proof of Proposition 1 lead to:
~ d
VN (pn(w) = pn () = N(0,7°(5 — 1)p(2)(1 — p(2))), h=1,2. (9)

From the independence of py(x) and pa(x), Proposition 4 follows.
Finally, the asymptotically optimal value of 7 is the value of 7 minimizing 72(¢; — 1) + (1 —

7)%(s2 — 1), that turns out to be equal to (s — 1)/(s1 + s2 — 2).

Proof of Proposition 6. First of all, the equality

(ny' + ﬁz_l)_l/2 (AH — A(Fin, FzN)) =Ly + Loy (10)
holds, where
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From Propositions 3 - 5 it is argued that (11), (12) are asymptotically independent, as N
increases. Hence, we just have to study separately the asymptotic behavior of (11) and (12). As

far as (11) is concerned, using the symbol ~ for asymptotic equivalence, in view of Propositions



1 - 5 we have:

K
f/lN ~ (ﬁ;l + ﬁ51>_1/2 Zp(ﬂ?k) (ﬁmk - Awk (FlNa FQN))

The quantity Loy can be dealt with similarly, from which the proposition follows.
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