Supplementary Material for

“Panel Data Models with Interactive Fixed Effects
and Multiple Structural Breaks”

Degui Li%, Junhui Qian®, and Liangjun Su®
@ Department of Mathematics, University of York
b Antai College of Economics and Management, Shanghai Jiao Tong University
¢ School of Economics, Singapore Management University

This supplemental document provides the proofs of all the technical lemmas in Appendix B
of the main document.

C Proofs of the technical lemmas

In this appendix we give the detailed proofs of the technical lemmas used in Appendix B. Before
proving Lemma B.1 on the convergence rates of Bt, we give some preliminary results. Let
b = (b),b,...,b,)" where b is a p-dimensional column vector and let C' be a positive constant
whose value may change from line to line. Recall that 7 = min(\/ﬁ T ).

Lemma C.1 Suppose that Assumption 1 in Appendiz A holds. Then we have
(i) supy supy ’ﬁ Zr‘tr:l bl’tXt’MAet’ = Op(pN—Y2 4 pl27-1/2),
(ii) supy | 7 X1y fAYM ace| = Op(3).
(iii) sup | g Yy P act| = Op(037).

(v) N7 i—1 P poct = Op(N ),
where supy, is taken with respect to b such that ||b|| < C(pT)
to A such that +A'A = Ip,.

12 gnd sup A s taken with respect

Proof of Lemma C.1. (i) Note that b 3/ ;X[ Mae, = 5 30/ b Xjer—wm Sopq biX[AA g,
if %A' A = Ip,. By Assumption 1(iii) and the Cauchy-Schwarz inequality, we have
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for [|B])2 = S°E, ||b¢]|?> < CpT. On the other hand, by some elementary calculations, we have
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By the restriction on A and Assumption 1(ii), we have

max HXtAH = rilta<XTtr (A'X: X[A) < A (X1 X¢) |A|*> = Op(N?). (C.2)

On the other hand, using +A’A = I'g, and Assumption 1(iii), we have

T
ZHA'@H2 = ZTr 'eief ) = Tr(A'ee’A)
t=1

< N HEHSp Tr(A'A/N) = NRo||e|3, = Op (N(N +T)). (C.3)

It follows that .
1> BX[AN | = Op(p' 2 (N?T? + N3/2T)), (C.4)

t=1

as ||b]| < C(pT)*/2. Then, by (C.1) and (C.4), we can complete the proof of (i).
(ii) By the definition of M A and noting that %A’A = IR,, we have
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By Assumptions 1(i) and (iii), we readily have

T T
ST A = (31412 ZHAO’ )12 — 0p(VNT). (C.5)
t=1 t=1

On the other hand, as in the proof of (C.4) above we can show

T
|3 AYANE| = Op(N*T'? + N32T), (C.6)
t=1

We then complete the proof of (ii) by using (C.5) and (C.6).
(iii) As FA'A = I, we have w7 Zle eiPaer = ﬁ Zle g AN g;, which together with
(C.3), completes the proof of (iii).

(iv) Using Assumption 1(iii) and the fact &A% A° L, >4 under Assumption 1(i), we have

T T
1 ’ 0/ A O H 1 or_ ||2
il < R
‘NT;QPAO&’ = NH( A A) NT;HA 2l
= Op(Nfl) -Op(l) -Op(l) ZOP(Nfl), (C.7)
which completes the proof of (iv).
We has thus completed the proof of Lemma C.1. |



Lemma C.2 Suppose that Assumption 1 in Appendiz A holds and pN /2 4 pt/2T7-1/2 — o(1).
Let 3 = (6/1, ,ﬂ,T)/ and A = ()\,1, ,)\/N)/ be the preliminary estimates of B° and A° which
minimize QNT(ﬁ, A), the first term of the objective function defined in (2.4). Then

T

1 .

= > 18— B2 = Op (PN T2+ p/2T71/2) = 0p(1).
t=1

Proof of Lemma C.2. The proof of this lemma is similar to that of Theorem 3.1 in Appendix
B of the main document. Notice that

NT,t(Bes A (C.8)
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T
Qnr (8. A Z{ — X18,) M p (Vi — X453, ] =—

and
— XifBy = Xe(B) = By) + A°f + e (C.9)
Then, by (C.8) and (C.9) and using the fact that M ,0A? = 0, we have

Qnt(B,A) — Qnr(8°, A°)
_ Z S - X M4 (- XB) (Y- X)) Mpo (¥ - X,5)]
v

T
11 .
= LS L (B A XIM X (B — ) — 25, — ) XIM A AFD + F AV A
t=1
11
+ N { — BY)' XM je1 + 2fYAYM j5, — &P i + sgPAost] (C.10)
t=

By Lemma C.1 above, we can prove that

NT Z | ~2(8,~B0) XIM jer+2f A”M s, — (P jer+61P posi| = Op(pN~/24p!/2T71/2),

(C.11)
Let ds = B — % and dy = ﬁvec(M AA") where vec(-) denotes the vectorization of a
matrix. Define

. 1 .
A = Ndiag(X{MAXl,...,X’TMAXT), B=(F'F° @Iy, and

1
N1/2 [

where ® denotes the Kronecker product. It is easy to verify that

C = A OMiXy, .., ff & M;Xr|,

T
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and , . ) . .
7 D IVAYMAAY = = > T (MAASFYAYM ) = 2 d\ By,
t=1 t=1

where we have used the following fact on matrix calculation that Tr (A1A2A3) = vec' (Al) (Ag ®
I)vec(As) and that Tr(A;A2A3A,) = vec’ (A1) (A ® Al)vec(Aj) with k being the size of
the column vectors in Az (in the first equation). With the above notations, we may show that

T
1 Z % [(575 - 5?)/X£MAXt (/3,: - 5?) - 2(5,5 - 5?)’X{MAA0ft0 + fz?/AO,MAAOfﬂ

(d3Ads —2d,Cds + dyBdy) = (JBDdﬁ +d,Bd.),

where D = A — ¢'B7€ and d, = dy — B+Cd5 By Assumption 1(i), we may show that
the minimum eigenvalue of %B is bounded away from zero w.p.a.l, i.e., there exists a positive
constant ¢4 such that p;, (B/T) > ¢4 w.p.a.l. Using a decomposition similar to (B.8) in
Appendix B, we can readily show that umaX(C/C/T) = op(1). By Assumption 1(ii), we can
also show that the minimum eigenvalue of A is bounded away from zero w.p.a.l, i.e., there exists
a positive constant ¢, (defined in Assumption 1(ii)) such that g, (A) > ¢, w.p.a.l. Hence, we
have proved that the matrix D is asymptotically positive definite as its minimum eigenvalue is
positive and bounded away from zero w.p.a.l.
Note that

%(JBDJQ +d,Bd.) +Op(pN~Y2 4 p!?T7Y2) < Qur(B,A) — Qur(8°,A°) <0, (C.12)

d{kB d, is asymptotically nonnegative, and d. Ddg > C5Hd5H2 where c5 is a positive constant. It
follows that L |dg||? = L LS 1B — B2 = Op(pN—1/2 + p'/2T=1/2) = op(1), completing the
proof of Lemma C.2. ]

Lemma C.3 Suppose that Assumption 1 in Appendiz A holds and pN—1/2 4 pt/27-1/2 — o(1).
Let H=Hpyp = (1 FO'FO)( L AO’A) VX,T, where Vi is analogously defined as Vyr in (2.7)
with B; replaced by Bt Denote i)y = 7 Zt Be = B2, Then we have

(i) %A = A°H|® = Op (557 + iinr).

(ii) £ (A — A°H)'AYH = Op (5% +7¥2),

(i) % (A~ AYH)'A = Op (577 + i)

(iv) L(A'A — H'AYAYH) = Op (532 + iil2),

(0) P4 —Progll = OP((SNT + 7).

(vi) == Zs:l(A AOH) EsYs = Op(5N2T +77]\{T) with v, =1 or f2, and

(vii) 5 S0 [|(A = ACH) =2 = Op (1 + NT~H) (033 + inr)).-



Proof of Lemma C.3. (i) By (2.7) and (C.9) and letting d; = 3, — 52, we have
AVyr — A°HVyr

- [%i — XuB,) (Ve — Xtﬁt)}A—AOHVNT
1 t:j} . o« e
- {ﬁ — Xpdy + A f} +5t][_Xtdt+A0fto+6t],}A—AOHVNT
1 & N
- ﬁ;)(td WAL XIA — NTZXtdtfo/AO/A_ _thdﬁ;A NTZAOft 4 XA

Z A°fieiA NT ZEtd,XtA + = NT Z%?th/AO/A + —= ZEtSt

ZQNTJ- (C.13)
j=1

Noting that Tr (AB) < Tr(A) Tr(B) for conformable positive semidefinite matrices A and
B, |[A|| = Op(N'/?) and max;<i<r p2,., (X} Xt/N) = Op (1) by Assumption 1(ii), we have

T T
. 1 . .
lanTal® = N2T2ZZTr(XtdtdgngA’Xsdsdgxg)
t=1 s=1
2 1 & ? 2 1 & ?
< A ey | = [A]*{ 57 i
=1 t=1
2 1 T 2
< AL [ st )] {5 o002} =00t a0
t=1

1<t<T

Noting that Tr (AB) < Tr (AA")"2 Tr (BB')"/? for conformable matrices A and B, we have

1 T T

. o« o/
linral® = Sz DD Tr(Xudi [ AYAAA® f1d, X)
t=1 s=1
9 T T
< A 0/ A0 0 /
< HA foa (AYA0) N2T ;; r(Xede £ fOd,X7)
2
< A pana”a0/) i (T (f0d; X)X,y fO) }
= N max - t
2
YK O/ 0 1 d 0
< HA :umax( A /N) |:II18,X Hmax (XtXt/N :| fZHdt” Hft H

— 0p(N)Op(1 antuﬂzuft P =0p (Niyr),  (C.15)



and analogously

linTall® = Op (N( leﬁt Bt||2>> = Op (Ninr) - (C.16)

Noting that Zle let]|? = Op(NT) by Assumption 1(iii) and maxi<i<r fpmay (X7 Xi/N) =
Op(1) by Assumption 1(ii), we can show that

1

. 2 / / /
lanrsl? = N2T2;;Tr Xdye! A e,d X! <HAH N2T2;;Tr Xdyehesd X"
2
12 1 7 ! n11/2
< HAH WZ{Tr(stthtXtdtst)}
t=1
1«2 1 & :
< -
< A7 g e (2)] {T > e udtn}
1 T
< OP(UTZHQH ledt\l = Op (Nijn7) (C.17)
t=1
and analogously
N,
Jixrsl? = Op (? P 6?||2> = Op (Nityr). (C18)
t=1

The analysis of the remaining three terms is similar to the proof of Theorem 1 in Bai and
Ng (2002) by switching the roles of f; and \;. For x5, using the fact that AYA? = Op(N),
|A| = Op(N'/?) and Assumptions 1(iii) and (iv), we can prove that

T T T T
linrs)* = @ SN Tr(A% e AN YA = N21T2 SN Tr( Sl AN e AV AC)

t=1 s=1 t=1 s=1

1 T T N N
- or (W YT S i )
t=1 s=1 i=1 k=1
1 N T T
i=1 k=1 =1 s=1
1 N N 2 /(N N 1/2
- o W(zzuw uw) 193 )9 SRR
=1 k=1 =1 k= t=1 s=1
1 N N 1/2
= Op 3 ZZeneksft Fid = Op(N/T), (C.19)
=1 k=1 [|t=1 s=1




and

T T T T
| 1 " 1 o
linrel® = < 0 0 Tr (cefAYANAY L) = o SN Tr (AYAA'A flele )
t=1 s=1 t=1 s=1
1 T T
= Op (ﬁ YN Reef > = Op(N/T). (C.20)
t=1 s=1

By the assumption that maxi<; j<n E [H Zthl Zle €it€js€£€sH2} = O(N?T? + T?) in Assump-
tion 1(iii), we can similarly prove

lanTs|® = Op(N/T). (C.21)
By (C.13)—(C.21), we can prove that

1., . . .
NHAVNT — AOHVNTH2 = Op((S;\?T + ﬁNT)' (0.22)

Premultiplying (C.13) by A,, and using the identification restriction on A: %A/A =1Ig,,
(C.22) and Lemma C.2, we may show that

Ve — <%A’AO> (%FO’F0> <%AO’A> — op(1). (C.23)

Furthermore, applying (C.12) in the proof of Lemma C.2 and noting that the matrix B is
positive definite, we can show that

1

1 10\ /1
FAYM A" = ZAVAY <—A0/A> (—A’A0> = op(1),

N N N

which together with Assumption 1(i), implies that %A,AO is asymptotically invertible and thus
V7 is also asymptotically invertible. We can then complete the proof of (i) by using this fact
and (C.22).

(ii) Observe that by (C.13)
1 1S 1S
j=1 j=1

By Assumption 1(i) and (C.14), we can readily prove

L., . . + 1 . :
il < (gslinnal ) IVarl - (FIAH1) =OpGinr). (€29
Analogously, by (C.15) and (C.16), we can prove that
1/2

1. ., .1/2 1, .,
Slirral = 0p (i37) and linrall = O (237 - (C.26)
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For u}‘w,g, by the definition of un7 3, we have

—a}kVT,S = - V;TUIZVT,gAOH = VNT Z A Etd/XtA.OH

NT

— NT — Vi Z H'AY,d, XIA°H + — NT Var Z (A — A°H) eid, X]A°H
= UN73e + UNT 30 (C.27)

By the Cauchy-Schwarz inequality and Assumptions 1(ii) and (iii), we have

1/2 T 1/2
1 .
L Z AV < ( > A% ||2) (T > HdtHQ) = Op (Nitwr)'?).
t=1

(C.28)
Similarly, with the help of Lemma C.3(i), we can also prove that
1/2
[anr sl = Op (NnNT + No i N/T) (C.29)
y (C.27)—(C.29), we have
I . 1/2
Sl sll = Op (e + 05kiNz. ) - (C.30)
Similarly, we can also show that
1/2
HUNTGH =0p (77NT + 5NT77]\?T> (C.31)
For ﬁ}"VT’E), by the definition of U7 5, we have
1 L ’
ﬂ?\/Tﬁ = WV;TZH Ao’stf "AYACH + —VNTZ A AOH) c fO/AO/AOH
t=1
= UNT5. + UNT 5 (C.32)
By Assumptions 1(i) and (iii), we have
1, — 1
[y 5all < CTH S AV £ = OP(THAO’EFOH) - Op <N1/2T_1/2> . (C.33)
t=1
Using Lemma C.3(i), we can also prove that
lirssll = Op (Nipyg + N632) (©.30
y (C.32)—(C.34), we have
L. . _
NHUNTﬁH = Op (in7 + S57) - (C.35)



Noting that AN = Op(N) and using the assumption E[HAO/EZFOH2] = O(NT) in Assumption
1(iii), we can also show that

1 ., ) _ 1, .. . _
NHUNTJH =Op (77NT + 5N2T) and NHUNT,sH =0p (77NT + 5N2T) . (C.36)

By (C.24)—(C.26), (C.30), (C.31), (C.35) and (C.36), we can complete the proof of (ii).

(iii) and (iv) The proofs of (iii) and (iv) can be completed by using the results in Lemmas
C.3(i) and (ii).
(v) Note that

7
Pi—Proy=ARA) A — AH(H'AYAH)"H'AY = ingy, (C.37)
j=1

where

ontn = (A—AH)(H'AYA°H)" (A - AH),
int2 = (A - AOH)(H AO’AOH)+H A,

(A — AYH)[(A'A) "~ (E'AA'H) ") (A - A%H).
inta = (A—AH)[(A'A)Y — (H'AYAH)"|H'A”,
onrs = ACH(H AYA’H)™(A - A°H)',
inre = ACH[(A'A)" — (H'AYA’H)"](A - A°H),
intr = ACH[(A'A)" — (H'AYA°H)"|H'AY.

UNT3 =

Using the results in Lemmas C.3(i) and (iv), we can prove (v).
(vi) The proof is analogous to that of part (ii) and thus omitted.
(vii) By Assumption 1(iii) and part (i),

T
L ._0.;2_L A AOEY A AT
NT;H(A A )2 = NTTr((A AYH) ee'(A — A H)>
N o« ] . .
= OP((1+NT D (On7 +iint))-
We have thus completed the proof of Lemma C.3. ]

With the above three lemmas, we are ready to give the proof of Lemma B.1.

Proof of Lemma B.1. Let QNT,t(Bm A) be defined as in (C.8), 3 and A be defined in Lemma
C.2, and H be defined in Lemma C.3. Note that

— XuBy = Xu(8) — B,) + AH T2+ (A°— AH ) 0 + 2. (C.38)



The preliminary estimate Bt which minimizes Q ~NT.t(Bg, A) (with respect to ;) satisfies that
1

XM (A~ AHT) £, (C.39)

1 . 1
(NXéMAXt) By — BY) = ~ XM jee +
as M AA = 0, where 0 is a null matrix or vector whose size may change from line to line.

We first consider the term %X{M Act- Notice that

1 1 1
NX{MA& = NXt’MAost + NX{(MA — MAo)st. (C.40)
By the definition of M 40, we have
1 1 1
NX{M A0t = nggt - NX,{A0<A0’A0)+A0'5t. (C.41)

By Assumption 1(iii), we can show that for each 1 <t < T
1 _
S Xiedl = 0p (p1/2N 1/2). (C.42)
By Assumptions 1(i)—(iii), we can show that for each 1 <t < T
1 +
XA = Op(N), [A%e] = Op(N*%) and (A%A%) 235,
which imply that
1
SIX/AYAYAY) AV | = Op (N*I/Z) . (C.43)
Thus, by (C.41)—(C.43), we have
1 _
SIXIM poei|| = Op (p1/2N 1/2) . (C.44)
To derive the order of X/ (M ; — M o)es, we need to investigate the term M ;3 — M 0. By
(C.37), we have

7
—(MA B MAO) _ A(A,A)+A, _ AOI:I (H/AOIAOI_‘I)+HIA0/ _ Z{)NT,j- (0'45)
j=1

We next show that -
1 . _
SIX (D ovry)ed| = Op (937)- (C.46)
J=1

To save the space, we only consider the case of j = 5. Other cases can be studied similarly. For
X,ONT 564, note that

ints = AH(H AYA’H)'(A - A°HY),
= AH(H'AYAH) Vi (AVyr — A°H Vyr)',

8
= AH(H'AYAH) "V (Y anry) s (C.47)
j=1
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where 4n7j, j = 1,...,8, are defined in the proof of Lemma C.3(i) above. By the fact that both
H and Vyp are asymptotlcally invertible and similar to the proof of Lemma C.3(i), we readily

prove that
!/
5
1 . . o \NT .4 . . _
< |xiatH (B'AYACH) " Vi | S inr +inrs | e = Op (635 + oxying ) - (C43)

j=1
Meanwhile, by Assumptions 1(i)(ii) and noting that
T

T
max E[Z’egetf] = max E[Z({st) | = O(N? + NT)
s=1 =1

1<t<T 1<t<T

by Assumption 1(iv), we can prove that

1 o e . .
= HX{AOH(H/AO’AOH)“LVETQQVT’(;&H
1 1 « '
s=1
1 L ’
— A /
= Op (NQT ;A Xodse et >
and
. T L ) 1/2 L 1/2
A/ -1/2 A/ 2
N7 | oA Xedstier| < NTY (WZ( ; ) ‘(ﬁZHEéEtH)
s=1 s=1 s=1
| 1/2
- or s (3 2mer) )
s=1
which together with Lemma C.2, indicate that
1 o e . .
< HX{AOH(H’AU’AUH)+ VETﬂQVT,eetH = Op (5—Tn}v/§) (C.49)
Similarly, we can also show that
1 . e . .
v HXt’AOH (FL'AYAYE) TV iy e H
!/
1 o e 1
= = X/AH (H'AYAH) Vyr ( T Zes O’AO’A) = ) N7 Oeles

1/2 T 1/2
= ov (S (e el) =ontih e
s=1

11



Then, by (C.48)—(C.50) and using the fact that 7y = op(1) in Lemma C.2, we can readily
prove that

1
N |’X£®NT75E'5H = Op ((5]_\,171) . (C51)

Then we complete the proof of (C.46), which implies that
1 _
~ IXHM 4 = M yo)er|| = O (637) - (C.52)

We next consider the term iXt’M A (AO — Aﬂ+)f?. Note that

1 .
NX{MA(A H) 2= —XIM gy (A°—AH") P +NXt(M —M jop) (A°—AH ") f.

(C.53)
Applying Lemmas C.3(i) and (v), we can find that = ~X{M (A — AH )fto is the leading

term, which will be the major focus in the following proof. Note that
A~ AH" = (AH Vg — AVar) Vi

We can apply the decomposition (C.13) for A°’H V yp— AV yr, use the fact that MAOH-AOH =
0 and both H and V7 are asymptotically invertible, and then obtain

1 N
NX{MAOH(AO—AH )= Xt ZuNTﬁZuNTJ VarH 0. (C54)
j=1 7=6

Similar to the proof of Lemma C.3(i) and using the decomposition A = (A—AOH )+ A’H, we
may prove that

8

1 . . . s et _ )

N X{M popg | anry +anrs + § anrty | VarH f2|| = Op (05 + finr)- (C.55)
j=6

Meanwhile, letting x,, = f¥(# FO'FO) f?, we may also obtain

T
1 . . 4.t 1 s e b et
—ngM agiNt2VrH ) = T ZX{M Ao Xsds fOAYAV H ' f
= =7 th A0Er XsXsts- (C.56)
Note that 1 1
; P
N XM A X0(8, = BY) ~ 5 XM oy Xidy, (C.57)

where a < b denotes a = b(1 + op(1)). By (C.39), (C.44), and (C.52)—(C.57), we have

T

1 1 _ _ .
XM pog Xody — > XIM o Xoxds| = Op (p1/2N V212 4 nNT) . (C.58)
s=1

12



Let Lyp = diag { %X{M pog X1, ... % XM pop; X7} and Ly7,. be the T' x T block matrix
with the (£, s) block being 57X/ M po0 g XsX s By (C.58), we may show that

(Lt — Ln7s) ds = R, (C.59)

where dg is defined in the proof of Lemma C.2, Ryr = (R}, ..., R})" with

T
|Rell = Op (P/2N 72+ T2 4 i) and Z|Rt||2 Op (PN 1+ T4 +ifiy)

Using the arguments as used in the proofs of Theorem 3.1 and Lemma C.2, we can prove that
L7 — LT+ is asymptotically positive definite with the smallest eigenvalue bounded away from
zero. Hence, (C.59) indicates that

T

1. 1 : _ 1,

ZNdsl? = = 37113 - BIP = Op (PN + T i) (C.60)
t=1

Which in conjunction with the definition of 7y in the statement of Lemma C.3, implies that
= ds||> = Op (pN !+ T71), and strengthens the consistency result in Lemma C.2. By the fact
that the matrix +X/M 40X, is positive definite as well as (C.58) and (C.60), we can prove
that

Ji- ] =on (37 00 54

for each t, completing the proof of Lemma B.1 in Appendix B. [ ]

Proof of Lemma B.2. (i) Using the argument in the proof of Lemma C.2 (with some mod-
ifications), we may prove that nyr = op(1). Then, following the proofs of (C.44) and (C.52)
above, we can readily show that

T
1
N2T 2 : HXIgMAEtH2 = OP(pN_l + T_l)- (C.61)
t=1

Furthermore, by the Cauchy-Schwarz inequality, we have

1 T T ) 1/2
N—Z —BY)XIM e = Op (p"/%63%)- ( 59”) = Op (0,7 - (C62)

t=1

ii) As AYM Ao = 0, we have fYAYM ;e = fYAY M ; — M po)et. Similar to
t 1/t A t 1/t A
the decomposition in (C.37), we have

7
P; —Proy =AAANTA - AHHAYAH) H'AY =Y uyry, (C.63)
A A'H 2]
j=1

13



where H = Hyt = (%FO’FO) ( 1AO'A) VJJ(,T, Vit is defined in (2.7), and UNT s j = e
are analogously defined as on7; in the proof of Lemma C.3(v) with A and H replaced by f&
and H, respectively. We only need to show that

Z FYAY (M5 — M po)e
t=1

ZfEIAOI ZUNTJ el = Op (5 2T+6p }VTU%:,Q«> (0.64)

t=1 7=1

When (A, H) is replaced by (A, H), it is easy to verify that the convergence results in
Lemma C.3 still hold with 77 replaced by ny7. By Assumption 1(iii),

T

or 0
E A Etft
t=1

which together with Lemma C.3 (with some modifications to allow the replacement of 7y, A,
and H by nyr, f&, and H, respectively) indicates that

= Op(VNT), (C.65)

T
1
NT > FAY (onra + vnra +ovtg) edl| = Op (NT) 2 (535 + ). (C.66)
t=1
On the other hand, note that
T T [ 8 '
> (AVNr — A°H V) 'e f? Z > unty | || (C.67)
t=1 =1 \j=1

where un7;, j = 1,...,8, are defined similarly to iy 1 in the proof of Lemma C.3 (i) with Bt
and A replaced by ﬁt and A, respectively. Let dy = ﬁ s BO Then, by the definition of uy7
and using Assumptions 1(i)—(iii), we can prove that

T T T
ZUINT,lEtftO = Z ZA Xodod, X', fO
t=1 =1 s—1
T
= Zuft HZHd 121 XLl
= or (N 1/2Tp1/277NT>7 (C.68)

and

T
Z AAOfOG X e, 0
=1s

i

T
1721 Z Ids 11 £ X 2l

= (NWT( )1/2)- (C.69)
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By analogous arguments, we can also show that

T
ZU/NT,45tftO =Op (NI/QTU%%)- (C.70)
t=1
On the other hand, using Lemma C.3 we can show that
T 1 T T
Z unrsefY|| = NT Z Z Aegd Xle,f?
t=1 t=1 s=1
T T ) 11T ) A
< = DD H' Al d X | + ~7 DO (A - AoH) = d Xer ff
t=1 s=1 t=1 s=1
L 1/2 L T 2\ 1/2
< H - A/ s 2 - d/ X/ 0
1 T 1/2 LI T 2\ 1/2
- A / 2 - A/ /
A CED STER A N P 9l [ 9
= Op (T(pUNT)1/2> +Op (( + N7 (o3 + n]\;T)T(pnNT)I/Q)
= Op ((1+ NYAT72550 4 NPT V2 T (o) 2 (C.71)

and analogously

T T
- Z Z A/esst,AOI&fto

t=1 s=1
1 07 A Or 0 1 o A ! 07 A O 0

< 7 ZZHAOan A fP| + 7 DD (A= AoH) e fY A,

s=11t=1 s=1t=1

T
1 R

< |Hl 57 IIAO’eFOII2 NT ;(A_AOH)/Esst, [AYeF?||
= 0p(1)+Op (N1/2T1/2(5 2 1/2)). (C.72)

Using the fact that under Assumptions 1(i) and (iv)

T T 2 T T T
M et < (ZZ ||e;et1\|2> (ang\F) = Op (I’N(N+T)),  (C.73)
s=1

= s=1t1=1 to=1
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we have

T (A
= ﬁ ZZAXSdSEQEtftO
t=1 s=1
. T 1/2 TN 2\ 1/2
7112 ! 0
< 7 max AKX, (ZHM) 2D EET:
s=1 s=1|[t=1
= 0p(T7Y)-0p (T'203) - Op (TNVA(NY2 4 7/2))
- Op (n}v/§(NT1/2+N1/2T)). (C.74)

Notice that

ANeilef?

T
A AOH 555 Etft
1

=)

t=1 s=

/ 0
0€s€s€tft

LlEs
e

For the first term on the right hand side, by the Cauchy-Schwarz inequality and Assumption
1(iii) and (C.73) we may show that

T T 1 T 1/2 T T ) 1/2
> maear| < gl (Simer) (N1 del)
s=1

t=1 s=1 —1 1—1
= Op((NT)"'?)Op(TN'Y*(N'? + T'/?)) = Op((NT)"/? + T).

A

For the second term on the right hand side, by Lemma C.3(vii) (with 7y, A, and H replaced
by naT, [&, and H, respectively), we have

;T 1/2 A

< / 2
< (xih-amar) (YISl
= Op ((1+ N2T72) (65 +ny(7)) Op (T + NY2T'/2)

— Op ((T+N)(5 L4 1/2)>.

T T 1/2

DN (A - AoH) eclef?

t=1 s=1

1

NT

It follows that

_ ((NT)1/2 +T+Nn1/2>. (C.75)

Finally, noting that | Zle Zthl f¥elefP| = Op(NT) by Assumption 1(iv), we can also show

that
T
0
Z UNTJ&f t
t=1

16

= Op(N). (C.76)




By (C.67)—(C.76), we have

T
1 )
7 1> (AVar = A"H Vi) e f?| = Op (953 + 3, A7) - (C.77)
t=1
With this, we readily prove that
T
L ST A (onr + + + Jer|| = Op (632 + 6 &7/ (C.78)
NT t NT,1 T UNT,3 T UNT,5 T UNT,6)Et P\OnNT D, NTU NT .
t=1
which together with (C.66), leads to (C.64). Hence, we complete the proof of (ii).
(iii) This follows from Lemmas C.1(iii) and (iv). [ |

Before proving Lemma B.3 in Appendix B, we need to introduce two technical lemmas.
The first lemma is similar to Lemma C.3 with the preliminary estimates replaced by the post-
LASSO estimates. Let A0 = ./NX(’TTQO) be the infeasible estimate of the factor loadings in the
post-LASSO estimation procedure, H = (%FO'FO) (%AO’ Amo) VET with Vy7 defined in the
proof of Theorem 3.4 in Appendix B, and 7y = ﬁ Z;”:frl [| Qo —a?”2, where G0, is the
j-th p-dimensional element of the infeasible estimate @0 = é,,0(70,).

Lemma C.4 Suppose that the conditions in Theorem 8.4 hold. Then we have
(i) %[ Ao — A°H|[* = Op (837 +iinr).
(i) %(Amo — A°H)'AH = Op (337 +il7).
(i) 3 (Ao — A°H) Ao = Op (63 + 7).
(iv) L (Ao Ao — H'AYAYH) = Op (532 + iiN2),
() |P5_, = Progll = Op(35r + 7)),
(vi) ﬁ Z;F:l([&mo — AOIEI)IES% OP(5]_VT + 771/2) with v, =1 or f2, and
(i) 57 ey ||(Ao — APH)'g||2 = Op((1+ NT ) (637 + in)) -

Proof of Lemma C.4. The proof is analogous to that of Lemma C.3. Hence, we only sketch

it. For notational simplicity, we let V = Vyr, and Mj = Qmoj — oz?, j=1,..,m°+1. By (B.25)

J
in the proof of Theorem 3.4, we have

AoV —A'HV

m0+1 TJQ_]‘
= |57 2 2 (V= Xidpoy) (e = Xeioj)' | Ao — A°HV
J=1 =T,
[ 1 m0+1 Tjofl i o
= |57 2 X (=X + A e) (= Xidly + A +20)' | Ao — ACHV
=1 =19
mO+1 T]Q_l 1 mO041 T —1 1 moi1 TJQ—]. )
S DD D B TR S SIS NI W Sl S
NT J=1 =17 | NT J=1 =17 | NT J=1 t=17 |
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0+1 T —1 T m0+1 Tjofl

Z Z 1 ~ 1 ~
0 0,0 ~
A X Amo + ﬁ A ft EgAmO — ﬁ E E EtU‘IthIAmO
J=1 t=T17 | t=1 J=1 =19 |

T T
1 07 A 07 A 1 IA
+ﬁ ; etfy AV Ao + NT ;EtEtAmo
8
> Nty (C.79)
=1

Then following the proof of Lemma C.3 with A and d; replaced by A,,0 and 7;, respectively,
and using Assumption 3(ii), we can readily prove Lemma C.4(i). Note that

8
1 ~ %
j=1

Then following the proof of Lemma C.3(ii) and using Lemma C.4(i), we readily prove Lemma

1

A’H
N

Ao — AH)'A°H =
~ (

||Moo

C.4(ii). The results in (iii) and (iv) can be proved by combining Lemmas C.4(i) and (ii). Similar
o (C.37), we have the following decomposition:

Pi o~ Posy = Ao (AroA,e) Ao — AH (H'AYAH) " H'AY = ZUNTJ, (C.81)
where
int1 = (Apo — AH)(H'AYA°H) " (A,0 — A°H),
inte = (Ao — AYH)(H'AYAH)"H'AY,
ints = (Ao — AYH)[(AL0A0) " — (H' AYA’H) Y| (A0 — A°H),
onta = (A0 —AH) [([&:nof&mo)Jr - (ﬂ’AO’AOIEI)WIQI’AO’,
!/ 015 ~ ~

ints = AH(H AYA |
UNTE = AOIEI[([X Amo) —(fI/AO’AOIEI)+] (Amo—AO )
vty = ACH[(ALoAu0)" — (H'AYAH) ") H'A”.

By (C.81) and Lemmas C.4(i) and (iv), we can prove (v). The proofs of (vi) and (vii) parallel
to those of Lemmas C.3(vi) and (vii). We have thus completed the proof of Lemma C.4. [ |

Lemma C.5 Suppose that the conditions in Theorem 3.4 hold. Then we have
Sy~ mo ~
(i) iy = # Z H ||04m0j - 04?||2 OP(5p NT)
(i) (A mo—AOH) eo=H' ($FF)" (5 X0y £0hed)+0p (S (m) /2] G0 — o))
+Op<pNT>f0rt—1 ST,
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0_1

791 C
J

—70

=T ,

(iii) 5y Hzti‘TQ X/IAYH (fI’AO’AOFI)+ (Amo - A0ﬁ>/5t - X]A° (A”A%)*
(FFUF) " (Fp 20 ot | = Or (035m0 2 || — a®l|)+0p (6,37 ) forj = 1....m°

+1,
(iv) NTZt 1 H( mo — AOH )euf? H =0p (5;NT>

Proof of Lemma C.5. As the proof of the convergence rates for &,,o in (i) is similar to the
proof of Lemma B.1, we omit the details. Furthermore, the results in (iii) and (iv) can be easily
proved by using (ii). Hence we only focus on the proof of the result in (ii).

Note that for any t = 1,..., T,

8
(Ao — A’H) ey = — V' (A0 V- AH V) Z (C.82)

1 1
N N
by using (C.79) in the proof of Lemma C.4. By Lemma C.5(i), Assumptions 1(ii), (iii) and 3(ii),
and the Jensen inequality, we have

1 1 mO041 Tg—l
-t <+ VA
NHV u?VT,lstH = W A\ Z Z AmoXsﬁk'l’];ngqﬁt
k=1 s=T9 ,
mO+1 TO 1
_ —2m—1 A 1 2 2
= Op(N7217") Ao | max 2 (X L > Ix
s= Tlg 1
= Op (p*N"V2iyr) = Op (8,47) - (C.83)

By Lemmas C.4(i) and C.5(i) and Assumptions 1(iii), (iv) and 3(ii), we can show that

~ Vil e

mO+1 TO 1 m9+1 Tlgfl
- Dy Z HAY i Xleo+ > > (Ao — AYH) e, Xle
k=1 s= TIS 1 k=1 s= TIS 1
mO+1 -1 mO+1 TP-1
= Op(N2 TN | D Ml D A%l Xoee]| + [ Amo = APHI D il D llesll|| Xiee|
k=1 s=T}_, k=1 s=T}_,

- 0n(57gn) 0 (575 + W)

= Op (N piir)? + 0, %7) - (C.84)
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By Assumptions 1(i), (iii) and 3(ii), and Lemma C.5(i), we have

~ 1 -+ mo+1 Tl =~/
NV 4525 = NQTV Z Z AmOXsﬁkfglAOI Et
k=1 s:TIS—l
mO41 TS—l ~ N
= Op(N2 T Y il | D Ao Xl Y At
k=1 s= Tk: 1 =1
= 0p (53 (m") 20 — a?])) (C.85)
Analogously, we can show that
1 an — On (51 (m®1/2]|5 0 C
< Vs = Op (355(m") %@y — a°l)) (C.86)
By Assumptions 1(iii) and (iv), we can prove that
!/
1 -+ 1 -+ ~
NV UEVT,5615 = NZTV (;AO gﬁ;AmO> Et
1~+T O 1~+T~’0/ 07 A O/
-\ Z(Amo— ) SO+ o VT DD H A A
s=1 s=1
1 & , T
_ v 0 A0 0/ £0][|| AO
= 7V (Ao — A’H) e fPA%, + Op (NQTHZA’Sf I]]A%, H)
s=1
1 ~ 4 T /
= 7V (R — A°H) e f0AY + Op (057) (C.87)

By Assumptions 1(ii), (iv) and Lemma C.5(i), we have

1 mO+1 T;?—l
X g ~/ -
_V Tﬁgt - V A 0X377k6/ Et
N N2T ]; s; m S
k—1
m®+1 o N
= Op(N2T7) - 7 il | D2 Ao Xoll | Y civeis
k=1 s§= Tk 1 =1
= Op (S (m®) /2 a0 — 0] (C.88)

By the definition of H and noting that V;T is diagonal, we have

1 d (1 *
0. | — 7 0/ 0
NTEIfssset]—H <TF F)
s=

1 - 1 -+
NV NT7€t <NV AmOA0>
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By the definition of iy7 g and Assumption 3(iii),

T
- 1 -4+ 0
NV NT8Et = TTV 31 (Amo —A H) £sEhEs + N2TV H ZA 'eseles
1 + T !
¢ X 0F -3
- TTV 3521 (Amo —A H) escuer + Op (Oyr) - (C.90)

Combining the results in (C.82)—(C.90) yields

+ 9 T

1, . - (1 +
— (Ao —A’H)'e, = H <TFO’FO> NTZ fOcer + N2TV Z( o — AYH ) es fOAYe,

N

VS (R~ AR w200 (5%

s=1

+Op (5N1T m®) V2| G, — a0||) . (C.91)

By Assumptions 1(i) and (iv), the first term on the right hand side of (C.91) is Op(dy%); by As-
sumptions 1(iii) and Lemmas C.4(vi) and C.5(i) we can show the second term is O P((S;,}VT(S;VIT);
by Assumptions 1(iii) and (iv) and Lemma C.4(vii) and , we can show the third and fourth
terms are Op(ég}VT(s]_V]iq). It follows that

% <Am° - A°H ) =Op (55,11VT51_V1T> - (C.92)

By (C.92) and following the above arguments, we can further show that the second and third
terms on the right hand side of (C.91) are Op(égj\,T). This completes the proof of Lemma C.5(ii).
|

Proof of Lemma B.3. For notional simplicity, we let A = A,,,0 throughout this proof.
(i) Noting that

(M3 —M o) =AAA)"A — AH(H'A"A’H)"H'A” = Zwm (C.93)

and by using the decomposition (C.81), we have

771 T0_1
1 4 ] 7 )
NTj(T) Z X;(M[\ - MAO)Et NTJ Z (Z UNT7k> Et- (094)

_70
t*Tj—l -1
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By (C.94), Lemmas C.4(i), (iv) and C.5(iii), we can prove that for any j = 1,....,m° + 1,

T9-1
1 4 ,
N (T) Z; X{(Mz — M po)et + Byrj(2,1)
t=T9_,
-1 7 ) -1
< NTJ Z Xi( Z ONT,;)Et|| + No, ) Z X,onT 56t — Byrjj(2,1)
t TO j=1,#5 _TO
. 91
1 —1/2) 0 -3
= NTJ(T Z XtUNTSEt BNT](Q 1) +Op <6NT( ) / Hamo — H + 6p,NT)
j 1
=04m%mrwmm—wwwma (C.95)
which completes the proof of Lemma B.3(i).
(ii) Noting that for any j =1,...,m% + 1,
. )1 ) T)-1
XM (A°— AH)f0 = XM (AHV - AV) V' H" £
Ny 2 NMal V= Fy 2 KiMal )V H
t=T7 =Ty _,
and VTH = (%AO’A)+(lFO’FO)+, by the decomposition (C.79), we have
-1
Z XM 5 (A" — AH ") f?
NTJ t t
t T,

: Lo\ (1oomo) 0
= NTJ Z X;M A(ZZ_;UNT,Z> (NA A) (TF F) fr- (C.96)

We next analyze each term on the right hand side of the equation (C.96).
For | =1, by the definition of @y7,1, Assumptions 1(i)(ii), and Lemma C.5(i), we have

1 i Loooi N (1 omo) ' o
INA -~ LA g n\4
N7;(T) t:; AMatNT <NA A) (TF F) i
. 91 mO+1 To-1 10~+100+0
- XM ; X, il X A —A’A) <—F’F>
Nt;(T) tgl A NT ; S;I Tk <N T i
. mOi1 T9-1 191
= Or| w7 Z 1725117 - Z Z | XM 5 X[ XA £7]]
t T0 L 8= T 1
_ - 0N—-1/2(~  _ 0
—ommo%@m<>mwaw (C.o7)
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For [ = 2, by the definition of @7 2, we have
0

1 Z XIM ;iin LA0i - 1 porgo +f0
N7, (T) e AUNT2 {3 7 t

mO+1 T -1 T;?*1

+
- NTTJ Z Z > XIM g Xl fY ( FO’F°> f;

0 0
kltTlsT71

mO+1 T)-1 191
= - NTT Z Z XstXtM X | My
k=1 i t TO | s=T0_,
= = [#(A), s 801 (A)] (G0 — @), (C.98)
h 07 (L 0/ g0 0 and ®* (A) = 1 TJQ_I TP-1 X'M - X.. By Lem-
where xg = f ( ) ft an jk( ) = NT+,(T) thTflesleg_l XstA¢tVL g As. DY Lem
mas C.4(v) and C.5(i), we may show that
@5, (A) — @5 ]| = Op (p(s;}w(mo)—l) , 1<jk<m®+1, (C.99)
here &%, — — L5 1 ST Xap X, Hence, by (C.98), (C.99) and the Cauch
where OF = w7y 2Ly | 2olro | Xt XiM g0 Xs. Hence, by (C.98), (C.99) and the Cauchy-

Schwarz inequality, we have

O

1 .o: \ /1 + .
Z X/M AUNT2<NAO/Amo> <fF0/F0> FE A (B, s @7 041) (B0 — @°)

tTO

1
N7;(T)

_ H [j‘-l([x),..., ;,moﬂ([\)] (o — a®) - (@;1,... N m0+1) (G0 — QO)H
= 00 (15,20 - 001 (c.100)

For | = 3, by the definition of @y7,3, Assumptions 1 and 3(ii), as well as (C.92), we have

T9-1
1 \ 1oz /1 *
N () > X{M giinrs (NAO’A> <TF0’F0> 7
J =T,
1 -1 mO+1 TP—1 . Nt/ "
- N7,;(T) Z XiM g NT Z Z XsnkEA <NAO/A> (TFO,F@) ?
J t=T9 k=1 s=T0
) mO41 Tjo—l T,?—l
- NQT @ X el Do S XM (l=2A] + [|=h(A =A%) ) 177
t:TJ‘L1 s:T,iL1
= O (PO (m®) 20 — a0)]) (C.101)
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To study the next two terms, we can apply the arguments used in the proof of Lemma C.3(ii)

and show that || X/(A° — [UEI+)H = Op(p'/253% + 77]1\{%) This, in conjunction with Lemma

C.4(iii), implies that

CIIXIM (A~ RE)| = Op (02030 + i¥3) (C.102)
and similarly for j =1,--- ,m® +1,
T9-1
1 S / 0 Aot 0 1/2 ~1/2
N;(T) Z | XiM 5 (A° — AH )| [| 7] = Op ( Sn —i—nNT) (C.103)

e 0]
t=T9_,

For [ = 4, by the definition of 4y 4, (C.103), and Lemma C.5(i) and noting that MA.;X =0,

1 = Lo\ (Lpogpo)’ o
/ o A0 i nlV4
N7, (T) t_%:lXtMA“NTA(NA A) (7mr) 1
0
0__ —
- szl XMz (A~ AH") ii ’?Zl O XA <iA0/Zx>+<lF0’F0>+f°
N7;(T) el A NT &5 5% s ks N T t
O+1 TO 1 TO 1
~+ ~
= Op NQT Z i S I (0 AF ) A 2]
t=T7 | s=T)_,
— Op (5;}VT(m0)—1/2Hamo—a 1. (C.104)

For [ = 5, by the definition of 4n7 5, Assumptions 1(i)(iii), (C.103), and Lemma C.5(iv), we
have

1 TJQZ_I X'M ~ il lAO/A - lFOIFO +f0
NTi(T) | 5 RATNTS N T t
0
_ 1 Tozl X ZAOfO 1 AO/A * 1F0/F0 +f0
- ONT(T) | - bl ! NT ’ N T !
791 T
< 2; Z XM (A" - AH") > fLA° ﬁ(lAO’A>+<lFO'F0>+ 1o
N2T7(T) || 4 1 — N T
0
T9-1
_‘_; JZ X/M'( ZfOl A AO ) iAO/A * lFOIFO * 0
N2Try(T) || <=~ A N T !
=79,
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0_
T]- 1

T
1 X ot
Or | gy 2 KA - AR S sl

=17,
-1
+Op N2T Z ZHXt A®— RH") ||| (A - AH) £2] |1 7]
t T0
— Op (5PNT+5PNT( 0-1/2||g, , —aOH). (C.105)

For | = 6, by the definition of 476 and Assumptions 1(i)-(iii), 2(ii) and 3(ii), we have

f?

T9-1
1 ] / ~ 1 07 x * 1 0/ 0 * 0
Nr (T) Z XtMAuNTﬁ NA A ?F F ft
J t=T9_,
— X s X/ _AO/A _FOIFO 0
N7, (T) E A NT E Z sl (N ) (T fi
t=T9_, k=1 s=T0 |
1 -1 m0+1 TP—1 1 + /1 +
~ / 07 x 0r 0 0
S No T > Z Z Xieste XA (NA A) (fF F) fi
J t=T9 , k=1 s=T) ,
1 Tjo_l 1 mo4+1 TP—1 1
X' = P — Ppo)esi XLA AYA FYF°
N @) 2 Xl w7 2 ( w0)esTl <N > <
t=19_, k=1 =10
1 -1 mO+1 TP— 1 +
XAO AOIAO AOI ~ X A AO/A FO/FO 0
+NT]‘(T) t; t NT ; ; EsTy, N Ji
_ S=1p 1

= Op (926, 5 (") ™2 G — @°]))
For | = 7, by the definitions of @77 and x,;, we have

O

1 Z XM « i LAoi - 1 porgo +f0
N7, (T) EATNTT\ N T t

jfl
_ 1 T;)Zl XM - LZT:E FYAVA L A0k - 1 porgo +f0
- NTJ-(T)HQ A NT 5ls N T t

-1 7 T0-1 o
= NT’TJ t%(): ZXStXtMAogs NTTJ t; ZXStXt M MAO) Esg
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T01

-1
XMOE XX/M MOE,

B 1
- N7;(T)

where ef = L ST Xs€s. On the other hand, following the proof of Lemma B.3(i) and (C.95) in

T0-1

particular, we may show that HW](T) > o 1 ST X5t X{ (M 5 — M po)es + Byr,;(2, 2)H =
P

Op (5N1T( 0)=1/2|| Gy — || + 5p,NT> Tt follows that

T01 T01

1 1 0r 0/ 0 0 _
ey z XM e (AYR) (ZFVFO)

N7;(T) 17

= Op (S3k(m® a0+ 5, %) -
For | = 8, by the definition of uxyT3s, we have

T01

1 Z XIM sinr, iAO/A - iFO’FO T o
N7;(T) TATNTS \ T t

1 Tg vty (LS ewa) (Lava) (Leoro) o
B NTj(T) t=T9 | AT 8216563 N T t
0
O N N
— ; ! l or X l 0/ 10 0_ ‘
~ N2T74(T) ; XiM A“""A<NA A) <TF F°| f; =Bnr;(1). (C.108)

By (C.96), (C.97), (C.100), (C.101), (C.104)—(C.106), (C.107) and (C.108), we can complete the
proof of Lemma B.3(ii).
We have thus completed the proof of Lemma B.3. |

Let AR = ()'\173, ceny )'\N,R)/ and AR = ﬁ 23;1(Y;f_Xt/Bt,R)(Y;S_XtBt,R)/AR = (5\17}3, veay S\N,R)/‘

In order to prove Lemma B.4 in Appendix B, we first need to prove the following technical lemma.

Lemma C.6 Suppose that Assumptions 1 and 2 in Appendiz A hold and R > Ry. Define the
Ro x R matrit Hr = (%FO’FO) (%AO’AR) with the Moore-Penrose generalized inverse H; =
o+

Hp(1)

o+

Hp(2)
Let VNT’R denote an R x R diagonal matriz consisting of the R largest eigenvalues of the

, where H;(l) and H;(2) are Ry x Ry and (R — Ry) x Ro matrices, respectively.

N x N matrix ﬁZle(Yt - XtﬁtyR)(ift - XtBt,R)/ where the eigenvalues are in decreasing
order along the main diagonal line. Write Ap = |Ag(1),Ar(2)| and Hr = |Hp(1), Hr(2)|,
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where AR(I), AR(2), ﬂR(l), and ﬂR(Q) are N x Rg, N x (R— Rp), Ro X Ry, and Ry X
(R — Ry) matrices, respectively. Furthermore, write VNT,R = diag{VNT’R(l), VNT,R(Q)},
where VT r(1) denotes the upper-left Ry x Ry submatriz of V7 r. Then we have

@ % |Rn - a8 = 0p (5,37).

(ii) % || AR — HRAYACH R | = Op (5,47) .

(i) % ||Ar (1) = A R() V1) = O (8,32)) amd [H@)[ = 0p (5,37).

(iv) |Hp(D)|| = 0p(1) and ||F52)|| = Or (6,57

Proof of Lemma C.6. (i) When R > Ry, we can follow the proof of Lemma C.2 and show

that ijp = 7 3,1 [1B1.r — BLI* = op(1). Next, using Y; — Xef, g = AP + e+ Xe(B) — By )
and dy g = By p — Y, we have

Ap—A°Hp = NTZ — XiBy p) (Vi = XiPy ) Ar — A’H g

HM%

NL { Xydyg + A°fD +5t}{ Xydy g+ A7 +5t} Ar—A’Hp

T
_ 1 07 A 07 A 1 7 /A
= T ZXtdt rd; R X[ AR — NT ;Xtdt,th A"ARr - 5% ZXtdt,REtAR

T 1 T

A°fd; pX{Ar+ —=) A’ flelAr — — d; g X{A
tX_; ftt,RtR+NT2; freiAr ZEthR

b
NT

T
1
NT Z e fYAYAR + w7 Z eietAg
=1

8
> gy (C.109)
j=1

Following the proof of Lemma C.3(i), we can readily show that +||ig ;|| = Op (057 + fig) -
Then we readily have %H./V\R — A’Hp|]? = (5]}271 +7r). With this, we can apply the argu-
ments used in the proof of Theorem 3.1 to show that 77 = Op <5p ?VT> . Then we may complete
the proof of (i).

(ii) Noting that
Lirx Lo o op

= %(I\R - AOI“IR),(IVXR — AOHR) + %(IVXR — AOHR)/AOHR + %H,RAO,(IVXR - AOI:IR),
the convergence result (ii) follows from the triangle and Cauchy-Schwarz inequalities, Lemma
C.6(i), and the fact that [|[A°Hg||> = Op (N).
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(iii) Let Vi and Vi (1) de.note the probability. limits of VNT r and VNT, r (1), respectively,
as (N,T) — oo. Recall that Hp = ﬁFO’FOAO’AR and %A’RAR = Ig. As the application of
PCA method, we have the identity

NT Z — XuBy ) (Ve = XoBy g) Ar = ARV .

Pre-multiplying both sides of the above equation by A}% /N and using the normalization %A}%A R=

I yields
T

Z — XiByp) (Ve — XiBy i)' | Ar = VinrR,

N2T

which together with V; — X;8, p = Xu(B) — By.r) + A°fP + &y, yields 13- ARA'FYFOAYAp +
dNT,R = VNT7R7 where

dNnT,R = NQT Z [Xt — Bep)(B) = Bur) X{ + evet + Xe(B) — Bop) [ A”

Aoft (515 - Bt,R),Xt + Xt(ﬁg - Bt,R)ﬁé + 5t(ﬁg - Bt,R)/Xé
A fPe] + eof'AY] Ag

8
Y dry.
j=1

Following the proof of Lemma C.3, it is easy to show that ||dy7.r|| = Op (5;}VT> by proving

that dr;, j = 1,2,...,8, are either Op((S;}VT) or of smaller order. For example,

ldrall = Sz | A S X80 ) (80— B X1
t=1
< LA e G52 ium ol = 0r (573).
ldnal = <5 A% S ect] Ar < o el [ A = 0r (533)
t=1
and
ldrsll = NéT A% ZXt — Ber) ' A” Ag ‘
1/2
< Rl sl o) (3= al) e
< OP( /2>=OP (5;,}VT>'
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Then

1 . . . .
T ARAFYFOAY AR = Vivr g — dyrr L Vr. (C.110)
Observe that NéTAjRAOFO’ FOAYA r has rank Ry at most in both finite and large samples.

Let Anr (1) = %AO’AR (1) for | =1,2 and £p = LFYF°. Then

L iy p0popopvg, — | At () Zrdnr (1) Ay (1) Srdar (2)

Note that 3 = Zr + op(1) by Assumption 1(i). Following the proof of Lemma A.3(ii) in Bai
(2003), we can show that plim y 7)—ecAlyy (1) S Ayt (1) = V(1) which has full rank Ry.
This ensures that ﬁA;@AOFO’ FOAY A g has rank Ry in large samples and Al (2) Ayt (2) £
0. Then Ay, (1) SrANT (2) Lo by the Cauchy-Schwarz inequality. By the asymptotic nonsin-
gularity of 3p, this also implies that Ax7 (2) = op(1) and Ay (1) Za (1) for some Ry x Ry
nonsingular matrix A (1) . Consequently, we have

Hp(l) = %FO’FOAO’AR DES NG
and 1
Hp((2) = ﬁFO'FOAO'AR (2) = op(1).

Then Hp (1) is asymptotically nonsingular and H ; has rank Ry.
By the definition A = n Y11 (Y — XeB, 1) (Vi — Xif, )’ Ar and the identity b= >/
(Ve — XuBy p) (Ve — Xtﬁth)’AR = Ag VNT,R from the PCA, we have

v

. 2
AR—AOHRH

1 \A v ACH H2
N R VY NT,R R

1
¥l
_ % HARx'/N;,ﬂvR (1) — A°H p (1)”2 n % HARVNT,R (2) — A°H p, (2)”2 .

- . 2
Lemma C.6(i) implies that % HARVNT,R (1) —AOHR(Z)H = Op(5;3VT) for [ = 1,2. Since
. . . . 2 .
Vi (1) is nonsingular, it follows that = HAR —A°Hp (1) V]J\F,Tﬂ (1)H = OP((S;:,?VT) and H V]J\F,Tﬁ (1)H
o |+ o | . +
< [VEW| + [Vare ) = VRO = 0r ().

In addition,
L[Er @l < 2|AnVara@ - aHR @+ 2 |AnVare@)|
N R = N R VY NT,R R N RY NT,R

= 0p (0,31) + 0r (5,31) = Or (3,31

. 2 . . 2 . .
AVt ()| < i Vara@) [Ar|| /N = R Ve p(2)) and poa(Var.a(2)
< gy 1 (ARAPFYFOAYAR/(NT)) + |dnrrll = lldvrrll = Op(8, yp), where gy () de-
notes the (Rp + 1)-th largest eigenvalue of the square matrix in the parentheses. In view of the

ol
because N ’
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fact that

9

% | A0, (2)”2 - %Tr (Fir(2) Fr (2 AYA°) > i (AYAY/N) || Hr (2) ’

we have HHR (2)”2 < [ftrn (AYAO/N)] 71 L HAOHR (2)”2 = 0p(6;%7)-

(iv) Since Hpis right invertible asymptotically, by Proposition 6.1.5 in Bernstein (2005,
p.225), the R x Ry generalized inverse H ; of H R is given by

e | B (HRHR) | [ EER()
B = My [Haly | By ) (FRiy) | | He()

Then by Lemma C.6(iii)

k] < o] |(Feih) | = 0p ). and
o] = o] ()| <o ()
We have thus completed the proof of Lemma C.6. |

Proof of Lemma B.4. (i) The proof is similar to that of Lemma C.2. Notice that
1 T
Qv (B, AR) = = Z = XuB) M ag(Ye = XiB3,).

Using Y; — Xtﬁth = X;(BY - Bt,R) + A%f? + &4, we have

NT(Br, AR) — Qnr(B°, AR)

T

> (Vi = X n) M g (Y = X ) — (Vi = XeBY) Mg (V; — X7

S~ g- £

T
= |Bur— B XIM 3, Xe(Bp — B7) = 2B, p — B X{M 5, A7

t=1

2|m

T
ZBtR B X{M 4 et

By Lemma C.1(i) (with Ry and A being replaced by R and Ag), we can prove that
T

1 . _
ﬁ Z(ﬁt,R - B?),Xt{MAREt - OP ( 1/2510 NT)

t=1
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Let dg.p = B — B° and dp g = N1/2 vec(M 4 AO) Define

: 1. .
Ap = Ndlag(X{MARXl, oy XpM i X7) and Cg = (R @M, Xi,.., fp® My, Xrl.

1
N1/2
Then

T
1 . . .

= [(Bur— B XIM g, Xe(Bp — B9) = 2B, n — B0/ XM 4, A
t=1

1. .o 2. ..

= ?J/&RARd,B,R - TJA,RCRdﬁyR‘
It follows that 1 9
fJB,RARdB,R —7 ArCrdg r+ Op < 1/25p }VT> < 0.

This, in junction with the fact that

1/2

iy nCnits | < [y nitnn] " [ n O] < ] || [ )]

implies that = (fﬂ RARdﬁ R — T1/2

dARH HdﬁRH 'umax CRCR/T) +O0p(p 1/25;,11\@) < 0. Using

a decomposition similar to (B.8) in Appendix B, we can readily show that Mmax(C,RCR /T)
= 0p(1). By Assumption 1(ii), fipin(AR) > ¢z w.p.a.l. and ||ds g|| = Op (1) . Tt follows that

T

1, - 1 :

Fldorl® =73 18— 8117 = 0r(1).
t=1

Note that V(R,3r) = ming A, @nT (B, AR) subject to ARAr/N = Ig. Let s, (8) =
ur[Zthl (Y; — XiB,) (Y; — X48,)' /T). For any R < Ry, we make the following decomposition:

N Ro

VR =2 Y s(B) D 5(8)=51(8) + S (B).

r=Rop+1 r=R+1

Noting that S (8g) > Sl(BRO) = V(RO,BRO), we have
V(R Br) = V(Bo, Br,) = [S1(Br) = $1(Br,)| + San(Br) = Sar(Bp).

Let 57 = p, (% S [ACFRFYAY + el + Xi(B) — By r) (B) — Bt,R)’Xﬂ) - Notice that

1 .
N sr(Br) — sy
1 < / 7 A O/ ; !~ . /a0
< 7| Z_: (A2 02) + e fA) + [ACSP(BY = Bop) X + Xa(BY = Bum) S A
a8 = Bl Xt X5 = Buwdl) |
2 || 2 .
< ~NT ;Aof?é“; + N7 ;Aoff(ﬁ?—ﬂt’R)’Xg + %7 — By ) X;
= " =

Sp sp
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Under Assumptions 1-2 and using the fact that %Hdg,RH? = op(1), we can readily show that
the second and third terms in the last expression are op(1). The first term is Op((N T)_l/ %) by
Assumption 1(iii). It follows that

Ro
SnlBr) > 5 D sLtop()

r=R+1

1 : 01 0/10 A O
> w7 > p, (AFYFOAY) 4 0p (1)
r=R+1
(RO - R) lumin(FO,FO/T)/Lmin(AO/AO/N) +op (1)

= (RO - R) Mmin(EF)umin(ZA) +op (1) )

where the second inequality follows from Weyl’s inequality. In sum, we have

phm (N %f OOV(Rv BR) - V(ROHBR()) 2 CR, CR= (RO - R) Mmin(zF)umin(EA)/Z

completing the proof of Lemma B.4(i).

ii) Recall that V R,B = ming A QNT B, AR) subject to A,Ar/N = Ig. Noting that
R :67 R R
V(R, BR) = QNT(BR, AR), by the triangle inequality, we have

V(R Br) ~V(Ro, Br,)
‘QNT(BR’ A —R) — Qnr (8, AO)‘ + )QNT(BRO’ Ary) — Qnr(8°,A)
Qnt(Brs Ar) — Qnr(B°, AO)’ :

IN

< 2 max
Ro<R<Rmax

It suffices to show that Qnr(Br, Ar) — Qnr (Bg, Ao) = Op (6;?\@) for each R € [Ry, Rmax]-

Let H ; denote the Moore-Penrose generalized inverse of H Rr such that H RH —1; = IR,; see, for
example, the proof of Lemma C.6(iv). Noting that Y; — X;39 = A9 + ¢, and M ,0AY =0, we
may show that

T T
1 1
Qnr(B8°,A%) = N—Z — X8 M po (Y — Xi80) = WZegMAoet.
— t=1

Let % = ¢, — (Ag — A°H p)H ;0. Noting that

—XiBp = (XiB)+A°f)+e)— XiByp
. [} . + . () . +
= Xy(8) - Bir) + ARHpf? + e+ (A’Hp — Ag)Hp f)
. [ . + o
= Xu(B} - Bir) + ARHRf) + 2
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and MAR]\R = MAR (ARVNT,R> = 0, we have

[M]=

Qnt(Br, Ar) = (Y, = XeBy g) M 4, (Ve — XiBy g)

-
I
—

Xi(B) = Bep) + & | My, | Xe(B) — By ) + &
[ | M4, |

I
. 9= 3~ 3
1M~

M’ﬂ
(‘f)(

1 X
My, &+ N—ZﬁtR 57) 'X{M 4 Xt(/BtR BY)
t=1

o+~
I
MR

Z M 4 Xi(By g — BY)

= Il—i—fg —2[3.

We next prove Lemma B.4(ii) by only showing that I — QNT(BO,AO) = Op(éI;?VT), I, =
Op(8, 3r), and Iy = Op(8, 3:7).-
First, using &, = &; — (Ag — A°HR)H 1—; f?, we make the following decomposition:

T
1 o . o+ o . -+
L= = z[et ~ (Ap = A°Hp)H /)My [es — (Ag — A°H ) H . f7)]
- NT Zet ArSt T NT thOIH (Ap—A"HR)Mjy e

9 . . +
Zf?’H (AR —A’Hp)M; (Ap— A"Hp)H [}
= 11,1 - 211,2 + I 3.

Using the arguments as in the proof of Lemmas C.1(iii)(iv), we can show that

Iy — Qur(8°,A%) = NT Zst (Pyo = Pyn)er = Op (5:33) = Op (8,37

For I 2, we have

T T
1 ot (X orr ) 1 ot X 0Fy
1172 = W;ft HR <AR—AHR> Et_ﬁ;ft HR(AR—A HR)PAREt
= ILi2q— 11,2

Using the decomposition in (C.109) and Lemma C.6(i), we can readily show that I 12, =
Op (5; ?VT> By the Cauchy-Schwarz inequality, the fact that P Ay I8 & projection matrix, and
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Lemma C.1(iii),

|1 2] <

L 1/2
N7 2P AREt]
t=1

o ) 1/2
Sl
= 0r (37r) -0p (55%) = Op (373,

where the following result which can be proved by Lemma C.6 has also been used:

IN

1 O 0w et ooll2 1 11 v 20 a2 1 o2
w2 | Br - AH A < | Kn =t 39
t=1 t=1
= Op (Q;?VT). (C.111)

Thus we have I1 2 = Op (5; ?VT> . Similarly, using the fact that M Ay 18 a projection matrix

v . 2
and by (C.111), I1 3 < 5= ST H(AR — A"Hpg) H;;ftOH =Op <5£?VT> As a consequence, we
may complete the proof of Iy — QNT(BO, A0) = Op((5 NT) for each R € [Ry, Rmax|-
Next, by Assumption 1(ii) and the fact that M 4 Ay 18 @ projection matrix and that 7jp =

T i ||Bt,R —BY12=0p <51;3VT) , we have
1 |, ,
I, < NT Z H(ﬁt,R - B?),XéMARthtaR - B?)H < max figa. (XiX¢/N)ng =Op (5;?VT> .
=1

1<t<T

To study I3, we apply & = &; — (Ag — AOI.{R)I.{;ftO and Mz =Iy— P, and make the
following decomposition:

I3 = NTZ M i Xi(Byr — B7)

= NT ZEtXt ﬁtR ﬁt NT ZEtPARXt(ﬁtR Bt)

ZfE’H (AR —A°Hp)M; Xi(B,p— f7)
= 13,1—-73,2—1373'

By the Cauchy-Schwarz inequality, Assumptions 1(ii)-(iii), the fact that

r T
. 1 : 0]|? —2 1 —2
nR = T ; H/gt,R - /625 H = OP (51),NT> 5 NT tz:;gQPAR&‘t = OP (6NT) 5 lul’l’laX(MAR) ey 1,
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and Lemma C.6(i), we have

T 1/2
1 . _ _ _
TERTR mZezxthst] i = Op( AN )0p (6, hp) = Or (5,37) -
L t=1

LT 1/2 L 1/2

32| < ﬁ ZEQPAREt] NT t_zl(ﬁt,R — B X{ X:(Bir — BY)

1/2 . _
< Op (03) Ha (XIX0/N) 232 = Op (6,31)
and
1/2

) . . +

I35 < TthO'H (Ar— A°Hp)M  (Ag —AOHR)HthO]

1/2

1 . ot .
~7 Z(m,R - B X Xu(Bor — B7)
t=1

T 1/2
1 1
N1/2 fZHf?HQ] T (XiX2/N) g e
t=1

= 0p(3,57)0p (1) Op(3, hp) = Op (6,37)

<

~ A%H | |

Hence I3 = Op (5;3\@) . In sum, we have shown that Qn7(8g, Ar)—Qn (8Bg, Ao) = Op (5;7?\@)
for each R € [Ry, Rmax|, completing the proof of Lemma B.4(ii). [ ]

Proof of Lemma B.5. Let

m+1 T;—-1

1
Dyt (o, A Ty) = NT Z Z [(V; — Xiaj) Ma (Y; — Xiarj) — ghed]

and 5%, = w5 Y1, &1er. Note that

(dm(Tm),A(Tm)) =arg min Dy7 (o, A;7Ty),

(ama
and
5%(Tm) = 6*(To) = [6*(Tm) — 07] = [6°(Tp0) — O]
with 52(7,,) — 53 = DN7(&m(Tin), A(Tr); Trn). We prove the lemma by showing that (i)

AT [6%(T0) — 6%r] = op (1); (C.112)
NT
and (ii)
0
%(52(7}1) —&%7) > c+op(l) wp.al for some c> 0. (C.113)
NT
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We first show (C.112) in (i). We make the following decomposition:

1 mot1 TP—1
"% = NT Vi — Xyay] Mg [Yi — Xidij]
" J=1 t=17 |
1 mO+1 T]Q_l
_ , ]

- NT [Xi(af = ay) + A% f) + ) Mz [Xi(af — &) + A°f + &1
J=1t=17 |
mo+1 T3 -1

= N7 2 D [EMza+ [PAYMGA + (of — &) X{M 5 X (of — &)
J=1 =19
Jj—1

+26e;M 5 X1 () — &;) + 2, Mz A £ + 2f A" M 5 X1(o) — &;)]
= dinT +donT + d3nT + 2danT + 2d5NT + 2d6 N TS

where we suppress the dependence of &; = &;(7,%,) and A= A(Tngo) on 79, for notational
simplicity. By Lemma C.1(iii),

T T
1 1 _ _ _
diNT = NT ;_1 etM zer = NT tE_l et +Op (0n7) = 537 + Op (657) -

Using the preliminary results in Lemmas C.4 and C.5(i) and Theorem 3.4, we may show that
diNT = Op((i;?VT) for | = 3,4,6. Using M yoA” = 0 and (C.79), and decomposing M 5 —M po =
—(Pgz — Ppo) as in (C.81), we can readily show that

T
1 _
v = g D IPAY (Mg = M) A7 = Op (85) . and
1 T
dsnT = F > et (Mg —Mpo) A°f) = Op (5;3\17’) :

&~
Il
—

It follows that
5 (T%) — 7%z = Op (6,37) (C.114)

which, together with Assumption 2(ii), leads to (C.112).

We now show (C.113) in (ii). We consider three cases: (a) m® = 1, (b) m® = 2, and (c)
3 < m® < Mupax. For case (a) of m% = 1, if n < m®, we have m = 0 and 7,,, = 7o = @. The true
model contains one structural break:

Xiod +AOf o if1<t<TY -1,

-Yt-:
Xpad + AOf e TV <t LT

while the working model that ignores the structural break in the regression coefficient is

Yy =X+ A’f) + e, 1<t <T,
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where ¢, is the error term. Note that 52(7p) = S (V- X&) Mz (Y; — X&), where

!

- 1
(&, A) = arg mln I~ — Xia) Mp (Y — Xa)
t:1

subject to A'/A/N = Ig,, and we suppress the dependence of & and A on Tp. Using V; — Xia =
Xi(BY — a) + A% 4 ¢, and Lemmas C.1(i)(ii), we can readily show that

T
> (Vi - Xia) M4 (Vi — Xa)
1

~+~
Il

[Xe(8) — ) + A% + &) Ma [X:(8) — @) + A°f7 + 4]

~
Il

1

Il
2|H Z‘H Z‘H
N ~ ~
Mﬂ

E

(X (B2 — @) + A°f0) Ma [Xe(B) — ) + A°f0] + Z eter + Op(p"/26, \p)

o~
Il

1

uniformly in a and A such that A’A/N = I'g, and ||| < Cp'/2. Tt follows that

T
. 1 > o - -
(1) = 5 2 Y/MgYi+ ks + O0p(p0'%5, i)
-1
T ~ ~
=N A’?/iJI\Tl:IRO NT Z Y/MAY; + 6% + Op(p"/?6, \p)
LN T
= N7 MT ZYY +x7 + Op(p /25p}VT)
r=Ro+ t=1
L, T
Z NT Z | DX (B) — &) (B — &' X7 | + 0% + Op(P 25, )
r=Ro+ Li=
1

1
T
= [Z B = &) X{M Xy (8] = &)| + %z + Or(p"5, )

NT A A’A/N In, |4

> ¢ TE;H& &|* + 337 + Op (025, 1),
t

where Y; = Xi(BY — &) + AOf2, the second and third inequalities follow from Weyl’s inequality
and Assumption 1(ii), respectively. Consequently, we have by Assumptions 5(i)-(ii)

mO

TAT [6%(To) — 3%r] = cxcs +op (1),
NT

where cg is defined in Assumption 5(i). We have completed the proof of (C.113) for case (a).
In cases (b)-(c), it suffices to consider the case where m = m® — 1 (If m < m® — 1, one can
always augment the set 7, by m® — 1 — m true break points which are not inside 7,,, to make
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Dnt(@m(T), A (Tr) i Try) smaller). For the case (b) with m = 1, we consider three subcases:
(b.1)2<Th <T?, b.2) T < Ty < T9, and (b.3) TY < Ty < T. In the subcase (b.1), [1,T1 — 1]
does not contain a break point while [T7, T contains two true break points 77 and T3. Observe
that

-1
~ ~ 1 ~ )
Dnr(a1(Th), A(Th); Th) = NT Z {[Y} _)(t()[l(7-1)]/1\4-1’&(7—1)[Y;f ~ X,én(Th)] —52515}
t=1
;I
tNT {[Yt - Xtd?(Tl)]/MA(Tl)m — Xiao(Th)] — sést}
t=T,
= Dnr1+ Dnrp-

Noting that the interval [1,77 — 1] does not contain a break point, using the arguments as used
in the study of case (a), we can readily show that

-1

Dyt > C% Z Ha? — dl(Tl)H? + Op( 1/25;NT)
t=1

Similarly, we can show that

DNT2_ ZHﬁt 2(Th)| ‘ + Op( 1/26;NT)
t Ty

Then by Assumptions 5(i)(ii)

0 ~
Ta7Dn(@ (1), AT 7))
m0 Cz i
> g\ 7 2 et el +7 Z}Iﬁt—aﬂl I*+0r@!25, 5)
NT t Ty
=z i?lanzTA2 Z Z Hﬁt_O‘JH +op(1

] 1t= TJ 1
> cpep+op(1).

In the subcase (b.2), both [2,77 — 1] and [T1,7T] contain a break. As in subcase (b.1), we
can show that

0 -~
%?VTDNT(&(TQ,A(TQ;TQ
m() T1 1
2 7, |7 o I m@l e S 8 aalT [+ OV 2
TANT t ~
= c{nng 2, Z Z H/Bt—C“JH > cpcg+op(1).
o j 1t=T}_1
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The proof for the subcase (b.3) is analogous to that for the subcase (b.1). Hence, the conclusion
(C.113) follows in the subcase (b). Case (c) can be studied analogously. This completes the
proof of the lemma. |

Proof of Lemma B.6. For 7,, € T,, with m® < m < mmax, we recall that

5‘2(Tm) - QNT(&m(Tm)>A(Tm);Tm)

1 m+1 Tj—1
= min o= Y (- Xeoy) Ma (Y — Xia)
’ j=1t=Tj_1
1 m+1 T;—1
= min—— oY (Vi X)) My (Vi — Xiaj),
§=1 t=T;_1

and 6% = w7 ST eher. In view of the fact that
F(T0) 2 63(T) and F(T%) = g + Op(6,37)
by (C.114), we have
m+-1
0 < &%(T00) = 6°(Tm) = o7 — 57 (Tm) + Op(8,%7) = D Inrj + Op(S, 3p),  (C.115)
j=1
where Jyr; = —inf, 9j (), S (@) = 35 ZtTi;jlﬂ [(Y} — Xa) Mgz, (Y — Xia) — 5254 and
[Tj-1,T; — 1] does not contain any break point for j = 1,...,m + 1. Let ozgm = ﬁ%,l and
- - . T;—1 Iy .| .
Gim = &;(Th) = argming S; (o)) = (Ztin,l X/M A(Tm)Xt) Sig, X{ Mg g Yy for j =
1,...,m 4+ 1. As in the proofs of Lemma C.4(i) and Theorems 3.1 and 3.4, we can show that
%HA(Tm) —A%]2 = Op((S;?VT) and ||&m — a97m|] = OP((S;}VT). Then using Y; — Xi&jm =
e+ AV + Xt(agm — &jm), We have

T;—1
- 1 J ~ i
5 (@jm) = NT [(Yt = Xitjm)’ Mg 7,y (Yo — Xi@tjm) — €2€t]
t:Tj,1
. ol
- / .
= NT Z {[Et +A0fto +Xt(a?7m — Oéj’m)] M[X(’Tm) [515 + AOftO +Xt(0427m . Oljﬂn)] _ Egst}
t:ijl
1 Tjil 1 ijl
— A 07 A O/ 0 £0
- NT sPAz)® T Z fe A" M g AT
t=Tj 1 t=T;_1
, Bl 71
; 2 , 0 O 00
+ﬁ (aj,m Oéj,m) XéMA(T )Xt (O‘j,m ajym) + NT Z géMA(Tm) b
=t t=T;_1
Ll 5 Tl
O 07 A O .
+W t ; 5;,MA(T )Xt (ajm Olj,m) + Wt ; ft /A /MA T )Xt (ajm B Oé‘%m)
o =11

= Sj1+ 92+ 95j3+25j4+2S;5+256.

39



By Lemma C.1(iii),
m+1

T

—1 _
E Sj1 = NT E :EQPA(Tm)gt =Op (5N2T) :
j=1 t=1

In addition, we can show that

m+1 T
1
> Si2 = 57 2 AT (Mg ()~ Mao)Af) = Op (3,3r)
j=1 t=1
m+1 1 Mt ) ;-1
Z 5’73 < T Z Hag,m - 6‘jJ”H Z Hmax (Xz‘{Xt/N) =0p (5;,?VT> ’
j=1 j=1 t=Tj—1

and similarly Z;n:ll Sj1 = Op (5;?\@) for I = 4,5,6. Then by (C.115), 6*(7) — 0% =

Op (5;?VT> for all m € {mo +1, ...,mmax} and 7,, = {11, ..., )y}, which completes the proof
of Lemma B.6. |
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