
Supplementary Materials to Accompany:
Estimation and Selection for High-Order
Markov Chains with Bayesian Mixture

Transition Distribution Models

Matthew Heiner∗

Department of Statistics, Brigham Young University
and

Athanasios Kottas†

Department of Statistics, University of California, Santa Cruz

September 7, 2021

S1 Marginal distributions

We report the marginal distributions of observations associated with the Dirichlet and SBM

priors for probability vectors given originally in Heiner et al. (2019). These distributions

can be useful for computing Bayes factors in addition to facilitating the MCMC algorithms

described in Appendix S2.

Consider a length-N sequence of independent random variables {xt} ∈ {1, . . . , J}N

with common distribution θ = (θ1, . . . , θJ). Given θ, the probability of the sequence is∏
t θxt = θn1

1 · · · θ
nJ
J where the sufficient statistics in n = (n1, . . . , nJ) count the occurrences

of each category.
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If θ follows a Dirichlet distribution with shape parameter vector α, then the marginal

(prior predictive) distribution of {xt} is given by

p({xt}) =

∫
p({xt} | θ) p(θ) dθ =

Γ(
∑

j αj)∏
j Γ(αj)

∏
j Γ(αj + nj)

Γ(
∑

j αj + nj)
=

MVB(α+ n)

MVB(α)
, (S1)

where MVB(·) denotes the multivariate beta function.

Now suppose θ follows the SBM distribution with parameters {π1,j}, {π3,j}, η, {γj},

and {δj}. Let

gj(aj, bj,n) ≡ Γ(aj + bj)

Γ(a∗j + b∗j)

Γ(a∗j)

Γ(aj)

Γ(b∗j)

Γ(bj)
,

with a∗j ≡ aj + nj, and b∗j ≡ bj +
∑J

h=j+1 nh . Then the marginal distribution of {xt} has

probability mass function

p({xt}) =
J−1∏
j=1

[π1,j gj(1, η,n) + π2,j gj(γj, δj,n) + π3,j gj(η, 1,n)] . (S2)

S2 MCMC algorithm details

Following the hierarchical MMTD model, the joint posterior distribution of all unknown

parameters is given up to proportionality:

p
(
{ζt}Tt=L+1,Λ, {λ(r)}Rr=1, {Q(r)}Rr=0, | {st}Tt=1

)
∝

p(Λ) p(Q(0))
R∏
r=1

[
p(λ(r))

Kr∏
j=1

p
(

(Q(r))·,j

)]
×

T∏
t=L+1

[
p
(
ζt | Λ, {λ(r)}Rr=1

)
p
(
st | ζt, {Q(r)}Rr=0, {st−`}L`=1

)]
,

(S3)

where (Q(r))·,j denotes column j from a matricized version of Q(r).

We use a collapsed Gibbs sampler that cycles through conditional updates of {ζt}, Λ

and each λ(r), with all {Q(r)} marginalized out of the posterior. It is then straightforward

to draw each Q(r) from the full conditional distributions given below.
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In what follows, let Z(ζ) and z(ζ) map ζ to its corresponding Z and z respectively. Also,

let %r(s) be a unique map from each possible length-r vector of lagged states s ∈ {1, . . . , K}r

to the corresponding column index of the flattened (matricized) Q(r). Further, let st−1(z)

be a function accepting a lag configuration z and returning the values of the states at those

selected lags from the vector (st−1, st−2, . . . , st−L). For example, if zt = (2, 5), then st−1(zt)

will return the vector (st−2, st−5).

For each r = 1, . . . , R, let N (r) be a matrix containing transition counts for which the

(k, j) entry is the cardinality of {t : Z(ζt) = r and %r(st−1(z(ζt))) = j and st = k}. Also let

the kth entry of vector N (0) be the cardinality of {t : Z(ζt) = 0 and st = k}. Integrating

all {Q(r)} from the full joint posterior proportional to (S3) yields

p
(
{ζt},Λ, {λ(r)} | {st}

)
∝ SBM(Λ)

∏
r

[
SDM(λ(r))

] ∏
t

[
ΛZ(ζt) λ

(Z(ζt))
(z(ζt))

]
×

p
(
N (0) | {ζt}, {st}

) R∏
r=1

[
Kr∏
j=1

p
(
(N (r))·,j | {ζt}, {st}

)]
,

(S4)

where

p
(
(N (r))·,j | {ζt}, {st}

)
=

Γ(
∑

k(αQ(r))k)∏
k Γ((αQ(r))k)

∏
k Γ((αQ(r))k + (N (r))k,j)

Γ(
∑

k(αQ(r))k + (N (r))k,j)
, (S5)

and p
(
N (0) | {ζt}, {st}

)
takes the same Dirichlet-multinomial form.

The {ζt} are updated individually using the collapsed conditional probability mass

function given by

p
(
ζt | · · · ,−{Q(r)}

)
∝ ΛZ(ζt) λ

(Z(ζt))
(z(ζt))

p
(
N (0) | {ζt}, {st}

)
×

R∏
r=1

[
Kr∏
j=1

p
(
(N (r))·,j | {ζt}, {st}

)]
,

(S6)

where we modify {N (r)} to reflect each possible ζt ∈
{

0, 1, . . . ,
[(
L
1

)
+
(
L
2

)
+ . . .+

(
L
R

)]}
. In-

stead of sampling from (S6) directly, we Metropolize the update by first drawing a candidate

with probability mass proportional to (S6), excluding the current state. The Metropolis

acceptance ratio is then the sum over all probabilities excluding the current state, divided
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by the sum over all full conditional probabilities excluding the candidate state (Liu, 1996;

Robert and Casella, 2004, p. 394).

The remaining full conditional distributions do not change with marginalization:

• p(Λ | · · · ) ∝ p(Λ)
∏

t p(ζt | Λ, {λ(r)}) ∝ SBM(Λ;π1,π3, η,γ, δ)
∏

t ΛZ(ζt), a conju-

gate SBM-multinomial update using the counts of Z(ζt) in each of {0, 1, . . . , R}. See

Section 2.2 of Heiner et al. (2019) for a sampling strategy based on the stick-breaking

construction, noting that in the MMTD model application, π1 and π3 change with

index r = 0, 1, . . . , R.

• p(λ(r) | · · · ) ∝ p(λ(r))
∏

t p(ζt | Λ, {λ(r)}) ∝ SDM(λ(r);α
(r)
λ , β

(r)
λ )

∏
t:Z(ζt)=r

λ
(r)
(z(ζt))

independently for r ∈ {1, . . . , R}. Here, λ(r) is indexed by the
(
L
r

)
possible sets

of lags. This is a conjugate SDM-multinomial update using the counts of the
(
L
r

)
unique lag configurations zt within level r. The full conditional is a SDM distribution

with β
(r)
λ and with the multinomial counts added to α

(r)
λ , analogous to Dirichlet full

conditionals.

• p(Q(0) | · · · ) ∝ p(Q(0))
∏

t:Z(ζt)=0 p
(
st | ζt, {Q(r)}Lr=0, {st−`}L`=1

)
= Dir(Q(0) | αQ(0))

∏
t:Z(ζt)=0(Q

(0))st , a standard conjugate Dirichlet-multinomial

update using the counts collected in N (0). The full conditional distribution is then

Dir(αQ(0) +N (0)).

• p
(

(Q(r))·,j | · · ·
)
∝ p

(
(Q(r))·,j

) ∏
{t:Z(ζt)=r and %r(st−1(z(ζt)))=j} ×

p
(
st | ζt, {Q(r)}Rr=0, {st−`}L`=1

)
∝ Dir

(
(Q(r))·,j | αQ(r)

) ∏
{t:Z(ζt)=r and %r(st−1(z(ζt)))=j}(Q

(r))st,j,

independently for r = 1, . . . , R, and j = 1, . . . , Kr. Again, this is a standard conjugate

Dirichlet-multinomial update using the transition counts collected in (N (r))·,j. The

full conditional distribution is then Dir(αQ(r) + (N (r))·,j).
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S3 Details for simulation studies

To evaluate estimation of transition probabilities, we fit each model using a subset of

training samples and compared point estimates of the transition distributions to the true

transition distributions at each validation time. Specifically, for validation time point t′,

each model produced a vector p̂t′ to estimate each p
(k)
t′ = Pr(st′ = k | st′−1, . . . , st′−L) =

(Ω)k,st′−1,...,st′−L
, for k = 1, . . . , K. In Bayesian models, the point estimate is the Monte

Carlo-computed posterior mean of p̂t′ . In non-Bayesian models, p̂t′ is computed from the

optimized model fit. For each validation time point, we computed the L1 loss given by Lt′ =∑K
k=1|p̂

(k)
t′ − p

(k)
t′ |. The reported loss metric for model comparison is 100 ×

∑
t′ Lt′/(KT

′),

i.e., 100 times the mean L1 loss across the T ′ = 1,000 validation points.

S3.1 Simulation 2 results

The mixture decomposition profile for Simulation 2 given in Table S1 (left) reveals full,

fifth-order dynamics in which all lags interact. At most one subset of lags carries appreciable

weight. The full generating model has 32 free parameters.

All models were fit to the first T = 100, T = 200, and T = 500 training samples from

Simulation 2. Here, we assume that the modeler is considering a horizon of seven lags,

which we use where possible to promote equitable comparisons. Results of the mean L1

loss across the 1,000 validation points are given in Table S1 (right).

S3.1.1 Sample size 100

The VLMC model performs well for all sample sizes in this scenario, and best among all

methods for T = 100. This is mildly surprising, given that the generating tensor is not

sparse, exhibiting full, fifth-order dependence. In the T = 100 case, higher-level interactions

are not estimable in the multinomial logit model. Models with lower-level interactions

perform comparably across model classes. Again, regularization preserves integrity of over-

specified models.

MMTD models tend to mix with lag 2 (and occasionally lag 4) in the first level. They

tend not to support higher levels, and fail to coalesce around a best two, three, or four-lag
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Table S1: Simulation 2 (fifth-order, binary chain). (Left) Mixture decomposition profile
for the simulation-generating tensor. (Right) Results for transition probability estimation
under various models/settings using sample sizes T = 100, T = 200, and T = 500. The
lowest mean loss is highlighted with bold font.

Level Wt. (λ̃) Lag config. (C)

0 .066
1 .026 5
2 .043 2, 4
2 .040 1, 2
3 .027 1, 2, 4
3 .009 3, 4, 5
4 .155 2, 3, 4, 5
4 .014 1, 2, 4, 5
4 .003 1, 3, 4, 5
4 .002 1, 2, 3, 4
5 .616 1, 2, 3, 4, 5

Lag Weight (total contrib.)

1 .702
2 .897
3 .784
4 .868
5 .823

Model 100× Mean L1 loss

T = 100 T = 200 T = 500

VLMC 20.51 15.46 12.12

LogitMC(7, 1) 24.30 20.03 18.53
LogitMC(7, 2) 26.15 16.26 14.66
LogitMC(7, 4) n/a n/a n/a

LogitMC(7, 1, lso) 24.26 20.28 18.57
LogitMC(7, 2, lso) 24.51 15.78 14.65
LogitMC(7, 4, lso) 23.38 15.18 10.12
LogitMC(7, 7, lso) 22.22 13.66 10.28

MMTD(7, 1) 24.09 23.91 21.70
MMTD(7, 2) 23.71 20.84 19.51
MMTD(7, 4) 23.29 15.79 15.28
MMTD(7, 7) 23.32 13.70 7.39

configuration. It appears that the prior structure holds against a weak signal, as the sample

size is not sufficiently large to estimate fifth-order dynamics.

S3.1.2 Sample size 200

The larger sample size helps the models reveal higher-order dynamics. The VLMC model

is again competitive, and generally outperforms multinomial logit models. Interactions

significantly improve logit models, which marginally outperform their MMTD counterparts

in this scenario. Low-level MMTD models are unable to leverage increased sample size to

the extent that the other models can.

The MMTD(7, 2) model leverages its mixture structure to include lags 1 and 4 on

the first level and lag configuration (3, 5) on the second level, yielding an effective order

between 3 and 4. The MMTD(7, 4) model mixes primarily over lag configurations (1, 2, 3,

5), (1, 2, 3, 6), (1, 2, 3), and (3, 5). The over-specified MMTD(7, 7) model clearly identifies
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the fifth level and correct lag configuration, and mixes with a fourth-level configuration (1,

2, 3, 5).

S3.1.3 Sample size 500

The 32 free parameters are more easily identified from the series with 500 samples. Here, the

VLMC model is less competitive, but still performs well. Again, interaction significantly

improves multinomial logit model fits, while low-level mixing in MMTD models fails to

approximate the dependence structure.

As in the T = 200 case, the MMTD(7, 2) model mixes over non-overlapping lag con-

figurations, leveraging the MTD structure in a manner consistent with the model’s second

intended use. However, it does not yield strong performance gains in this scenario.

The over-specified MMTD(7, 7) model again clearly identifies the true structure, and in

this case performs best. Replicate runs of the MMTD(7, 4) model yield losses well below

the reported 15.28 (12.12 and 9.73), indicating that MCMC chains are exploring distinct

posterior modes. For this reason, we recommend always running multiple parallel chains.

S4 Multiple-chain MCMC analysis

Either model misspecification or high-order dynamics observed in small samples tends to

exacerbate mixing challenges in the MMTD model. This is evident in both the seizure and

pink salmon analyses, but far more pronounced with the seizure time series. Although the

current MCMC algorithm does not generally explore sufficiently rapidly to reliably estimate

relative heights of posterior modes, one could employ strategies for combining non-mixing

chains. See, for example, Yao et al. (2020) when prediction (or overall transition probability

estimation) is the primary goal. Mixing and identifiability issues are more problematic if the

goal is inference for effective order or lag relevance. Here, we suggest two straightforward

and practical approaches, each employing our decomposition algorithm, that could help in

extracting useful information from multiple MCMC runs.

The first approach attempts to de-noise the decomposition results presented in the

analyses by replacing posterior draws for component Q tensors with full-conditional point
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summaries (i.e., means). This requires that either the decomposition is calculated during

MCMC, or draws for the ζt allocation variables are stored for post-processing. This strategy

enhances the differences between MCMC and decomposition estimates in the pink salmon

analysis, and makes the lag-inclusion index more pronounced. If estimated high-level in-

teractions are superfluous, this approach may reduce, but does not eliminate posterior

multimodality.

In the case that multiple chains explore distinct modes, or a single chain visits multiple

modes, one strategy is to concatenate these chains and separate the modes with a clustering

algorithm. In the case of relatively few modes, one may proceed to summarize estimates

within each mode, perhaps by applying the decomposition to a mode-representing point

estimate of the full transition tensor, or examining configuration weights λ(r) directly. Mode

separation may occur at the Λ or λ(r) levels. We typically start by attempting a k-means

clustering algorithm on traces of Λ. Clustering on traces of log-likelihood and lag-inclusion

weights proved ineffective in the seizure analysis.
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