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A Some preliminary results

We recall some preliminary results which have been established in Ai et al. (2021). The
following conditions are inherited from Ai et al. (2021):

Assumption A.1. (i) The support X of X is a compact subset of R". The support T of
the treatment variable T is a compact subset of R. (ii) There exist two positive constants
m and ny such that

0<m <m(t,x) <m<oo, V(t,) e T x X .
Assumption A.2. There exist Ay, «x, € RE K2 gnd a positive constant o > 0 such that

sup ‘p,_l {WO(tv ZI_’:)} — UK, (t)TAK1><K2UK2 (ZB)‘ = O(K_a> )
(tx)eT xX

where p(u) = — exp(—u — 1) and p'~' is the inverse function of p'.

Assumption A.3. (i) For every K; and K,, the smallest -eigenvalues of
E [ug, (T)uk, (T)"] and E [vg, (X )vi,(X)T] are bounded away from zero wuniformly
in Ky and Ky. (i) There are two sequences of constants (1(K7) and ((Ks) satisfying
sprer e, (O < (K1) and supger o (@) < G(Ky), K = Ki(N)Ka(N) and
((K) := (1(K1)((Ky), such that ((K)K=* — 0 and ((K)y/K/N — 0 as N — oc.
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Assumption A.4. ((K)\/K2/N — 0 and vVNEK=* — 0.

See Ai et al. (2021) for a detailed discussion on Assumptions A.1 -A.4. Under these
conditions, Ai et al. (2021, Theorem 3) established the following results:

Proposition 1. Suppose that Assumptions A.1-A.3 hold. Then, we obtain the following:

sup ‘ﬁ-K(taw) —7T0<t,-’13>’ = OP
(t,®)eT xX

maX{C(K)Ka,C<K) %}] )
/TXX | (t, @) — mo(t, @) |*dFr x (t, @) = O, {max (KM’ %) } ’
%i\fmm, X) = mo(T XI" = O, {m <K %) } |

Furthermore, for any estimand with the form of E{m(7, X)R(T,X,Y)}, where
R(T,X,Y) € L'(dFrx.y), Proposition 2 of Ai et al. (2021) provides an asymptotically
equivalent representation for the plug-in estimator N ! Zf\;l k(T X)) R(T;, X, Y;):

Proposition 2. Suppose that Assumptions A.1-A.J hold. For any integrable function
R(T, X,Y) where E{R(T, X,Y)|T =t,X =} is continuously differentiable. Then,

7w (T3, X3)R(T;, X3, Y;) — E{mo(T, X)R(T, X,Y)}]

s 5l

N
}

The following conditions are restatements of Assumptions 1-5 listed in the main paper:

Assumption 1. For allt € T, given X, T is independent of Y*(t), that is, Y*(t) L T|X,
forallt € T.

Assumption 2. Under Hy, (i) 0" is an interior point of ©, where © is a compact set in RP;
(ii) | My (0,7 k)| = infoco, ||Mn (0, 7k)||+op(N"Y2), where ©5 := {0 € © : ||0—6|| < 6}.

Assumption 3. Let n(T,X,Y;t) be defined in (4.2), Var{n(T,X,Y;t)} < oo for all
teT.

Assumption 4. (i) w(t;0) is continuously differentiable in @ € © and continuous in

teT;

(ii) g(t;0) is twice continuously differentiable in @ € © and Vog(t;0) is continuous in
teT;
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(11i) Elm{Y;g(T;0") YT =t, X = x] is continuously differentiable in (t,x);
() E[mo(T, X)m{Y;9(T;0)}w(T;0)|T =t, X = x| is differentiable w.r.t. 6 and
VoE[m(T, X)m{Y; g(T; 0) }w(T; 9)”0:0* is of full (column) rank.
Assumption 5. (i) E [supgee |m{Y; g(T;0)}|*™°] < oo for some § > 0; (it) The function
class {m{Y; g(T;0)}: 0 ¢ @} satisfies:

1/2

sup  |m{Y;9(T;6:)} —m{Y;9(T;0)}*| <C-6
91:||0179||<6

E

for any @ € © and any small 6 > 0 and for some finite positive constant C'.

B Proof of Theorem 1

Proof. We first show that, under Hy, [0 — 67| Ly 0. Because, under H,, 0
(resp. 6%) is a unique minimizer of ||[N~' SN 7w (Ti, X )m{Y;; g(Ty; 0) w(Ty; 0)|] (vesp.
|E[mo(T, X)m{Y; g(T;0)}w(T;0)]||), from the theory of M-estimation (van der Vaart,
1998, Theorem 5.7), if the following condition holds:

N
sup Z (T, X:)m{Yi; g(Ti; 0)}w(T; 0) — E [mo(T, X)m{Y'; g(T; 0)}w(T; 0)]|| 4 0.
0cO 1
Then 8 % 6*. Note that
N
sup 1Z%K(E,Xi)m{i’i;g(ﬂ;é’)}wm;9) = E[mo(T, X)m{Y;; 9(Ti; 0) yw(T;; 6)]
N
Szlelg ;]iz:{%K(Ti,Xi) — mo(T3, X4)} m{Yi; 9(13; 0) }w(T3; 6) (B.1)
N
 sup %ZWO(Ti,Xi)m{Y;§g(E§9)}w(Ti§9) — E [mo(T, X)m{Y; g(T;0)}w(T;0)]] -
= i=1

(B.2)

We first show (B.1) is of 0,(1). Using Assumptions 4 and 5, the Cauchy-Schwarz inequality
and Proposition 1, we have that

1/2

N 1/2 N
[(B.1)] < {% Z {7x (Ti, Xi) — mo(T5, Xz)}2} : zlelg {% Z [m{Y; 9(T'; 0)}w(T; O)HQ}

i=1
< 0,(1).

We next show (B.2) is of 0,(1). Note that, by the law of large numbers, for every 6 €
S, mo(T3, X)m{Yii g(T3: 0) (15 0) — E [mo(T, X )m{Y's g(T56) yu(T30)) | &
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0 holds. By Assumptions A.1, 4 (i) and 5, we have

B, 161—0l<5 Imo(T, X )m{Y'; (T 01)}w(T; 01) = mo(T, X)m{Y'; (T 0)}w (T 0)°
<O 0 -Hsu};u@ [m{Y'59(T:00)} = m{Y:g(T; 0)}*| +O(1) - 5
<0(1) - 6°. B3

With (B.3), Assumptions 2 (i), and Andrews (1994, Theorems 4 and 5), the class
{mo(T, X)m{Y; g(T;0)}w(T;0) : @ € O} is stochastically equicontinuous. Then we have
that (B.2) is of 0,(1). Hence we have that 16 — 6% Ly 0 under H,.

We start to derive the asymptotic distribution of Jy(t). Note that

U; =U; + {7 (T, X)) — mo(T;, X ;) }m {Y;; 9(T5;6%) }
+ mo(T5, X;) [m {Yi;g(Tis 5)} —mA{Y; 9(Ti; 9*)}]
+ {7x(Ty, X;) — mo(Ty, X))} [m {Yi;g(Ti; 5)} —m{Y;; 9(T; 9*)}] :

where U; = mo(T;, X;)m {Y;; g(T;;0")}. Then, we have

Tn(t) :\/LN Zl U (T t) = \/Lﬁ Zl U, (T}, 1) (B.4)
- %W f;mm,xo — mo(T3, X)) ym {Y;: g(T: %)y A (T, 1) (B.5)
- TlﬁéwO<n,Xi> m {Yiig(T:0) } — m (Vi g(T:; 07)}| 2T, 1) (B.6)
+ Tlﬁé{%K<n,Xi> = mo(T X)) m {Yig(1:8) | = m (Y 9(T:: 09} | (T 0).

(B.7)
The subsequent proof consists of the following key steps:

Step 1. Establishing the asymptotically equivalent representation for (B.5) in terms of i.i.d.
summations;

Step 2. Establishing the asymptotically equivalent representation for (B.6) in terms of i.i.d.
summations;

Step 3. Showing (B.7) is of op(1).
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Using Proposition 2, under Hy : E[m(T;, X;)m{Y;; 9(T;; %) }T;] = 0, we have

(B. Zm T, X;) - Blm {Y;; 9(T;;0%)} - (T, 1)|T;, X

¢_ ZE mo(Ti, Xo)m A{Yi; g(T507)} - H(T;, 1)| X3] + op(1)

= ¢_ Z¢> T, X i;t) + op(1). (B.8)

We next find the expression for v N {9 — 6"} by applying Pakes and Pollard (1989, The-
orem 3.3). We begin to verify the Conditions (i)-(v) imposed in Pakes and Pollard (1989,
Theorem 3.3).

e For Condition (i) of Pakes and Pollard (1989, Theorem 3.3). By Assumption 2,

My @7l = ot IM(8, 7l + 0p (N1,
§
where

My(0,7) = % (T, X )ym{Ys: o(T:: 0)}w(T: 0).

i

By Proposition 2, we have
My (0,7K)
:% Z [Wo(Ti, X )m{Y;; g(T;; 0) }w(T;; 0) — Elmo (T3, X;)m{Y;; g(T3; 0) yw(T3; )| T, X ]
+ Elmo (T3, Xi)m{Y;; 9(Ti; 0) bw(T3; 0) | T3] + Elmo(Th, Xi)m{Y;; 9(Ti; 0) yw(T3; 0)| X ]
— E[mo(T;, X)m{Yi; 9(T5; 0) w(T5; 0)] | + op(N~'/?)

:GN(O) + OP(N_l/Q).

where the definition of G () is obvious and the equation holds uniformly in 6. Now
we have

1GN(B)] = inf |Gx(0)] + op(N~V2),
0cO;

thus Condition (i) of Pakes and Pollard (1989, Theorem 3.3) holds.
e For Condition (ii) of Pakes and Pollard (1989, Theorem 3.3). Let
G(8) := E[GN(0)] = E[no(T;, Xo)m{Yi; g(T3; 0)yw(T:; 8)),

and Assumption 4 (iii) ensures that the derivative VoG(6*) is full rank. Hence,
Condition (ii) of Pakes and Pollard (1989, Theorem 3.3) holds.
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e For Condition (iii) of Pakes and Pollard (1989, Theorem 3.3). Let

1 N
un(f) = N ; [f(T3, X3,Y:) — B{f(T:, X, V) }]

be the empirical process indexed by f(-). Assumptions A.1, 4, Assumption 5 and the
compactness of © imply the empirical processes

{VN Imo(Th, X )m {5 g(Ti: 0)} w(T1:0)] : 6 @},
{VN (Efmo(T, X,)m {Yi: 9(T3:0)} w(T;: 0)|T, X.]) : 6 € @},

{VN (Efmo(T., X m (Vi g(T:: )} w(T: 0)[T.) - 6 @},

and

{in Blm(, X (Vi g(T: 0} wiT:0)1X.) 0 € 01,
are stochastically equicontinuous (Andrews (1994, Theorems 4 and 5)). Note that

0))

(T:; 0)|T, X])
(T3 0)|T3])
(Ti; 0)| X))

VN{GN(0) — G(8)} =vn(mo(T;, X ;)m {Yi; g(T;; 0)} w(Ty;
— vn(E [mo(Ti, X3)m {Yi; g(T3; 0)
(E [mo(T3, X4)m {Yi; 9(Ti; 0)
(E [mo(T3, Xi)m {Yi; g(T3; 0)

tw

+ UN }
+ Un }
Then for every sequence {0y} of positive numbers that converges to zero,
p VVIGH(6) ~G(6) = Gy (6")]

lo-o-<sx 1+ VN{[Gn(O)] +[IG(O)]}

Thus, Condition (iii) of Pakes and Pollard (1989, Theorem 3.3) holds.

= Op(l).

e The Condition (iv) of Pakes and Pollard (1989, Theorem 3.3) is satisfied by noting
that under Hy : E[mo(T;, X;)m{Y;; g(T;; 0°) }w(T;; 0°)|T;] = 0 and

N

VNG (07) :\/L_ 3 {m) T, X )m{Yi: (T 0°)}w(Th: 0°)

— E[mo (T3, X3)mA{Ys; g(Ti; 0%) }w(T5; 07)| T3, X4

2

+ Elmo (T3, Xi)m{Ys; 9(T5; 07) b (T5; 07) | X ]

is a sum of i.i.d. random variables of mean zero.

e The Condition (v) of Pakes and Pollard (1989, Theorem 3.3), i.e. 8" is an interior
point of O, is satisfied by Assumption 2 (i).
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Therefore, all conditions of Pakes and Pollard (1989, Theorem 3.3) hold, and we get
VN {5 - 0*} (B.9)

{ _E [mm,xa - (%E[m (Yi: 9(T: 6%} |1, X.] - Viog(Ti: 6w (Ty: e*)ﬂ

E [ o(T5s X0 Bl (¥ 9(T:: 0} ;. X -wm;e*)vzgm;e*)] }

WO(E? Xl)

1

Sl (Y g(T50°)} |1, X, Vag(T:0)u(T:6)'|
g

JN Z {”0 T, Xi)m {Ys; 9(T3; 0%) } w(T5; 0%)

=1

—_

— mo(T3, Xi)w(Ti; 07) - Elm {Yi; g(T3; 0°) } | T3, Xi]
 Elm(Ti X,)u(T56')m (¥ 9(75: 0} X1 | + 0n(1).
Consider the term (B.6). Note that
(B.6) =vv {mo(T3, X.) [m {Vis o(7::8) b — m {Y:s 9(T:: 07} (T3, )}

+ VN - EA{mo(Ts, X5) [mA{Yi; 9(T3;0)} — m{Yi; g(T3; 0°)}] (T, 1)}

6=0
By Assumption 5, the compactness of ©, and Andrews (1994, Theorems 4 and 5), then the
empirical process

{on o X0 I (Vi g T56)) = m Yisa(T 6] 2 (T0) 0 €
is stochastically equicontinuous. With Ha — 6| & 0 under Hy, we have

v {mo(Ts X0) [m ¥ 9(T58) | = m {Yis (T 0)}| AT 1)} = 0p (1),
Using the mean value theorem and ||§ —6*|| & 0 under Hy, we have

VN -E{m(Ti, X;) [m {Yi: 9(T5;0)} — m{Yi; 9(T;;0")}]| (T}, 1)}

6=0

—{ V0B (T3, X (4 9(T3 )} T 1) } VN (o0}

0=6

=K |:7TO(TiaXi) : gg

By (B.9), we have

E[m {Yi; (T} 0°)} | T}, Xi] - Vog(T;; 0%) (T, t)} VN{B -0} +0p(1).

1

N
fz (Ty, X4, Yi t) + 0p(1), (B.10)
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where

0

Y(T;, X, Y5 t) =E {Wo(Ti,Xi) T

Bl (Ysg(550°)} 1 X - VaolT:07)" (7,0
x {E {mn,xa S Elm {Yig(Ti 0} 173, X - Vag (156" )u(T e*)ﬂ

E {Wo(Ti,Xi) : QE

Bl (¥ 0T 0} 11, - (T 0 Vg o(:07)|

x K [Fo(ﬂ,xi) . 62
g

Elm {Yi: 9(T;67)} |2, X.] - Vog(Ti; 6 (T e*)T}
Y {mm,Xi>m{n;gm;e*>}w(:n;e*>

— mo(T3, Xi)w(Ti; 0%) - E[m {Y;; g(Ti; 67)} |15, X4

© Elmo(T X u(T 0°)m {Yi: o(T;; 0°)) |Xz-]}.

For the term (B.7), we have

(B.7)] Z{m{ T, X0) = molTs Xo)} [m {5 (T 0) } — m (Vi 0(T507)}] (T, 1)

S\/_- sup [Tk (1, ) — mo(t, @)

(t,x)eT xX

: %i ‘m {Yi;g(Ti;a)} — m{%?Q(ﬂ;0*>}%<ﬂat)‘

VN -0y («K)K—a LK) %)

AB[|m {Yi0(@:8)} = m (i 9100} - AT 0] + 0p (N72) |

<Op (C(K)Ka + C(K)\/%) VN - {0(1) 10 = 6*|| + Op (N*1/2)}
=op(1), (B.11)

where the second equality holds by Proposition 1 and the law of large numbers; the second
inequality holds by Assumption 5; and the last equality holds by (B.9) and Assumption
A3.

Hence, combining (B.4), (B.8), (B.10), and (B.11), we have

']N<t ,I;J,X“K,t>+0p(1)

U (T;,t) — o(Ti, Xist) — (T, X4, Yis )} +op(1), VEET,

5~ 3\
WE HMZ

1

.
I
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where E{¢(T;, X;;t)} = 0 and E{y(T;, X;,Y;;t)} = 0. We know that

1 & 2 2
: /T{\/_N;"(E’Xi%;t)} =/TE[{77(Ti,Xi,K;t)} Jdt < oo,

that is, N~/23"N (T}, X;,Y;;-) is tight. Hence, by the functional central limit theorem
for Hilbert-valued random arrays Li et al. (2003, Lemma 2.1), we have that under the null
hypothesis Hy, jN() weakly converges to Joo(+) in Lo(T,dt), where Jo(+) is a Gaussian
process with zero mean and covariance function given by

Hence, (i) and (ii) are proved.

(iii) Obviously, h(J) := [{J(t)}*dFr(t) is a continuous function in Ly(T, dFr). Given
that Fp(-) is absolutely continuous with respect to the Lebesgue measure, h(J) is also
continuous in Lo(7, dt). Therefore, by Theorem 1 (i) and the continuous mapping theorem,
we have that h(Jy) = [{Jn(t)}2dFr(t) converges to [{Jo(t)}2dFp(t) in distribution. By
applying a similar argument to the proof of Theorem 2.2 (ii) of Li et al. (2003), we have
|C’/]\\4N — h(j\N)| = op(1). This completes the proof of Theorem 1 (iii). Part (iv) follows
from Theorem 1 (i) and the continuous mapping theorem. H

C Proof of Theorem 2

Similar to Theorem 1, results (i) and (ii) can be established. We next prove ¥y(t,t) > (¢, t)
for any fixed t € T. Let

A = [wOm,xa - (%E[m (Vi 9T 0°)} [T, X.] - Vg (T e*ﬂ%ﬂm,t)}

Y {E [mm,xn S Elm Y g(Ts6°)} T X, - Tag (156" )u(T; e*)T}

E [mm,xo Bl (Y5 (T 0} T3 X (T 0°) 9 0(T e*)} }

<E {mm, X0) - Sl {Yisg(T0°)} |12 X.] - Voo T 0T eﬂ

Then
BT X, Vi) A, - {mm,Xi>m{n;gm;0*>}wm;0*)
= ro(Ty X )w(T; 6°) - Elm {Y;; g(T1; 07} |T,. X ]

(T X )w(T: 6)m {Yi: g(T: %)) |Xi]},
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and
(T, X, Yis t) :=mo(T3, Xi) - E[mAYs; 9(T5;67) 3 | T3, X - (T3, 1)
— E[mo(Ti, Xi)m {Y;; g(T;;0%)} (T3, 1) | X ]
We have
2(t,1) = E [{UA(Ti,t) — 6(T;, Xist) — (T3, X3, Vi )]

[ {0 (T28) = Ao X (Vi (B0} w(0°) |
+ {5, ) Bl (Yol 6°)} T2 Xl (1 (T50) = A w07 |
+E {{Emm,xi)m{n;gm;m)} 0 - A w0 X

2 E|{m(T, X) - Elm {Y;: (10} T2 Xi] - (A(T1) - At-wm;e*))}gl

1
L2.E {E mo(T3, X ym {Yi; g(T5;67)} <«%”<Tz»t)—At‘w(Ti?H*)”Xi]F
{

—-2-E

Bl (T3 Xom {Yis g(T:0)} - (1) — A (T 0°) | X))

=E {{Up%”(Tz, t) — Ap - mo(Th, Xa)m A{Yi; 9(T3; 07) } w(Ti; 0*)}2} -

+ | {BmlT Xom (¥ 0(T3 0} - (£ T,1) — e (T00) X}

—E

{moli, X.) - Bl (Y5 g(T::0)} T2 Xil - (T3, 0) = Ay (T e*>>}2]

E [{Umm) A (T X m (Vi (T e*>}wm;e*>}2} — S(t,1),

where the second equality holds by using the tower property of the conditional expectation,
the inequality holds by using Jensen’s inequality.

D Proof of Theorem 5

Proof. We prove parts (i) and (iz). The proof is similar to that for Theorem 1. Let

g (t.0) = g(1:0) + (3—% and Usy = (T, X, )m {Vis g (Ti: 0%)}

Obviously, gn(t,0) — g(t,0) and U;y <=3 U;. Then
U =Upy + {7 (11, X) — mo(T3, X3)ym {Y;: g (T 03) }
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+ mo (T3, X) [m {YH 9(Ti; 5)} —mA{Y;; gn (T 9%)}}
+ {Fie(T X3) = mo(T X0} [ { Vi g(Tis8) | — m (Vi g1 03)}]

Then, we have

T (t) V_E:Uﬁ?ﬂj J_E:uw%ﬂ;w (D.1)
+ ﬁ ;{%K(Tu Xi) — mo(Ti, X o) ymAYi gy (Tis 03) } (T, t) (D.2)
1 U A )
+ TN ; mo(T3, X) [m {Yi§ 9(T3; 9)} —mAY;; gn(T; BN)}] A (T}, 1) (D.3)
1 L ~ \
+ 7 AT X0 = (T X0} [ {¥ig(TiB) | —m (¥ (T 83} (T ),
(D.4)
Obviously, by Chebyshev’s inequality, we have
1 N
@uVrZu%nt ZZN ﬂﬁ:ﬁgyﬁmﬁﬂm)

Using Proposition 2, under Hy, : E[mo(T;, X;)m{Y:; gn (T3; 0% ) }HT;] = 0, we have

(D. Zm T, X:) - B[m{Y;; gn (T3 03)} - 2 (Ti, 1)|T;, X
fZEwO T, Xo)mAYi g (T3 03) } - (T3, )| X ] + op(1)
=— —Zm (T3, X:) - E[m {Yi; g(T;;0")} - (T, 1)| T, X

fzﬂz 7o(T3, X 3)m {Vis g(T3:0°)} - #(T1, )| X.] + 0p(1)

_ \/_N Zqﬁ(Ti,Xi;t) +op(1),

where the second equality holds by using Chebyshev’s inequality. R

We consider the term (D.3). We first find the expression for vV N{6 — @%}. Similar to
(B.9) in the proof of Theorem 1, by applying Pakes and Pollard (1989, Theorem 3.3), we
have

¢N{§—m} (D.5)
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- {E [wOm,X» S Elm (Y g(T56°)} [T X, - Tag (156" )u(T e*)T]

B m(T X))

89E[m {Y: 9(T;;0°)} T, X - w(T3;0%)Veg(Ty; 9*)1 }

X
=
)
S
=
s

2Bl s (T3 0)} 15 X Vool (T e*)T]

%\H

>l X m (s 6°)) (T8

1=1

— mo(Ti, X)w(Ti; 07) - E[m {Yi; g(T;; 0%)} |13, X

Bl (75 X)) (¥ g(75 0} X1 | + 0 (1),
We next find the expression for vVN{6* — 03}. Note that under the local alternative
Hy : E[no(T;, X;)m{Y;; gn (T35 0%) HTi] = 0, using the mean value theorem, we have

0 =E [no(T;, X 3)m {Yi; g(T;;0°)} w(T;; 67)]
=E [n(T;, X3)m A{Y;; gy (T35 07) } w(T;; 07)]

~E |l X)) - S E b {73 0} [T X (T3 07)- %)]
=EE [70(T;, Xi)m {Yi; gy (T3 05 ) } w(T5; 07)]
0

FE{m(T X) - 5 B m {5 gw (T 0) } 1T, X | (T3 )V 9(T:: 5)} {67 - 03}

—-E Wo(TmXi) : 3

agE [m {YugN(TZ-,O )} ‘TZ,XZ] "LU(Ti,H ) . _}

VN
_ {E {mm,xi) S0 (Y g(T507)) 11, X w(Ts0°) V] (T e*)} n 0p<1>} (0" — 07}

0 AT 0NN X wTeen . 0D (L
—E[mm,Xi)ﬁ—gE[mmgm,e>}m,X4 (T:0%) m]”(m)’

where 8 lies on the line joining from 6* and 0%, and gy (T};0) == ¢(T3;0) +~ - 6(T)/VN
for some v € (0,1). Then

VN{O" - 03} :{E {mm,xi) - %E [m {Yi; 9(T3; 6%} |Th, X, - Viog(T; 0" )u(Ty: 0*)T]

K {Wo(TuXi) ) 3

ag]E [m{Y;; 9(T3;0°)} |Ti, X - w(T; 9*)Veg(ﬂ;9*)T] }

X E |:7TQ(E,XZ') . 3

S i (Y5013 0°)) 11, X, Vag(T:0)u(T:0°)

<E [mm,xa - (%E [ {¥i: 9T 0%))}| T X, - 6(T3) - w(T: e*>} T on(L).
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Hence, we get
VN {5 - ejv}

:{E [mm,xo - %E [ {Vis g(T3: 07} T2, X - V(T 0" )u(Ty: e*)T]

E |:7T0(Ti,Xi) : (%JE [m {Y;; 9(Ti;0)} |Ti, X /] -w(Ti;H*)Vog(Ti;H*)T] }

<E [mo( T X,) - B i (isg (150"} T3 X.] - Vag(Ts0")uT:0°)
xE[mm,Xi) . [m{Yi;g(ﬂ;97v))}m7Xi}-5(ﬂ)-w(ﬂ;9*)]
—{E{ (T3 X 5 Bl (Yisg(T567)) 11, X, Voo T567)u(T0°)

-E {ﬂo(Ti,Xi) : (%]E[m {Yi; g(13;6")} T3, X ] -w(Ti;G*)Veg(Ti;O*)T} }

0
x E |:7T0(Ti> X,) - a—gE[m {Yi; 9(T;;0%)} | Ti, Xi] - Vog(T;; 0" )w(T; 9*)T}

<=y {wOm,Xi)m{n;g(Ti;e*>}w<ﬂ;e*>
— mo(Ti, Xo)w(Ti; 07) - E[m {Y;; g(T3; 0%)} |13, X

T Efro(Ty X Jw(T 0)m {Vi (T2 0°)) |Xi]} T op(1).
Then similar to (B.10), we have

N
1
_ _TZ (Ty, X3, Yis t) + pu(t) + 0p(1),

where

u(t) =E [wOm,Xa 5Bl (Vi (1670} [T, X.] - Vao(T e*)T%ﬂ(Ti,t)}

Y {E [mm,xo B Y g(150')} 15 X Tag (156" )u(T e*)T}

-E |:7r0(TiaXi) : %E [mA{Y;; 9(T3;0°)} T, X i) -w(E;O*)Vog(Ti;O*)T] }
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<E [WOm, X,) - 5 B (Vi g(Ti 0} [T X.] - Vog (T 0T e*)ﬂ
< E {mm,xo B [m (Vi g(Ts 8T X ] -6(2) - (T e*)} .

Similar to (B.7), we have that (D.4) is of op(1).

Hence, we have
1
In(t) =—= > (T, X, Yi;t) + u(t) + op(1)
gD

w% S (U (Tis 1) = O(Ts, Xist) = 6(Ts X, Yis )} + (0) + 0p(1),

where E{¢(T;, X;;t)} = 0 and E{¢(T;, X, Yi; t)} = 0. Therefore, under the null hypothesis
Hy, Jn(-) weakly converges to Ju ,(+) in Lo(T, dt), where Jo ,(+) is a Gaussian process with
mean function p(t) and covariance function given by

We prove part (7i7). Because

1 ~ 1N
\/—NJN(t) = N;U%(Ti,t)
1 N
= Z:; U (T}, 1) (D.6)
+ % D _Fw (T3, X) = mo(Th, Xi)bm Vs (T35 67)} H(T; 1) (D.7)
t X;mm,xz-) i {Yisg(T::8)} - m {Viso(T;; 07)}| (T3, 1) (D.8)

N
1 ~ a *
5 S FR(T X) = mo(Te, X)) [m{ Vi g(T0) } = m {Yis (T 0")}| (T ).
i=1
(D.9)
By applying a similar argument for (B.5)-(B.7), we have that (D.7)-(D.9) are of op(1).
Under H;, the law of large numbers implies (D.6) = p;(t) + op(1). Hence, we conclude the

proof.
m
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E Asymptotic properties of J, ~(t; éopt) and CM N(gopt)

Theorem 3. Suppose that m(y; g) is differentiable with respect to g, Assumptions 1-5 and
Assumptions A.1-A.4 listed in Appendiz A hold, then under Hy,

N
N 1
(Z) JN(t; Oopt) = \/_szlnopt(ﬂaxlay;7t) +0P(1)7
) jN(-; 5opt) converges weakly to Joo opt(-) in Lo{T,dFr(t)},
where Joo opt 15 6 Gaussian process with zero mean and covariance function given by

Zopt(t t/> = E {nopt(na Xi7 Y;7 t)nopt(ﬂa Xi7 Y;v t/)} .

Furthermore,

) @N(ém) converges to /{Joo,opt(t)}QdFT(t) in distribution.

Proof. We first claim H@opt — 07| L5 0 under Hy. Since
e O is compact;
e by Proposition 1, |[N~1- CMy(8) — CM(0)] 2 0 for every 6 € ©;
e C'M(0) is continuous in 6;

o |U:(0)| = |7k (T, X,)m(Yi; 9(T;: 0))] < Op(1) X supgee [m(Yi; 9(T3;0))| and Elsupge
Im(Y;; 9(T3;0))|] < oo;

then it follows from van der Vaart (1998, Theorem 5.7) that ||00pt 0| 5.

We then find the asymptotic expression for v N {90pt 0*}. By the first order condition,
we get

N
1 ~ —~
NZJ T‘ugopt BJN(E;Oopt) =0
Using the mean value theorem, we get

N A~
1 Vo n(T}; 0%)
_ ’_Z’“e* AN e
N 2 n VN

1 VBjN( 17 gopt) VQJN(T oopt) jN(T‘z; 6opt) v2 JN( gopt) A *
+ 5 + V/N{6,,—6"},
A s S S RGOS

o
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where Hopt lies on the joining from Oopt to 6. Using the fact that HO(,pt — 6% & 0 and
Proposition 1, under Hy, it is easy to obtain

ig: VOjN(E;gopt) . VBjN(iri;’éopt)T + jN(E;’éopt) . ngN(E;gopt)
VN VN VN VN

= [ B [nlr.x)- Dty (10} Va0 ()|
T g

x E {WO(T, X)- gm{Y;g(T; 0")}Voy (T, 0*)T’H(T;t)} fr(t)dt 4+ op(1)

:/ BB, fr(t)dt + op(1),
T

where

B, :=E [WO(T, X) - gm{Y; 9(T;0")}Veg(T; 0" )H(T; t)} :

For Jx(t;0"), under Hy : E[mo(T}, X;)m{Y;; g(T};0")}|T = t] = 0, by using Proposition
2, we get

N
In(t:67) =%_Z (T;, Xo)m{Ys; g(T3 07 YH(Tis 1)

= { X ) m{Yis (T 0 )1 H(Tis ) — mo(Tos X) - Elm{Yis o(T: 0V} T, X1 - H(T:: 1
n Emm,xi)m{n;gm;e*>}H<Ti;t>|X@-1} op(1)
:\/_1N Z SOOPt(Tu X, Y;t) +op(1),
where

ot (T3, X3, Yist) ==mo(Ti, Xi)m{Yi; g(T3; 0°) Y H(Tis t)
— mo(T3, Xi) - B[m{Y3; g(T3; 6°) T, X] - H(T3; 1)
+ Elmo(T3, Xi)m{Yi; (T35 07) (T35 1) X ]

Now, we have

VN {8, - 0"}
N

([ ) {% > (T 07 %}

1 & !
=— \/_N ,Z1 {/ BB, fr(t )dt} : /T%pt(Tz‘aXz‘,Y%;t) - By - fr(t)dt
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Table 1: Estimated sizes

m(-) Model N

1%

Logistic
5%

10%

Cosine-Sine

1%

5%

10%

1%

Indicator

5%

10%

100
DGPO-L 200
500

0.021
0.015
0.008

0.067
0.056
0.051

0.124
0.111
0.108

0.010
0.014
0.012

0.064
0.062
0.059

0.136
0.135
0.117

0.008
0.012
0.011

0.058
0.056
0.048

0.117
0.107
0.107

Average 100

DGPO-NL 200
500

0.025
0.021
0.012

0.085
0.059
0.058

0.153
0.119
0.110

0.014
0.013
0.011

0.070
0.069
0.052

0.134
0.131
0.105

0.007
0.012
0.011

0.064
0.065
0.057

0.119
0.110
0.111

100
DGPO-L 200

Median 500

0.035
0.022
0.017

0.107
0.081
0.064

0.182
0.141
0.121

0.016
0.016
0.011

0.065
0.068
0.066

0.132
0.121
0.125

0.031
0.025
0.013

0.106
0.065
0.052

0.162
0.134
0.110

100
DGPO-NL 200
500

0.040
0.025
0.010

0.124
0.078
0.059

0.196
0.133
0.119

0.009
0.010
0.016

0.063
0.073
0.053

0.109
0.127
0.116

0.026
0.021
0.015

0.097
0.074
0.072

0.172
0.140
0.126

Let

-1
T/Jopt(TiaXuY;;t) = {/TBtTfT(t)dt} {/TBtBtTfT(t)dt} /TSOopt(TiaXi,Yﬁt)Bth(t)dt-

Following a similar argument of establishing Theorem 1, we get

~ ~

N
1
In(t:Bop) =—= > opt(Ti, X3, Yii t) + 0p(1)
=1

VN

1 N
~UN ; {UA (T3, ) = ST, Xi5) = Yo (T, X5, Yis 1)} + 0p(1).

The remaining results follow by using a similar argument of establishing Theorem 1. [

F Additional simulation results of KS-type statistic

We also performed the simulation studies described in section 6.2 of the paper using the
KS-type statistic. The results are similar to those of the CM-type one.

Tables 1 and 2 summarize the empirical rejection probabilities computed at significance
levels 1%, 5%, and 10% for each case, which respectively show the estimated sizes (DGP0-L
and DGPONL) and the estimated powers (DGP1-L and DGP1-NL) of our KS test method.

G Estimating and testing Tobit linear models

Let

Y(t)=8"t+e,

for some unknown parameter 3 in a compact set in R?, where t = (1,¢,¢2 ... t*~1)T for
some positive integer p and € is a normal random variable with mean 0 and unknown
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Table 2: Estimated power

Logistic Cosine-Sine Indicator
m(-) Model N 1% 5% 10% 1% 5% 10% 1% 5% 10%
DGP1-L 100 | 0.587 0.807 0.885 | 0.488 0.714 0.825 | 0.505 0.748 0.850
Average 200 | 0.924 0.982 0.996 | 0.890 0.970 0.986 | 0.919 0.984 0.998
DGP1-NL 100 | 0.483 0.693 0.800 | 0.444 0.698 0.803 | 0.382 0.600 0.732
200 | 0.721 0.895 0.945 | 0.801 0.910 0.960 | 0.762 0.892 0.930
DGP1-L 100 | 0.277 0.533 0.660 | 0.164 0.372 0.525 | 0.263 0.525 0.655
Median 200 | 0.606 0.818 0.907 | 0.505 0.7434 0.834 | 0.612 0.829 0.902
DGP1-NL 100 | 0.209 0.399 0.523 | 0.167 0.363 0.495 | 0.161 0.365 0.487
200 | 0.356 0.593 0.732 | 0.350 0.625 0.756 | 0.380 0.632 0.755

variance o2. A Tobit linear model assumes the potential outcome

V(e = Y(t) if Y(t) >0,
(t) = 0 if Y(t)<0.

It can be shown that the log-likelihood function of 3 and o given Y*(¢) is

I f{Y*#).t.8,0} = 3 In [@{ } > In [a_lgb{Y*() B t}]

Y (£)=0 Y (t)>0

where ®(-) and ¢(-) are respectively the distribution function and density function of a
standard normal random variable. Olsen (1978) proposed a reparametrization 3 = § /v
and 02 = 772, the resulting transformed log-likelihood of the parameter 8 = (§,) is then

In f{Y*(t),t,0} = > W[@{—(6"t)}+ >  In(y)+In[p{yY;(t) — 6"},

Y (£)=0 Y (£)>0

which is globally concave in terms of 6.
Note that in this case, we can test the model by testing

Hy : 3 some 6" € O, s.t. E[Vgln f{Y*(t),t,0"} =0 forallt € T,
against the alternative hypothesis
Hy:fany 0 cO, st. E[Vgln f{Y*(t),t,0})] =0forallt €T,

where O is a compact set in RPF!,

This is a multi-dimensional moment condition. It is straightforward to extend our test
method by taking m{Y™*(t); g(t;0)} = Ve ln f{Y*(t),t,0} and w(7T;0) in (3.6) to be 1. In
particular, our Cramer-von Mises (CM)-type statistic and Kolmogorov-Smirnov(KS)-type
statistic are extended to

1 N

CMyy = 5 D_UR(TY {IR (T} and KSy = sup lJ3(1) -

=1
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where || - || is the maximum norm of a vector and
T (t) Zm T, X:)Veln f(Y;, T},0) (T}, t).
=1

We can estimate J%(t) by

N
~ 1 R ~
In(t) =+ ;mn,xnve In f(Y;, T3, 01.0) 7 (T, 1),
where Ty is defined the same as that in section 3 and

0., := arg min || M (0. 75|l

where
N
Zw T;, X:)Voln f(V;, T, 6).
=1

Theorem 1 can be applied here under Assumptions A.1 to 4 in section 4 and
Assumption G.1. (i) E [supgee || Vo In f{Y, T, 0}||*"°] < oo for some § > 0; (ii) The
function class {Vg In f{Y,T,0}:0 ¢ @} satisfies:

1/2

sup Hvelnf{KTael}_velnf{Y7T70}H2 SC(S

01:||91—0||<5

E

for any @ € © and any small 6 > 0 and for a finite positive constant C'.
With
O(Ti, X t) :=mo(T;, X;) - H(T5,1) - B[V In f (Y3, T3, 0)|T;, X
—E[mo(Ti, Xi)VeIn f (Y, T3, 0) - (T}, t)| X ],

and
U(T;, X3, Yy t) :=E [10(T3, X;) - Voo In f(Y;, T;, 0) 7 (T5, )]
< {E (T X)) Vool (4,7, 6) }
X {Wo(Tz‘,Xi)Ve In f(Y;, T;,0)
—mo(T5, Xi) - E[VeIn f(Y;, T3, 0)|T;, X
+ Elm(T5 X)Ve lnfm,:n-,eﬂxi]},
and

The approximation method of the null limiting distribution described in section 5 can be
directly applied here.
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