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In the following, all equation and section numbers refer to the main article.

S1 Further details on the Metropolis-within-Gibbs sam-

pler used for posterior simulation

This section provides additional details for the Metropolis-within-Gibbs (M-w-G) sampler in Sec-

tion 5.

S1.1 The choice of the proposal distribution

For most choices of the point process density p(µ | ξ) and the mixture kernel k(· | ·), the update of

the allocated means µ
(a)
h requires sampling from an unnormalized distribution, which we do via a

Metropolis-Hastings step. As proposal distribution we use a mixture of two normal distributions

with means equal to the current value of µ
(a)
h but with different variances so that

p(µ′;µ
(a)
h ) = κN (µ′ |µ(a)

h , σ2I) + (1− κ)N (µ′ |µ(a)
h , σ2I), (S1)
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where κ = 0.9, σ = 0.1, and σ = 1.5 when q = 1, 2 and σ = 1.5q when q > 2. The intuition that

led us to consider such a proposal is as follows, where for ease of notation we drop the superscript

(a) when considering a current value of µ
(a)
h , denoted µ1, and another cluster centre µ2. Suppose

that µ1 and µ2 are close and far from the remaining points in µ. If the number of observations

allocated to µ1 is small, we want a proposal distribution p(µ′1;µ1) that gives significant mass to

values that are far from µ2, so that, given the repulsiveness of the point process, this proposal is

likely to be accepted. This is the case when we sample from the second component of (S1) (in fact,

if µ′1 is far from µ1, with sufficiently large probability it is far from µ2 as well). On the other hand,

if the number of observations allocated to µ1 is large, we want a proposal that gives significant

mass to a neighborhood of of the current value of µ1, to get a precise fit of the data. This is what

happens if we sample from the first component of (S1).

For the second component in (S1), instead of fixing σ as we do, an alternative is to exploit the

properties of g(· | ξ) as follows. Suppose we condition on sampling from N (µ′1 |µ1, σ
2I) in (S1).

Then ‖µ′1 − µ1‖2/σ2 ∼ χ2(q), the chi-squared distribution with q degrees of freedom. Considering

the Strauss density, a possibility is to fix σ to give sufficiently high mass to values of µ′1 that

are outside the range of interaction of µ1, i.e., such that P (‖µ′1 − µ1‖2 > δ) > p0 for some fixed

p0, with the intuition that this gives a positive probability to µ′1 being distant at least δ also

from µ2. Considering the DPP density instead, the same argument holds but replacing δ with

the range of correlation r0, cf. Lavancier et al. (2015). That is, (12) implies that C is of the

form C(µ1, µ2) = C0(r) with r = ‖µ1 − µ2‖, and defining the corresponding correlation function

R(r) = C0(r)/C0(0), r0 is chosen such that R(r) is effectively zero.

S1.2 The exchange algorithm and perfect simulation

With the same notation as Section 5.3, the exchange algorithm (Murray et al., 2006) consists of

the following steps:

1. Propose ξ′ ∼ p(ξ′; ξ).

2. Generate an auxiliary variable µaux ∼ g(µ | ξ′)/Zξ′ ∝ g(µ | ξ′).

3. Accept ξ′ with probability min{1, α∗} where

α∗ ≡ α∗(ξ; ξ′ | · · · ) =
p(ξ′)g(µ | ξ′)p(ξ; ξ′)
p(ξ)g(µ | ξ)p(ξ′; ξ) ×

g(µaux | ξ)
g(µaux | ξ′) .

Comparing α∗ to the acceptance ratio in (22), note that the ratio Zξ/Zξ′ has been replaced by

a ratio of unnormalized densities, evaluated in the auxiliary variable µaux. The main difficulty

is sampling µaux, which must follow the distribution of µ given ξ′. To this end, we employ

the stochastic dominated coupling from the past algorithm in Kendall and Møller (2000), which
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extends the coupling from the past algorithm in Propp and Wilson (1996) to uncountable partially

ordered spaces. Specifically, we employed in our code Algorithm 11.7 in Møller and Waagepetersen

(2004).

S2 Additional simulation studies

In addition to the simulation studies in the main article, below we discuss different aspects of the

M-w-G sampler and posterior inference.

S2.1 Comparison of run-times and posterior inference when using

DPP and Strauss process priors

For q = 1, 2, . . . , 5, we simulated n = 200 observations from (24) with µ0 = (−5, . . . ,−5), Σ0 = Iq,

ω = 1, µ1 = 5, and σ1 = 1. Then we applied our M-w-G sampler when the marginal prior for µ is

either the DPP or the Strauss process, with hyperparameters as in Section 6. Here, we considered

two truncation levels for the approximation of the DPP density in (12), namely N = 5 and N = 10

(for comparison, Bianchini et al. (2020) suggested N = 50 when q = 1).

Figure S1 shows the per-iteration run-times of the M-w-G sampler as a function of the dimension

q under either the DPP or Strauss process prior for µ. For each value of N , the computational cost

associated to the DPP grows exponentially fast as the dimension q increases, unlike in the case of

the Strauss process. In fact, the unnormalized density of the Strauss process is almost immediate

to compute, and since the Strauss prior is quite informative on the number of components, cf.

Section 6.1, the perfect simulation algorithm (see Section 5.3) does not impact significantly on

the computational cost. Although not appreciable from Figure S1, the computational cost of our

algorithm increases significantly with data dimension q also when we consider the Strauss process;

in this case, the per-iteration computational cost goes from 0.0016 sec when q = 1 to 0.07 sec

when q = 5, i.e., it increases by a factor of roughly 50.

As a further comparison, we simulated 500 univariate observations from model (23) and made

again posterior computations under the Strauss process or the DPP prior for µ, where for the

DPP density we fixed β = 10 (corresponding to the highest ESS in Table 1). For both cases of

prior models, we ran the M-w-G sampler for 100, 000 iterations discarding the first 50, 000 as a

burn-in and keeping one every ten iterations, for a final sample size of 5, 000. Figure S2 shows

the true data generating density, together with Bayesian mixture density estimates and posterior

distributions of the number of clusters under the two point process priors. Note that the two

density estimates, as well as the two posterior distributions of the number of clusters, overlap

almost perfectly. The Strauss process seems a good choice to model the prior of µ since it, for a
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Figure S1: Per-iteration run-times as a function of data dimension q in case of DPP (with trun-

cation levels N = 5 or 10) and Strauss process priors for µ.
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Figure S2: Bayesian mixture density estimates (left) and posterior distributions of the number

of clusters (right) under the Strauss process (blue lines) and DPP (orange lines) priors for µ,

together with the true mixture density which has four components. The orange lines overlap

almost perfectly with the blue lines so that they are hardly visible.

much smaller computational cost, provides same posterior summaries as the DPP.

S2.2 Accuracy of cluster estimates

Figure S3 shows the posterior similarity matrices and the Adjusted Rand Index (ARI) scores for

the univariate mixture of t and skew-normal distribution discussed in Section 7.2. The ARI is

computed from the cluster labels c at each iteration of the MCMC chain as a measure of similarity

between the estimated clusters and the true cluster. It is bounded by 1 and the larger value it

assumes, the more similar is the estimated cluster to the true one. We report the posterior mean

of the ARI ± one standard deviation on top of each posterior similarity matrix in Figure S3.

The difference in the posterior similarity matrices is not so pronounced, but our repulsive mixture

model gives the best ARI.
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Figure S3: Posterior similarity matrices and ARI scores under the three models for the mixture of

the univariate t and skew-normal distributions discussed in Section 7.2. The colors are on a logit

scale to highlight differences around one.

S2.3 The effect of the number of clusters

We consider how the number of clusters affects the performance of our M-w-G sampler. When µ

is distributed as the Strauss process, at every step of the MCMC algorithm a perfect simulation

of µ is required. The perfect simulation algorithm we use has a finite but random computational

cost and, as argued in Section 5.3, it might become infeasible for a large number of clusters.

On the other hand, when µ is a DPP, the approximation of its density requires computing the

determinant of the matrix C ′ in (10), which scales cubically with m. Furthermore, for the specific

DPP considered in (12) computing C ′ requires the evaluation of O(N qm2) inner products.

We generated n = 500 observations from a mixture of m = 5, 9, 17, 25 bivariate Gaussian

densities, with locations given in Figure S4 (left), equal covariance matrices given by 0.5I2, and

with equal mixture weights. We compared the run-times (in seconds) required to complete 200

iterations with our M-w-G sampler when µ is distributed either as the Strauss or the determinantal

point process. Prior hyperparameters are fixed as in Section 6 (with Mmax = 5m) and Section 7.

For the DPP, we considered two truncation levels of the spectral density, N = 10, 50. For each

choice of m we generated 50 independent datasets and for the 200 M-w-G sampler iterations we

used fixed and different independent random seeds.

In Figure S4 (right) for each m the run-times over the 50 independent datasets are denoted

by dots, the median times by diamonds, and the median times are connected by a dashed line.

We see that the DPP with N = 50 is the most computationally demanding model for all values

of m. When m = 5, 9, the Strauss process is significantly faster (up to 10 times faster) than the

DPP with N = 10; instead, when m = 17, they have comparable computational costs. When

m = 25, the perfect simulation algorithm starts to become more demanding; for example, the

computational cost for the Strauss process is almost twice the one for the DPP with N = 10.
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Figure S4: Locations of the true data generating process (left) and run-time comparison (right).

The plot of the locations should be intended as follows: for m = 5 only the points labelled

accordingly are considered, for m = 9 the points labeled as m = 5 and m = 9 are considered and

so on. The run-times (in seconds) over 50 independently simulated datasets for each value of m

are denoted by dots, we also report the median times as diamonds with a dashed line connecting

them.

S2.4 The effect of the data dimension

Below we compare our repulsive mixture model, the finite mixture model (FM) in Argiento and De

Iorio (2019), and the Dirichlet process mixture model (DPM). See Section 7.2 for further details

on how posterior inference is performed under the different models. In particular, we fix the

hyper-parameters according to Sections 6 and 7.

If the sample size n is not significantly larger than the data dimension q, the use of commonly

employed MCMC algorithms may be problematic for the following reasons. If k(· | ·) is a multi-

variate Gaussian density with non-zero correlations, the number of parameters to be estimated

is much larger than n. Further, the curse of dimensionality, common to all clustering problems

(Kriegel et al., 2009), implies a poor mixing of the algorithms. In addition to that, when con-

sidering a repulsive mixture model, things might be further complicated by either the need of

perfect simulation to update possible hyperparameters ξ (when µ follows the Strauss process) or

the computation of the spectral density (when µ follows the DPP given by (12)) which becomes

prohibitive even for moderate values of q, as shown in Figure S1. Therefore, below we consider

only the Strauss process and perform a simulation to assess the performance of repulsive versus

non-repulsive mixtures when q = 2, 5, 10, 15, 20, 25, 30 increases. Moreover, we simulated n = 200

observations from

yi
iid∼ 0.5N (−5/

√
q1q, Iq) + 0.5N (5/

√
q1q, Iq)

where 1q denotes the vector in Rq with elements all equal to one.

Table 1 reports posterior summaries as q increases for the three models. MCMC chains were
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q = 5 q = 10 q = 15 q = 20 q = 25 q = 30

Strauss

ARI 1.0 1.0 1.0 1.0 1.0 1.0

ESS 240.3 250.1 0.0 0.0 0.0 0.0

E[k | data] 2.01 2.005 2.0 2.0 2.0 2.0

FM

ARI 1.0 1.0 1.0 1.0 1.0 1.0

ESS 7.4 0.0 0.0 0.0 0.0 0.0

E[k | data] 2.01 2.0 2.0 2.0 2.0 2.0

DPM

ARI 1.0 0.0 0.0 0.0 0.0 0.0

ESS 0.0 0.0 0.0 0.0 0.0 0.0

E[k | data] 2.00 1.0 1.0 1.0 1.0 1.0

Table 1: Adjusted Rand Index (ARI), effective sample size for the chain of the number of clusters

k and posterior mean of k under the repulsive mixture model (Strauss), the non repulsive finite

mixture model (FM) and the Dirichlet process mixture model (DPM).

run for 11, 000 iterations discarding the first 10, 000 as burn-in, so that the effective sample size

must be referred to a total number of MCMC iterations equal to 1, 000. It is clear from Table 1

that as q increases, the mixing of the chains becomes progressively worse for all the models. In

particular, the table shows the effective sample size (ESS) for the three cases: For our repulsive

mixture model, the number of clusters k is constant for all the MCMC iterations when q ≥ 15, and

so ESS is zero; for FM, the ESS is zero when q ≥ 10; and for DPM the ESS is zero for all values

of q. The difference in the ARI scores is simply explained by the different strategy of initialization

of the different software we ran: In our code for the M-w-G sampler, observations are initially

randomly subdivided into 10 clusters; in the package AntMAN, which we used to fit the FM model,

one cluster per observation is created; in the package BNPMix, used to fit the DPM model, all

observations are initially allocated to one single cluster. In the latter case, the proposal of a new

cluster is never accepted. Using our software or the package AntMAN instead, after a few MCMC

iterations the observations are (correctly) partitioned into k = 2 clusters and no additional cluster

is ever created.

Considering the effective sample size of k, Table 1 shows that repulsive mixture models might

offer an advantage over non-repulsive mixture models when q ≤ 10. We believe that the poor

performance of FM and DPM is due to prior assumptions for the following reason. Note that

both models assume that the parameters {(µh, γh)}h are a priori iid and normal inverse-Wishart

distributed, with E[µh] = 0. Thus, as q increases, the multivariate Gaussian distribution becomes

more and more concentrated around the mean, due to the so-called curse of dimensionality, so that

proposing a new value for µh from the prior that is near to any of the observations becomes less

7



likely. Instead, when considering a Strauss point process as prior for µ, the proposed means are

not concentrated around the origin, which led to a better mixing when q = 5, 10. When q ≥ 15,

we believe that the volume of the rectangle containing all observations becomes so large that also

the repulsive mixture models suffer from the curse of dimensionality.

Perfect simulation is not a bottleneck here, as the number of points in the Strauss process is

small. However, in one of several independent simulations, an unlucky initialization led to a large

value of m in the first few iterations. As a consequence, the perfect simulation algorithm took

longer to coalesce and indeed caused an out-of-memory problem on a 32 GB laptop.

Finally, when q → +∞, Chandra et al. (2020) show how the posterior distribution under non

repulsive mixture models either assigns all the observations to the same cluster or each observation

to a separate cluster. These authors propose to consider mixtures in a latent space to overcome

such issue, similarly to Ghahramani and Hinton (1996). Extensions of latent mixture models to

account for repulsiveness are currently being investigated; see Ghilotti (2021).

S3 Removing the rectangular support assumption

Often we have assumed that the points of µ have support given by a rectangular set R: For the

theory in Sections 2–5, we made that assumption only for specificity and simplicity; in Section 7, we

considered Gaussian mixture models and determined the rectangle R from the observations; while

in Section 8, we considered the multivariate Bernoulli kernel and R = [0, 1]q. Apart from the case

of a DPP prior, it is often easy to modify everything without assuming R is rectangular and even

compactness of R may be not be needed, In fact, the birth-death Metropolis-Hastings algorithm,

which we always use to simulate the non-allocated process µ(na), can be specified in a very general

setting, see Geyer and Møller (1994). On the other hand, for a DPP prior, compactness of R is

needed when specifying a DPP density with respect to dµ, and R needs to be a rectangle in order

to use the spectral approach discussed in Lavancier et al. (2015). Recently, Poinas and Lavancier

(2021) proposed a novel approximation of a general DPP density that does not require R to be

rectangular (but still requires R is bounded).
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