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Supplementary materials of the article ‘Nonparametric
Estimation and Inference for Spatiotemporal Epidemic
Models’

In this document, we provide proofs of the main asymptotic results and some technical details
used in the proofs.

B.1. Notations

To facilitate the proof, we first introduce some notations to make the model more general. Sup-
pose there are n locations, where U; € () are the spatial coordinate of the i-th location. Let
Yi: be the response variable observed at time ¢, and in the STEM models, Yj; is the number
of new infected cases or new fatal cases on day ¢ for county ¢. To simplify our proof, here we
abuse our notations from the main article and let Z;; = (Zjs1, . . ., Zitp, )T be a pi-dimensional
vector of time-varying explanatory variables which are linearly associated with the response
variable. In the STEM-infection model, Z;;; = log(Si—1/N;) and Zy;’s, j = 2,...,p1, are
the mobility information and dummy variables of interventions or control measures observed
on day ¢ — 7 for county i. In addition, let X; = (Xj1,..., Xp,)' be a po-dimensional vec-
tor of explanatory variables, which are not varying with time, and have nonlinear effect on the
response, and in the STEM models, Xj;;’s are the time invariant county-level features. Finally,
let Wy = (1, Wi, ..., Witpa)—r be a (p3 + 1)-dimensional vector of explanatory variables,
which have a varying relationship with the response across different locations. For example, in
the STEM models proposed in the main paper, W;;; can be the logarithm of the first lagged
value of the cumulative number of active cases at time ¢, i.e., Wy = log(; 1—1 +1). We assume
{(Yi, ZiTt, X—r WT) *_, are independent and identically distributed across all the locations, but
correlation may exist for the time series observed at the same location. The following proof stud-
ies the theoretical properties of the discrete-time spatial epidemic model at any fixed time point
t. The results hold for all the time points within the studying period. For notation simplicity, we
drop the time index t for o, Yi¢, - -, Vpots Bots - - -» Bpse and spline coefficients &1y, . . ., &p ¢,

01t,...,0p,,and 07;,...,0; ;.
Furthermore, in the proof, we assume that the conditional mean of Y;; depends only on the
covariate vector for the tth observation. We consider the following spatiotemporal generalized

partially linear model, and we assume that 1%, can be modeled via a link function g as follows:

g(M'Lt) - QOTZ it + Z’Yk zk + Z B[ z zt[
/=0

k=1

and rewrite the quasilikelihood as the following:

7'7ﬁ ZZL {a Zzs+27k zk +ZB€ zsé} 18

1=1 s=t;

First we introduce the general notations that we use in the following proof. Without loss of
generality, let z € [ag,bg] = [0,1], for Kk = 1,--- ,po, and the area of the domain 2 be
1, A(2) = 1, in the rest of the article. For the univariate splines, we consider equally-spaced
knots in our theoretical derivation, and denote h as the length of the equally-spaced subintervals,
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then it is clear h < |7|~!. For a real value vector a € R", we define its Euclidean norm
as |lal|3 = DI, a? and its supremum norm as |a| = maxj<;<y, |a;|. For any real symmetric
matrix A = (a;;);""] ;j—1» denote by Amin (A) and Amax (A.) its smallest and largest eigenvalues,
and its Lo norm as || A ||, = maxacrn axo ||Aall, [|lal|y !, For any Lebesgue measurable function
1 (u) on a domain €2, let ||¢]| , = sup,ecq |¢(u)|, and HipHi Jo ¥*(u)du. For any bivariate
function g : @ — R, denote |gy.00,0 = maxitj—y [|V: V4,95 (1)]|00,0- Let v be a nonnegative
integer, and 6 € (0,1] such that o = § + v > 1. Let H(9(]0,1]) be the class of functions
on [0, 1] whose vth derivative exists and satisfies a Lipschitz condition of order &: |¢(*)(z) —
W(2')| < Cylz — 2'|°, for z, 2’ € [0,1]. Let

DR([0.1) = {g : Bg(Xx) = 0, Eg*(X) < oo}
be the functional space defined on [0, 1] and

Sd+1,00(Q) — {g: g

be the standard Sobolev space.
Define the model space G as

D1 D2 p3
G={n=> ajz+> wlze)+ Y Be(whwe: aj € Ry € HO NDY, B € SH(Q)

We define the norm on the space G. For functions 71,172 € G, define their theoretical inner
product as

(m,m2) = E{m(Z,X, W, U)na(Z,X, W, U)},

and define their empirical inner product as

n t2

<7717772>n 7T Z Z 771 Z’LS7X’L7WZSJ U; )n2(2187X17Wz57 U; )

=1 s=t;

where np = n(ty —t; + 1).

Consequently, [|7|* = (1, 7) and |97, = (n,7)n.
Denote the corresponding empirical and theoretical norms || - ||, and || - ||. Furthermore, let

|| - ||& be the norm introduced by the inner product (-, -)¢, where, for 1) () and B2 (u),

b3
<ﬁ Z / < ) Vi Vi ﬁél)) Z <?> (Vi Vi, 5(2)) duidus.
1+75=2

0= it=2

For the notation s1mp1101ty, let g~Y(z) = {g ' (2)}. For the quasi-likelihood function
L{g ' (x),y} et qi(w,y) = ZL{g " (x),y} and ga(w,y) = £=L{g~" (x), y}. Ttis clear that
'Y 5 oz ) ) 81;2 s

alz,y)={y—g '@)}n(@), @@y ={y—g (@)} - p(z),
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where p;(z) = {§71(x)}7 /[0?V {9~ (x)}], and o is the dispersion parameter, j = 1,2. More-
over, let

pP1 D2 Pps3
n(z,x, wu0,8,7) =Y ziaj+ Y wlak) + Y Be(w)wy,
k=1 /=0

J=1

and denote 77?5 = n(Zis, Xi, Wis, Ui; 40, 3%), and g; = Y5 — g_l(ngs) be the error term.

Recall that @5 ;(z), J € J, are the standardized B-spline basis functions for the kth covari-

ate, where 7 is the index set of the basis functions. Thus, E® (X)) = 0 and E®? ,(X}) = 1.
Similarly, we define the standardized Bernstein basis polynomials as B}, (u) = Bas(w)/|| B ||,
M € M, where M is the index set of Bernstein basis functions. Define the approximate space

as

A=7":n"(x,2,w,u) ZZ]%JFZZ&J%J% +Z Z Oenr By (w)w,

k=1JeJ =0 MeM
T € [0, 1],u S Q,fkj,egM,Oéj S R}

Lete;s = Yis — g Ha Z;s + Zk L 'yk,(X )+ 53:0 B?(Ui)I/Visg} be the error term.

B.2. Assumptions

The following are the technical assumptions needed to facilitate the technical details, though
they may not be the weakest conditions.

(AD)
(A2)

(A3)

(A4)

(AS)

(A6)

(A7)

Fork=1,...,p2,7 NDY.For £ =0,...,ps, B) € ST1>2(Q).

The density function fi7(u) of U is bounded away from zero and infinity on 2. The density
function fx (x) of X is absolutely continuously and bounded away from zero and infinity on
[0 1]272

The function ¢2(x,y) < 0, 1 < |g2(z,y)| < Ci and ¢2 < |8 a2 (z,y)] < Caforx € Randy
in the range of the response variable. The functions V(+), g~1(-), the first order derivative of
g~ *(-) are continuous, and there exist positive constants c, and C,, such that ¢, < pa(-) < C,,.
For each (z, z,w,u), Var(Y|X = 2,Z = 2, W = w,U = u) and ¢'(u(x, z, w,u)) are
nonzero.

The errors satisfy E{e;s|X; = ¢, Zis = 2, W;s = w,U; = u} = 0 and E(|e;5|*T|X; =
x,Zis =z, W;s = w,U; =u) < oo forsome € (1/2,00).

For any ¢ = 0,...,ps, there exists a positive constant Cy such that |IW,| < Cy. Denote
Q(z,u) = E {(1, Z" W', ZT,WT))X =z, U= u} The eigenvalues ¥ (x,u) <

Pr(x,u) < - < Yy pati(x, u) of Q(a,u) are bounded away from 0 and infinity uni-
formly for all x € [0,1]P2, u € Q; that is, there are positive constants C; and C such that
C1 <oz, u) < 1(x,u) < - < Ppyp,t1(x,u) < Cyforall x € [0,1]P2, u € Q.

The triangulation A is w-quasi-uniform, that is, there exists a positive constant 7 such that
|Al/pa < m, where |A| = max{|T|,T € A} and po = min {pr} with pr being the radius
of the largest circle inscribed in 7.

The length of subintervals & for the univariate spline and the triangulation size |A| for bivari-
ate spline satisfy that (logn)?5n~1/% <« h < n= Y/t o > 1, (logn)/Pn~1/10 «
1A <« n~1/(4d=2) § > 3 and the smoothness penalty parameter satisfies A <
min{n3/4h3/4]A’4, 713/4‘A‘11/2}.
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(A8) Letn’(X,Z,U,W) =Z"af + 372 | 7 (Xy) + 2072 57 (U)W;. Define

E [p2{n’(Z,X, U W)}ZIX=x,U=uW=w| -

Z=-7-T(X,UW
E[PQ{UO(Z,X,U,W)HX:ij:UﬂW:W] ’ ( 9 ) )7
(B.1)

I(x,u,w) =

and 3 = E{pa(n°)ZZ " }. The matrix X is positive definite.

The above assumptions are mild conditions that can be satisfied in many practical situations.
Assumption (Al) is frequently used in the literature of nonparametric estimation. It illustrates
the smoothness requirement on the true functional components. The first part of Assumption
(A2) requires that the locations of the observations are randomly scattered over the domain (2.
The second part of Assumption (A2) is a mild condition on the joint density of Xy,..., X, .
Assumption (A3) is a standard condition for the quasi-likelihood method; see, for example, Car-
roll et al. (1997), Wang et al. (2011) and Wang and Cao (2018). Assumptions (A2) and (A4) are
similar to Assumptions (A3) and (A4) in Liu et al. (2013). Under Assumption (AS), the vector
(Xits -, Xips )T is not multicolinear. Assumption (A6) imposes basic regularity conditions for
the triangulation in BPST; see Lai and Wang (2013), Wang et al. (2020) and Mu et al. (2020).
The class of triangulations whose smallest angles are larger than some positive constant satisfy
this condition. The requirements of smoothing parameters and triangulation size in the BPST
estimation are given in the Assumption (A7).

B.3. Preliminaries
LEMMA B.1 Under Assumptions (A2) and (A6), fork = 1,--- ,po, J,J' € J, M, M' € M
andr > 1,

0, |J—=J|>0+1,

E|® (Xip) @y (Xi)|" =< h"E X; (Xig)|” =
‘ k‘J( lk‘) k.J( lk)’ ‘SOkJ( Zk)gka( Zk)| {hlr7 ’J—J" S Q+1;

0 [M/d*] # [M'/d*]

E|B:,(U) B, (U)|" < ’ ’

| M( ) M( )| {|A|2_2T, |'M/d*‘|:"M//d*‘|’

E |®4 (X)) Bir (U] < [APTRE2,

where d* = (d + 1)(d + 2)/2.
Proof. By Assumptions (A2) and (A6), HgogJH = ||erslln, < hl/2 and 1Bl < || Bumllz, <
| A\, which imply that ®;; < h™'/2¢;; and B, < |A|~!B);. Then, we have
0, |J—J|>0+1,
R [T =T <o+ 1,

0, [M/d*] # [M'/d"],
A2, [M/d*] = [M'/d*],

E @57 (Xi) B (U] =< | A7 ™"2E |rs (Xir) Bur (Uy)[" = | AP RE1/2,

E|®k 7 (Xik)Pry (Xik)|" =< B "Elors (Xik) ks (Xik) | =< {

E|B},(Ui)Biyp (Ui)|" = |A7*E | Bar(Ui) Bar (Us)|" = {

Thus, the desired results are established. [ ]
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LEMMA B.2 Under Assumption (A6), there exist positive constants cy, Cy, cs, Cs, such that,
fork=1,---,p,

2

SCRY &Gres > O <

Lo JeJ MeM

2

oY &y <

JeJ

> GhsPrs

JeJ

> OumBiy

MeM

Lo MeM

LEMMA B.3 Letn =300 ajzj+3 007 37 je 7 &k ®ra (Tr) + 22020 2o nrepn Oena By (w)we.
Under Assumptions (A2), (A5 ) and (A6), there exist positive constants ¢, C such that

c(ledlz + 11€l3 + 11613) < llnl* < C (lell3 + lIgll3 + N16]]3) .

)7, ¢ = {&nk=1,....pnJeT}, and 6 =

where o = (a1,...,0p

{0001, =0,...,ps, M c M}

Proof. Denote

a(X,U) {Z > GsPrs(Xi) e, Y 0B (U),..., > 0p,uBi (U }

k=1JeJ MeM MeM

Q(z,u) = E {(1, AR VADMCE zT,WT)(X — 2 U= u} .

By Assumptions (A2), (A5) and (A6) and Lemma B.2, we have

2

I7|>=E |E Z%Z +ZZ§kJ<I>kJ X) ZWg S OB (U ‘(X,U)

k=1JeJ = MeM

- {a(X,U)Q(X, U)a(X, U) }

<CZa +C ZZ&:J‘PM Z GeMBM
k=1JeJ MeM Lo
(Ha||2 +[I€[13 + [16113)-
Similarly, we have |5|? > e ol + || X 12J€J§qu)kJHi +

>, HZMGM HgMBMHL According to Lemma 1 by Stone (1985), we have

2
> GhiPrs

JeJg

2 P2
> Co Z

k=1

P2
DO &Py

k=1JeJ

Then, [|n]|* > ¢ (lel|3 + ||€]|3 + |6]|2) holds. The lemma follows. [

LEMMA B.4 (Lemma B.4, Yu et al. (2020)) Foranyk =1,...,p2, V& € H (@ ﬂDg, there exist
a constant ¢ and a function v} € Uy such that || vg — 7 |lee < CH’Y;EQH) [ Xans

<C Y 0y
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LEMMA B.5 (Theorem 10.2, Lai and Schumaker (2007)) Suppose that |A| is a w-quasi-
uniform triangulation of a polygonal domain Q, and 3(-) € ST1°°(Q)).

(i) For bi-integer (a1, a2) with 0 < a1 + as < d, there exists a spline 3*(-) € SY(A) such that
d
Vave (8 — %) o < ClA d+1-a,-a; Bld+1 00, where C' is a constant depending on d,
|| z1 Y 2 d+1,00 P 8
and the shape parameter T.
(ii) For bi-integer (a1, a2) with 0 < a1 + as < d, there exists a spline function 5**(-) € S,(A
d
(d > 3r + 2) such that |VVE (8 — ) |lo < C|A|d+1_a1_“2\ﬁ|d+1m, where C' is a
constant depending on d, r, and the shape parameter .

Lemma B.5 shows that S%(A) has full approximation power, and S7;(A) also has full approx-
imation power if d > 3r + 2.

Define basis functions of the approximation space A as an(z, x,w,u) = 25,5 =1,...,p1,
néf](z,x,w, u) = ®ps(zy),k =1,...,p2,J € J, and nm(z,x,w, u) = By (u)w, l =
0,...,p3, M € M. Notice that for any n € A can be expressed as the linear combination of the
above functions.

LEMMA B.6 Suppose that Assumptions (A2), (AS5) and (A6) hold. Then, we have

s (i — (i) = Ous{n 216 logn) 2, B2)

M,M’'e M

max (i )n — 50| = Ous{n™2h7 2 (logm) 2}, (B
SRR SP2

JJeg

zZ 7 _ ~1/2 1/2}
1;}.}?‘%{;01 |<77j 777]/> <77] 7773 >| {TL (log ’I’L) ’ (B4)

WX\ WXy -1/2(] 1/2} B.5
e |l 0l — i) = Ons {n 7 200gn) P} B)

MeM,JeJ

w Z w Z\| —1/2 1/2
Kjgrprll%@gml(nw,nj n = Mears 05 )| = Oas. {n 2(logn)"/ } (B.6)

MeM

zZ X zZ X —-1/2 1/2
o |nf nn — (f ni)| = Ons {n ™2 (0gm) 2} B)

Jeg

Proof. Notice that

woW woW
max  |[(mgar, Nerar ) — Menrs o)

0<L,8/ <ps

M,M’'e M

=, Jnax Z Z B3 (U) B (U WiseWise — E{B3(U) By (U WigeWiger }
MM’G./I\)}; 1=1 s= tl

< max max
t1<s<t2 0<L,0'<ps
M,M'eM

ZBM ) By (Ug) WiseWise — E{B}3,(U) By (Ui) WiseWiser }| -
=1

Thus, in the following, we derive the order of terms

max
0<L,0/ <ps
M,M’'eM

ZBM DB (U WiseWise — E{B31(U) By (U)W Wiser H -

=1
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For simplicity, we consider the case ¢ = ¢'. Let

Usserinr = n”~ ' By (Ui) By (U W2, — n'E {BM )BM(UQWE%} ;
wiserinr = 1" By (Ui) By (Un) W2, — n'E { By (Ui) Bay (U)W, }

Then Uisenrar: = || Barl| | Base ||~ isearasr, as the basis function is bounded by a constant.
Notice that El;s sprnr = Ewisenrnr = 0, and

"= By T Bar | T Elussearar | < (en™ [ Bar | 7H Bage |7 2B lhis enar |

< (Cn A2 P EUis onsre |

EUsenimr

Thus, U;senras satisfies the Cramér’s condition with constant Cn~t|A|~2. Applying Bernstein
inequality to Y7, 2%, Uis easar, for any & > 0, one has

52
P{ Zén_1/2|A|_110g1/2n} §2exp{ 07 logn }

44 C|A|=tn=1/210g' /% n
Assume |M| < n” for some 0 < 7 < oo. Under Assumption (A6), we have

n
> Ussersnr

i=1

o0 oo Ps
ZP{ max ZUMMM, > n 12| A log!/2 } <D D M <.
_ i—1 n=1 ¢=0
Thus,
/ ~1/2| A= oel/2 )
EH]\}[&]\}; ZZ/[ZSKMM' Oa.s.{n ‘ ‘ 0g n}

Similarly, under Assumptions (A5) and (A6), we have (B.3) and (B.5). The desired results are
obtained. [ |

LEMMA B.7 Suppose that Assumptions (A2), (AS5) and (A6) hold. Then, we have

Ry, = sup ‘ Wt | o (A e 0 2} B8)
mmEA {72l
and consequently,
sup [[nl12/[1]2 = 1] = Ons. {h71/2 A 1072 10" 20} (B.9)
neA

Proof. Without loss of generality, let

D2 P3
Za ZJ+ZZ§M<1>M+Z S 6B nQ_Za 53N el on+> S 0B

k=1JeJ =0 MeM k=1JeJ (=0 MeM
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-
Denote a® = (agb),...,al(,li))T, e0) — {f,g?]),kzl ..,pg,Jej} and

{9@%,620,...,1)3,]\46/\4} for b = 1,2. By Lemma B.3, we have

o) —

1/2 1/2
Il =< (I3 + NED I+ 18D13) " (I3 + 1€ 13 + 16)13)

Also, notice that

2
(0, m2)n — (1, m2) Z ST e (S — 0l S )

kk'=1J,J€J
ps
1 2 w w w
+ Z Z 9@]\2%,)}\4/(@751\4777@1\/1/%— <77€M777£/M/ Z a a
0,0'=0 M,M’'eM =1

P2 D3
35T ST @)oo (i ni) e — (lks )

k=1(=0 JeJ,MeM

+ZZ S 0508 + 020y (s e — (g )

j=14¢=0 MeM

+ZZZ Dol 4 62 (i — i)

j=lk=1JeJ
:Il+[2+f3+f4—|-f5+f6.

By Lemma B.6, we have

P2
n< Y 3 gl Bps, B — (Bry, Bpr e
1< [ gkj’1<€7£/?;§J/ej|< kd> Prr g )n — (Prg, Prr )|
kk'=1|J—J|<o+1

= lEW )€ |2 x Os.(n 2R 210g! 2 ).

Similarly, we have

I = [|§W]|2]16 [l2% Oas. (2| A og! 2 ), I3 = [aV|2] e [l2% Ous. (™2 10g"? n).

By the Cauchy Schwarz inequality, we have

P2 P
3 ST (el + 1eei

(Sx ) (55 )+ (S ) (5 5

k=1JeJ (=0 MeM k=1JeJ (=0 MeM
< Ch 21 (€D 2102 + €12 16]12)

(0?0

)

—(n?.n7))
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which implies that
L = (€D 1210@ 12 + 1€ 218D 1]2) x Ons (n2| A 0" 2 108"/ 1),
Similarly, we obtain

Is = (1120l + @@ 210D 2) x Ous(h™H/2n~ 2 10g!2 ),

I = (o 2ll€® 12 + |6@ 12[€Vl]2) x Ons (1A 0™/ 1og! /).

Combining /1 — Ig, we obtain (B.8). As a direct result of (B.8), we obtain that (B.9) |

Next, denote

B*(U;) = {B};(U;), M € M}, B(W;,,U;) = Wy, ® Q) B*(U)), (B.10)
and
Ais 0O 0
F;, = ®(X;) , Dy=X|0 0 0 . (B.11)
B(W;, U;) 0 0 QJPQ:
Denote
1 n tz
"o = ZZFwa, H=H = -3 > FiFi+Dy (B.12)
=1 s= tl =1 S:tl

LEMMA B.8 Under Assumptions (A2) and (A5)—(A7), there exist constants 0 < cg < Cg <
00, such that cg < Amin(H} ) < Amax(H} ) < Cg, almost surely, for large enough n.

Proof. Ttis easy to see that for any vector 9 = (a',&7,0*T)T,

’L9H>|< 0’l9T Z Z ﬁFst—'l;ﬁT = ||g'l9||$w

zlstl

where g(Z, X, W, U;¥) = a'Z + £ ®(X) + 6*TB(W, U). By Lemmas B.3 and B.6, we
have

c(1 = Ry)|19]3 < (1 = Ry)lgol? < llgsll2,
lgsl? < (1+ Ry)|gsl®> < C(1+ Ry)|93.

By Assumption (A6), R, — 0, as n — oo, therefore,
c|9l3 < 9H;, o9 < C||9]3, (B.13)

almost surely, for large enough n.
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The (M,M')th element of P is Pyy =  [V2 By (w)V2 Bi(u) +
V2 B3 (w)VZ Bi(u) + 2V2 , Bi/(w)V2 . Bi,(u)du. By Theorem 2.19 in Lai and
Schumaker (2007), we have

A —4 M/d*1 = M/ *
puan = (1817 M@ = [/, B4
0, [M/d*] # [M'/d].
Then, by the Assumption (A6), we have
DD T = O~ [9]3} = o(||9]3). (B.15)
The desired result follows (B.13) and (B.15). [ ]
B.4. Consistency of Penalized Quasi-likelihood Estimators
By Lemmas B.4 and B.5, there exist
(o) = @ (21)€k, Be(w) = BT (w)6], (B.16)

Cill D lloch* Y and 1B, = Belloo < Cp,|Belas1 o AL Denote € = (€] -+, &))" and
6= (6 .6:)".

Denote that 7;5(9) = Z;a +®(X;) "€+ ﬁ(Wis, U,)"0* = F;,0, which is a function with
respect to subject i at time s, where 9 = (', £7,0*T)T. We have

which are the best approximation to 7’s and $ with the approximation rate at ||y — Vkllco <

n to
VLE(’&) = - Z Z q1 (nis('ﬂ)p }/;s) Fis + D)\'ﬂy

1=1 s=t;
n t2
V2LL(9) ==Y ) qa(mis(9), Yis)FisFy, + Dy,
1=1 s=t;
For the notation simplicity, we denote 7y, = YL, Zisja; + Y02, (Xik) +

o~ ~

:53:0 ﬁ@(Ui>Wis€a ﬁis - 7725("-9) and 771'5 = MNis (19>
LEMMA B.9 Under Assumptions (Al)—(A7), we have

1 ~ 1 1/2
L GLE@)| = Ous { (2B) " pet/2 4 | A2 4 pett|a] 4 RU2|A[EH £ 2
" " nIAP

L vrr@) = —1/2 1y (logn 2 o+1 d+1 A
nTVLn(ﬂ)H = Og.s {(h + A7) - + heT 4+ AT+ INAE

Proof. Let7j(Z,X,W,U;9) = ZTa+®(X)T€+B(W, U)T 0, then ||77—7]|s = O(h2!+

10
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|A|?+1). By Assumption (A2), we have

”?VLS(@):—*ZZ(h (Tiss Yis) w+—DAz9
=1 s=t;
Tis) . 1~
- ZZ )g (nzs)Fis"i‘nfD)\ﬂ
=1 s=t; T
=**ZZ ”)g (1) (L + o()} Fyy + Dy
i=1 s=t1 UQV nzs)) * nr
=V {l+o(1)} + V{1l +o(1)} + V),
where
n t
1 = Yis =g () .1, o
Vo=-1— o —i0ond (is)Fis,
nT;sZt a2V (g~ ()
n t -
1 ~ g (md) — 9 ns) .
Vo =—1- 7 Fis, V, = —IDD 9. B.17
b ”T;; o2V (g~ (ng,)) g7 0n) P np (B.17)

For the vector V,,, we have

[Y—gl(nos) Yis =g~ ()
V(9= (n) a2V (71 (1))

According to Assumption (A3) and applying the Bernstein inequality, for any £k = 1, ..., ps and
J € J, we obtain

ogn 1/2
*ZZ )))g 1(77?5)<I>M(Xik)=()a.s.{<li ) } (B.18)

zlst

2
g—lm?s)@kﬂxm]:o, E[ g-lm?s)cwxik)} — o).

Similarly, for any M € M,

7725) 0\, R* N — logn 1/2
ZZ n ))g (nzs)WlszM(Uz) Oas. n . (B.19)

i=1 s=t;

For the vector V3, we focus on the term

n oty _1 1y
T I PR - 5) lg(ngs(;;”)g*(n&)%ﬂxik).

1=1 s=t;

11
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We write
~ g ' ‘1(%) 10 ShN
*Z Z 5 i) 9 (M) Py (Xix) = E E &is
a2V (g )) Lo £
i=1 s=t; 13 =1 s=t;
B (77 ) =9 ' (Mis) .1, 0
+ E |: = g nis ¢k X’Lk‘ 9
J2V(g 1(77?5)) ( ) J( )
where

—1(,,0\ _ ,—1/ —1(,,0\ _ —1/
s =2 n;z;)(g_?(nggf)g‘1<n?s><1>w<xik> -E [9 négg)(g_?(nggf)g‘1<n?s><1>w<xik>} .

Note that,

97 i) =97 (is) . 1, o N +1 d+1Y 1,1/2
B iy ¢ (nis)%(Xlk)]—O{(h@ FlAB R B20)

As we have, for any r > 3,
_ _ o _9 _ _ r—2
Blgis|” < {Cn g™ () — 97 i) 1@ lloe} 7 Bléisf? < {On 7t (h2 + A1 A2 Bl

{&s}7, satisfy the Cramér’s condition with constant Cn~ ' (het! + |A|4+1)p=1/2, Also,

2T ) — 9 ) 1, N
[E{ no?V(g1(l) * (mS)q)kJ(Xlk)H

2 g_l(U?s)—g_l(ﬁis)._l 0 '
Bl _E’ no?V(g () * (i) (X

-0 {n—Q(h2@+2 I |A|2d+2)} '

Applying the Bernstein inequality, we have

n t
: —562logn
P ol > 6(het £ AT YR Y2106 2 Y < 2ex { }
{ ;Sz;lg > 4( A1) g = p 4+Ch_1/2n_1/210g1/2n
Consequently,
n  t
SO o = Ous {(n A1 )n 2 10g1 20} (B.21)
1=1 s=t;

Combining (B.20) and (B.21), we obtain

ZZg U!L’fg 19(770(;)7”)91(77?s><1m<xik>
i=1 s=t;

= O { (W 4 A1) 2 10g 20 4 (RO A R12L (B22)

12
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Similarly,

to

Z Z ms()g 19(77 g?lS)g_l(U?s)WiszBX/j(Ui)

= Oass. {(h@“ + AT YR 2 10g 2 (h@“ + |A|d+1) ym} . (B.23)

For the vector V, by (B.14) and 6*| =< ||, then we have
Vol = 00n™AIT?), [Vl = 00T AT (B.24)

Combining (B.18), (B.19), (B.22), (B.23) and (B.24), we obtain

1 - 1 1/2 \
7VLE(’[9) = Og.s ogmn + hg+3/2 + |A|d+2 4 hg+1|A| + hl/Q‘A‘CHl + 4
N " nIAP

_ _ logn 1/2 A
P — 0, 1/2 AL o+l A+ '
nTV (19)H O.,. {(h A . + heTH 4 A +n!A!4

Therefore, Lemma B.9 has been established. |

LEMMA B.10 If 9 is the vector that satisfies ‘Q? - '5” = Oas.(h? + |A|), then, under
Assumptions (A2), (A3), and (A5) — (A7), there exists constants c and C, such that

A< {ny'VEL,(9)} < CI,
almost surely, for large enough n.

Proof. Let ij;s = 1;5(19), we have

n

1

_IVQLP - Z Z q2(Tis, Yis Fstzs +np ]D)
i=1 s=t;
1 n
=T Z Z{}/ls g nzs)}pl(nw)
i=1 s=t1

+{-g 1<nz-s> + 97 (00} (7is) — pa(is ) FisF oy + g Dy
1 — -
= S [pala VP {1+ 000} + 71D

zls 1y

By the boundedness of p2(7j;) and Lemma B.8, we have

n tz

cd < [ o Z Z p2(7; Fstls + nTlDA

i=1 s=t1

< (1,

almost surely, for large enough n. [ |

13
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Proof of Theorem 3.1. We now prove that

o 1 1/2
Hﬁ—ﬁ” :Oa,s‘{(h—l/zﬂg—l) <0§L”) +hg+1+|A|d+1+n|Z|4}, (B.25)

As ¥ is the minimizer of LP(9), we have VLY (5) = 0. Then by the mean value theorem, we
obtain

9—9=—{VIP®)) " VLE(®),
where ¥ is some value between 9 and ¥J. Then (B.25) is obtained from Lemmas B.9 and B.10.
Theorem 3.1 is obtained from Lemma B.2 and Assumption (A6). |

For any ® € Uy, 1 € '), , one has ||®||o, < Ch~1/2 < C|A|7Y|4]|. Then

1/2
~ o=l + IIB Bilso = Ons. 4 (W1 4 |A172) (X287) 7y pet1r2 (At 4 2 a5
Yk — 'Ykoo ¢ Pl||oco a.s. n n .

k=1

Notice that |55 — ’kaoo < [k = Alloo + 7% — Yolloos for k =1,...,p2, and HB\@ — Bloo <
Hﬂg ﬁgHoo + Hﬁg Bé |loo, for £ =0, ..., p3. Consequently,

1/2
Zn% wkuwZHm Bl = Ous. § (71 +1]72) (FB2) g powt/z g a2t
n n| AP

k=1

B.5. Normality for linear coefficients

We denote the score function and hessian matrix by

= - Z Z q1 7725 zs) F;s + D)\’ﬁ,

Hn Z Z q2 7725 Yis FZSFZS + Dy,

respectively, where D), is defined in (B.11). o
Let 9° = (a°7,€7,0°)T and ¢ = (£7,0°N)7, and B, = E(X;,U;) =
~ T
(@(Xi)T, B(W, U;) ) , then we can rewrite

— Sn,a(’ﬂ) _ _L . Zzs 0
Sn(9) = (Sn,g(ﬁ)> = 2_;2; a1 (7:s(9), Vi) <¢(:is)> + <D§Q> , (B.26)
_ (Hnaa(9) Hpae(9)
m,0) = (005) 10l) (827
— (an Zz’,s QQ(UZS (19)7 }/ZS)ZZSZT % Zz’,s Q2(7728(19)7 }/ZS)ZZSEZ—‘I;> + (0 0 >
% Zi,s q2 (Ths (19)7 Y;,S)‘—‘ISZT i Zi,s q2 (7723 (19)7 Y;S)Ezs:;l; 0 D; ’
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where

., (0 0 B
DA‘A<0 QJPQJ’ DA‘(

The inverse of H,, (1) can be represented as

- Vi —Vi1H, o
H'(9)=V= Q0
" ( ) ( V22Hn aan %xcx V22
where
\/-1_11 :Hn,aa H, aQHn QQH;Lrag = Z qz 7723

1
Z q2 7715 zs Zzs'—';l; Z q2 ('rh's (79)7 Y;

2,8

ZCD 7715 s HZSZT s

and Vo' = Hy, o — H o ,H L o Hy oo

n,oQ " n,oe
Then, by the mean value theorern we obtain

0O O
0 D3

Yis)ZisZis

B —9° = —{VALE(9)) T VLE(),

& —a’ (1T OT) (5— {§U>

( ) Vi ~ViuH, ooH, 3},
—VooH, oo H, L Voo

n,ox

nT Zzsql(nw( )a is) L
nr Zzsql(nls(ﬂo)a zs)Ei

»

) LS (@), i
B _}h”éﬂ””){<]‘z: 0 (0(8°), Vi) B
g 2ais is y Yis
1 - _
=-V — s 190 7}/;5 s ZS 19
11 nTzZ;CH(?? (97),Yis)Z th i
-1
1 3 — *
X ZQQ(nzs('ﬂ)v st):‘zs:; + D)\

2,8

15

)

*

) " (DAQ
J+m9}

1T ; q1 (17is (9

}/7,’5)5725 + DT\E
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Recall that

VL (9) = - Z a1 (0is(9), Yis) Fis + D9,

VQLP Z q2 7715 Yis FZSFZS + D)\

;;jv?LP qu 1is(9), Yis) (FisFL) Fis.

Let d,, be the length of the vector 1. By abuse of notation, we have
dn,

(9- 9")

dn dn
0°Ly, (9) }

_ 30\T o3P —90) = [(9 -9 { ——n
(¥ —-9") V°L, (19)‘19:19*(19 ) (9 -3 {81%37%3191

j=1

where 9* = {19*}] LU =t0;+ (1 - tj)@ forsome t;, j =1,...,d,.

By Taylor expansion,
~ ~ ~ o~ o~ 1 ~  ~ ~ o~
VL (9) - VLE (9°) = V2LE (9%) (9 — 9°) + 50— 9°) T VAL (9)] 5_y.(9— 9°).
Since VLE(9) = 0,
~ o~ o~ 1 ~ ~ ) ~ o~
—VLP (9% = V2LE (9°%) (9 — 9°) + 5@ - 9)" VAL (9)] g_y. (O —9°).

According to the Cauchy-Schwarz inequality, one has

IR IR RS S AC/R
<=5 > \F5a0.90 ] -
T jkl=1 et

1 ~ ~ o~ o~
E(ﬂ — 9 TV3LE (9) (9 — 9Y)

Equation (B.25) implies that

1~ ~ ~ 1 . -
77(19 —90)TVALE (9) (0 —9°)|| < |19 —9°)* x Op(d3)
T

_ _4. [logn 24
:oa.s,{(h A 4)< ) + RO L AP 4|A‘16} x Op(d3)

=op(n1).

Similarly, we have

- {S“(ﬁo) +Op (n_ldn)} = {Hn(ﬁo) + OP(l)} (5 — 50) + 0p(n_1/2),

16
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where S,,(9) and H,, () are defined in (B.26) and (B.27). Thus,

(55) [ (Rezien Bz e
X [sn(ﬂ )+ Op (n—ldn)} +op(n~1/?),
which leads to
6 — 0" = {H, 00(0°) ~ Hyap(@")H, by H] (09} (1 Hyap@)H, ,(8°)) 8,(5°)
+0p (n7'dy) +op(n='?).
Note that
(I Hy o (9) Hy g (9)) 81 (9) = Sy0(8) — Hy g (9) H by (9) S,(9)

Hence, the asymptotic distribution of \/n(a — a) is the same as that of
~ ~ox 1!
Vit {Haa(8°) = Hyag(0°)H oy (09 H, 4, (%) |
% {Sna(@) ~ Hyag (8°) Hybg (9°) S0 g(9")}

The desired result follows from Lemmas B.11 and B.12.

LEMMA B.11 Under Assumptions (Al)—(AS),

H, aa(9") - H, ag(ﬁO)H eo(9")Hi ga (9")

n,00
== 722/)2 10 (Zis — Zis)(Zis — Zis) {1+ op(1)},
i=1 s=t;
Sn,a(ﬁo) - Hn,OLQ (790) Hn 199 (790) Sn 9(190 Z Z Q1 777,37 zs 15 - 215){1 —|— OP(]_)}

1=1 s=t;
where 9° = (@7, 0")7" and Zs is given in (B.28).
Proof. According to the notations in (B.26) and (B.27), one has

Hy.aa(9) - Hy ag(ﬁ)H— (9)Hnpa ()

n,00
= { Z Z q2 Ths Yis ZstT} { Z Z q2 nzs Yis Zzs:T}
=1 s=t; =1 s=t;
1
{ Z Z q2 Ths zs Est—g + D;} { Z Z q2 Ths Yis —'stT} .
i=1 s=t; =1 s=t;

17
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Note that

H, o (0 Yio)ZisZ,,

18

Z Z 421735 (9

zlstl

1 n

o Z Z q2 77157 zs ZSZsz(l + O(h9+l +

=1 s=t;
Similarly, we can show that

n tz

A7) = —E{p2(nd) Zis 24,

- 1 - _
Hn,ag('ﬁo) = — Z Z Q2(77is('l90) )/zs)zzs:‘@'—l;

T
T =1 s=t;

n tz

=LY il i)z

n
T3 s=,

Therefore, letting

ZisEi {1+ O(he + |A[TFh},

—1
Zis = Eis { Z Z q2 nzsv 15 Ei Ez +D)\} { Z ZQQ nzsa is ‘—‘ISZ—'I;}v
i=1 s=t; i=1 s=t;
(B.28)
we have
Hn aa (190) n,ag(ﬂo) H?'_L gg('ﬂo)HzaQ('ﬂo)
{ Z Z q2 ms, zs 2is)<zis - zis>T} {1 + OP(I)}
=1 s=t;

R ) DA SIS By

i=1 s=t1
= —B{pa2(nf},)Z" Z},

as in (B.1). Thus,

n,0Q

Sn.a(®°) — Hyap (00) H! <190> S, o(9°)

{ ZZQl 77@3 7 is)zis} {
1=1 s=t;
{ Z Z q2 nzs 7 zs)Est; +
=1 s=t;
722(]1 (i, Yis) is){1+op(1)}
=1 s=t;

The desired result follows.

18
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Z Z g2 (mis(9

'Llst1

@S>ZZS:T}

Z Z q1(7is(9

'Llst1
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To study the asymptotic properties of &, we consider the case that 5? and 72 can be estimated
at reasonable accuracy, for example, we can approximate 72 and ﬁg by the spline smoother 7
and Eg in (B.16). We begin our proof by replacing 72 and B? with 7 3, and 5?, respectively, and
defining an intermediate estimator for .

Let a be the minimizing solution of

fn(a;@ZZiL

=1 s=t

P2 Pps3
g {aTZis +D X+ ﬁ?(Ui)WiSe} Yis

k=1 £=0

LEMMA B.12 Under Assumptions (A2)—(AS), as n — oo,
vn(a—a) — N0,A7'3 A7),
where A = —E {pg(n?s)ziszz;}, and X1 =E {q%(n?s, Yis)ZisZ; .

Proof. Let VL, and V2L, be the gradient vector and Hessian matrix of Ly, (c; 8o). By Taylor’s
expansion,

+ OV L, ()

VLn(@) = VLn(a®) = V2L (a)(a — o) + %(a —ao)| S

a=o*

where " = {a]};, a;:: tjog + (1 — tj)a? for some ¢; € [0, 1]. Note that VL, (&) = 0 since
« is the minimizer of L, (a), thus we have
1 _ 1 0VL, ()

97 (a9 = 02127, (o) (& — o) - — (& —
ny VL (a”) =ny VoL, (o) (a a)+2n(a Q) Db

According to the Cauchy-Schwarz inequality, one has

2

1/~ ~ TM o = Op(di/nQ)Op(di) = 0P(n_1>'

nT (a - a(]) aaaaT (a - &0)

By Wang et al. (2014),
n'VL,(a) =S, (a) +O0p (n71d,) =0, np' V2L, (a) = Hy(a) + op(1),

where S,, () and H,, () are defined in

n to -1 n to
H, (o) = {n;l > qg(ms<ﬁ>7m>ziszg} , ny'Sn(@) = {Z > a1 (1is(9), Yis) Zis

i=1 s=t, i=1 s=t,

Thus,

B On 7)) [ () 0} ) o)

19

} |



August 18, 2021

Journal of Nonparametric Statistics STEM supp ' B'R1

Thus, the asymptotic distribution of \/n(a — aP) is the same as the asymptotic distribution
vrH1(a?)S,,(a). Law of large numbers implies that H,, (ao) — A in probability, and

Var {g1 (10, Yis) Zis} = E{ G} (0, Yie) Zis 2, } = =,

We can derive the asymptotic normality of \/ﬁﬁ; 1(a)S, (a’) by using the Cramér-Wold
device and checking the Linderberg Condition. ]
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