Appendix

A Proof of Proposition 1

Proof. First, we show that an optimal A\* for problem (7) exits. By the definition of the
Lagrangian dual function, we have that £(\) in (7) is an infimum of a collection of linear
functions. Thus, it holds that £()\) is a convex function. Also, it is not difficult to see that
as A — +oo, we have £(\) — +00. Thus, together with the convexity of £(A), we have that
L(A) has compact level sets. That is, for any a € R, the set {\ : £(\) < «a} is compact.
By the Bolzano-Weistrass Theorem, there exists an optimal Lagrangian multiplier A\* that
minimizes L£(\).

Then, given the optimal Lagrangian multiplier A*. Since, by assumption, the primal
solution B exists, we have that the function M (B) is bounded above. We have that a dual

optimal solution B exists. [ |

B Proof of Theorem 2

Proof. In the proof, for ease of presentation, we let the constraint for the primal problem be
QT(IB) = q.

We consider the case where the optimal Lagrangian multiplier A* = 0 or \* > 0. We
first have that, if A* = 0, we have that 8* = argmax M\(B) by (8). Since @T(B) > ¢ by the
feasibility of B, we have B is also a primal optimal solution, and our clam holds.

If A* > 0, we show in Lemma 12 that one of the two cases hold
i. There exists a dual optimal solution such that O, (8) = ¢.

ii. There exist at least two solutions achieve the dual optimal objective, denoted as B and

@, such that O,(8) < q and O,(8') > ¢.

Considering the two cases separately, for case (i), there exists a dual optimal solution B such

30



that @T(B) = ¢. By the weak duality, we have

—~~

M(B) = M(B) + A {q— O.(8)} = M(B),

and our claim holds as desired. Note that in this case, the dual optimal solution actually
also achieves the primal optimality.

We then focus on case (ii). Given the multiplier A*, there exist multiple solutions achieve
the dual optimality. Suppose that there are m of them. Let these solutions be B(,....8(m)

be the sequence of solutions ranked by their corresponding primal objective values that

o~ o~

M(Bu)) < M(Brzy) < -+ < M(Biy)-

Meanwhile, by the dual optimality, we have that

NM(Buy) + MO, (By) = M(Bray) + A Qr(Bz) = -+ = M(Bim)) + A* Oy (Bimy)-
Since \* > 0, we have
0. (Bw) = - (Bz) = -+ = O (Bm)-

Meanwhile, by our assumption, we have that there exists some k € [m] such that

0. (Bwy) = a > Or(Brrsn))-

This shows that there exists a dual solution, B41) in this case, that satisfies the primal
constraint, and the duality gap is upper bounded by X(@T(B(kﬂ) — q). Note that by the
discrete nature of the sample quantile function QT(-), the primal solution’s corresponding
sample quantile value is @T (,@), which might be different from ¢q. We thus have, the duality
bound can be bounded by X{@T(,B(Hl)) - @T(,@)}, which concludes our proof. [

Lemma 12. For the dual problem (8), suppose that the optimal Lagrangian multiplier \* >
0. One of the following two cases must hold that

1. There exists a dual optimal solution such that @T(B) =q.
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1. There exist at least two solutions achieve the dual optimal objective, denoted as B and

B, such that Q,(B) < q and Q-(B) > q.

Proof. We prove the lemma by contradiction. We assume the contrary that @T(B) < q for
all dual optimal solutions B that achieve the dual optimal objective. (Note that the other
case @T(B) < ¢ follows by similar arguments.) We have that

L(A) = maxiﬁmize M\(ﬂ) + A\*{q — @A(,B)}

= maximize M(8) + X*{g — Q\(8)},
en
where B = argmaxg.g (), //\/\l(ﬂ)(ﬁ), by the fact that Q,(3) = y; for some i € [n].
By our assumption that @T(B) is strictly less than ¢. As shown in Lemma 13, we have
that for small € > 0, we have
L(\* + £) = maximize M(B)+ (V +2){g— C.(B)}
en

< maximize M\(B) + A*{q — @T(ﬁ)}

Le[n]

— L),

However, since A\* is the optimal Lagrangian multiplier by our assumption, it minimizes the

function £(A*). The above result gives a contradiction, and our result holds as desired. W

Lemma 13. Suppose that the dual optimal Lagrangian multiplier \* > 0. Let B =
argmax{ﬂ(ﬁ) ; @T(ﬁ) =y} for £ = 1,...,n. With loss of generality, assume y; < ys <
oo < Yn. It holds that if 0 < & < minge(a, . n) {M(B(efl)) — M(,B(Z)},

.....

LN + ) = minimizeM(B8) + (\* + £){q — 0,(8)}.

Le[n]
Proof. When we perturb the optimal A* to A* + ¢, the corresponding dual solution becomes

~

g = arggnaxﬂ(ﬁ) +(\ +e){g— O (B)}.

By our choice of ¢, it is not difficult to see that our claim holds as desired. [ |
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C Proof of Proposition 4

Proof. For ease of presentation, we denote by M (,é) and QT(,B) the sample mean and 7-th
quantile of the treatment effects following deterministic decision rule f; = ﬂ(XZTB > 0).

We first prove that there exists a B that if we follow the stochastic ITR f (xi,ﬁ) =
P(f; = 1) = {1 + exp(—x; 3)}~", the corresponding objective can be arbitrarily close to the
objective achieved by the deterministic ITR f; = ]l(X;rB > 0), and the quantile constraint
is approximately satisfied by the stochastic ITR. We have that for any 5 and 6 > 0, there
exists some 3 such that ‘IL(XZTB > 0) — {1+ exp(—xj,@)}_l‘ < 6 for all x;. (Note that
here we implicitly assume that x; # 0. If we indeed have some x; = 0, we may perturb
the data by letting all x; = x; + § for some § such that all x; # 0.) This implies that
by considering stochastic ITRs that f(x;,8) = P(f; = 1) = {1 + exp(—x/3)} 7!, we have

for any given £; > 0, there exists some ,[;, such that the corresponding objective satisfies

—_ A~

M(B) > M/(B) — ¢ and the corresponding quantile constraint satisfies @T(B) > QT(B) —e1.

In addition, we have that by our assumptions that all outcomes are bounded, and B
achieves the quantile constraint in population. Also, as shown above, for any ; > 0, there
exists some 3 such that @T(B) > éT(B) —e1. We thus have that if n is large enough, problem
(6) is feasible. Note that as n — oo both M\(B) and M(ﬁ) converge to M(8) = E(Y*(3)).
Meanwhile, we have /\//\1(5) > M(B) — &1. We then have for any 5 > 0, the solution to our
problem (6), ,[;, satisfies that M(B) > M(B) — €1 — €9 with probability approaching one,
and satisfies the quantile constraint in (6). Since €; and ey are arbitrary, our claim follows

as desired. ]

D Proof of Theorem 5

Proof. Denote by P,, the empirical measure of the observed samples. Let 3* be a minimizer

to the loss function under the quantile constraint in expectation that

B* = argmax M(3), subject to Q,(8) = ¢.
BeB
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First, we have that as Q.(8*) = ¢, by Theorem 1 of Wang et al. (2018), it is not difficult to
see that, as n increases, @T(,B*) > ¢—C -n~Y? for some constant C' with probability goes to
1. Thus, we have that as n increases, 3* is a feasible point for problem (6) with probability
goes to 1.

Meanwhile, by the definition that B\ is the maximizer for the empirical mean function
under the constraint, we have that for any n large enough, M (,@) > M (B*) for all B* € B
and satisfies @T(ﬁ*) > ¢ — C'-n~ "2 with high probability. Thus, we only need to prove that
M(B) — M(B) in probability.

By our assumption that 3 € B, and B is compact, we have that B is bounded. This
implies that {M\(ﬁ) : B € B} belongs to a Donsker class because it is not difficult to see

M (B) is Lipschitz continuous with respect to 3. Consequently, we have

—~

V{M(B) — M(B)} = Op().

Our claim holds as desired. [ |

E Proof of Theorem 6

Proof. The proof is based on an application of Theorem 5.6 of Steinwart et al. (2007).
Specifically, let G be the function class

G = {M(B) - M(B*): Be Q.(q)},

where 3% € argmaxgeg () M(B), and Q,(q) = {B : Q,(8%) = ¢}. We first have that
E(g) < 0 for any g € G as 3* is a maximizer in expectation. Note that our loss function
is Lipschitz conitnuous with respect to 3. Denote that Lipschitz constant as Cp, we have
lg| < CL|B — B*||. As we assume that 3 € B(M), we have |g| < B = 2M Cy. Consequently,
squaring both sides and taking expectations, we have E(¢?) < E(g) + 4B
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Next, for the covering number N(B_lg, €, LQ(PH)), we have

log N(B7'G, e, Ly(P,)) <log N(B~H{M(B) : B e B(M)},e, Ly(P,))
< log N(B(M), Be/Cy,, Ly(Py,))
< log N(B(1),2¢, Lyo(P,)).

Thus, by Theorem 2.1 of Steinwart et al. (2007), we have that for some constant C/,

suplog N(B™'G, e, Ly(P,)) < Ce 2.
Py
Consequently, by Theorem 5.6 of Steinwart et al. (2007), there exists a constant Cs such

that for all n > 1 and 7 > 1, we have that
P*(M(B) < M(B*) = Cse(n, C1, B, 7)) < e,

where

1 4
8(72,01,3,7') =B <E+\/—ﬁ

Our claim holds as desired. [ |

) + (B+01)%.

F  Dynamic Treatment Regime with Intermediate Out-
come

In this section, we extend the dynamic treatment regime discussed in Section 5 to the more
general case where we observe intermediate outcome at each stage. Similar to Section 5, we
consider 2-stage dynamic treatment regime for ease of presentation, and the methods and
results for the general T-stage case can be easily generalized. We also assume that the data
are from some SMART trial.

The main difference between the setup with intermediate outcome is that after the first
stage, we observe an intermediate outcome Y;(I) for sample i, and after the second stage,

we observe an outcome YZ@). Let Hi(l) = Xi(l) and Hi(2) = (Xi(l)T,Agl),)/i(l),Xi(Q)T)T. We
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consider candidate stochastic F-ITR indexed by 8 = {8™"), 3} such that fi(H J ) ,BU)) =
IP’(A@ = 1\H.(j)) = {1 + exp(— H(j UM} for j =1,2.
Suppose we have random samples {XZ , Z( ), yf ), XZ@)7 az(?), yi(2)}ie[n]7 and we let h'g(l) = Xgl)a

and h®) — (x0T O 0 L OTyT

T 0 v dr

. We consider a backward fitting approach to estimat-

ing the optlmal F-ITR. Specifically, letting ¢\ (8®) = o/ f@(m®, 8®) + (1 — o?){1 —

()

f(z)(h@) )1, we estimate the regime for stage 2 by

7 7

3(2) € argmax./(/l\@)(ﬁ ), subject to Q (B ) > q— Cy/\/n, (13)

where M® (B@) and oY (B?) are the estimators for the mean and 7-th quantile of out-

come in stage 2 that

M®(B®) = argmin,n Y e (B2)(y* — )2,

i=1

and

2(8%) = argmingn ™ 3 et (B2)pr, (9 - q),

and Cy is a constant.

After getting 3(2), we estimate the regime for stage 1. First, similar to (11), we let

Da®

: 1) g @) 3
I w80 w5
agl)(l — a@))

7T1(1 — 7T2)

—a")a” 1 2
(1 —a )a (1 - fOmD, 80) f2 M, 52

¢ (B") =

. fi(l)(hl(l)7/6(1))(1 _ f¢(2)(h§2),a(2)))

(1 - 7Tl>772
(1(1— a:)ig —~ ZI(Q))) (1= fPmO, 8M) (1 - f2m®, 3R)).
— T — Ty

Then, we estimate the F-ITR at stage 1 by

A~

B = argmaxﬂ/t\(ﬂ ), subject to Q (B )= q — Cy/v/n, and @T(,@(l)) >q—C/vn,
B0
(14)
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where
M(BY) = argminn™ 31V (B) (" + 47— p)?

i=1

is the estimator of the mean of total outcome, and

n

9.(BY) = argmingn ' > i (BW)p. (" + 4 — q)

i=1

is the estimator for the 7-th quantile of the total outcome, and

QU(BY) = argmingn ™t Y c:(BV ) (4 — 0),
i=1
where ¢;(8M) = ol fOMY, B0Y 4 (1 — a"){1 — FOMDY, BD)}, is the estimator for the
71-th quantile of the stage 1 intermediate outcome.
For the estimator B = {B(l),é(z)} derived above, we can get similar Op(n~"?) rate of
convergence to the optimal risk M (3*), while satisfying the quantile constraints by backward

induction and similar arguments in the proof of Theorem 6.

Theorem 14. Suppose that B* = {B7,85} belongs to a compact set B(M), where M > 0 is

a constant. Then we have that for all T = 1 we have
P*(M(B) = M(B*) —¢) =1—¢ 7,

where P* denotes the outer probability for possibly nonmeasureable sets, and ¢ = O(n="/?).

Or, equivalently,

IM(B) — M(B¥)| = Op(n™).

In addition, we have that, with probability goes to 1,
QW(BY) = g1, QI (BY) = o, and Q-(B) > q,

where Q(TP(B(D) denotes the Ti-th quantile of the stage 1 intermediate outcome, Qg) (B?)

denotes the To-th quantile of the stage 2 intermediate outcome, and Q.(8) denotes the T-th

quantile of the total outcome.
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