Supplementary Material of “Feature Screening for

Massive Data Analysis by Subsampling”

A Extensions and Discussions

A.1 Extension to ISIS Method

Strong correlation among predictors typically exists especially for ultrahigh linear
regression models. Regarding to this issue, a common practice is to develop iterative
sure independence screening (ISIS) procedures (Fan and Lv, 2008; Cho and Fryzlewicz,
2012). We would like to remark that both DAS and AMS methods are flexible to extend

to ISIS procedure.

Specifically, with massive datasets, we could implement the ISIS procedure (Fan
and Lv, 2008). as follows. In the first step, we select a subset of k; predictors A; =
{ X, ,Xikl} by SIS-ALasso method. To be specific, we first screening a set of
[n/log(n)] predictors and then use distributed adaptive Lasso (DAL) algorithm recently
developed by Zhu et al. (2021) to select the subset M. We remark that we do not rely
on a distributed architecture to implement the DAL algorithm since it can be applied
sequentially to pre-splitted data segments. Then we obtain a residual vector of length
N by regressing Y on variables in M;. Subsequently, we treat the residual vector
as the new response and repeat the above step to obtain subset Ms. As commented
in Fan and Lv (2008) and Cho and Fryzlewicz (2012), fitting the residuals from the
previous step on Mp\M; can significantly weaken the priority of the unimportant

variables which are highly correlated with the response by associating with variables

in M;. Here Mp denotes the full model. In addition, it makes it easy to pick up those



important variables which are missed in the previous round. We repeat the above
procedure until we obtain [ disjoint subsets My, My, -+, M; with | U,_, My| < d,

where d is a pre-specified integer. In practice we set d = [n/logn|.
Finite Sample Performance

To evaluate the finite sample performance of the ISIS method, we present two
examples in this section following Fan and Lv (2008). In each example, the whole
sample size N is fixed with N = 10°, and we perform feature screening procedures under
the RAS setting. For each model, we apply the SIS and ISIS to select d = n variables.
For a reliable evaluation, we replicate the experiment for R = 100 times. Denote M®
as the selected model and ./\/l(TT ) as the true model in the rth experiment. We evaluate
the screening accuracy by the true model covering rate CR = R™' > T (Mgf ) ¢ M\(T)).

The examples are given as follows.

ExAMPLE A.1. We consider a linear model
Y:5X1+5X2+5X3+€,

where Xi,...,X, are p predictors drawn from a multivariate normal distribution
N(0,X) with ¥ = (0yj)pxp. Here 0;; = 1, for any 1 < ¢ < p, and o;; = p for any
i # j. The noise ¢ ~ N(0,1) is independent of the predictors. We consider different
combination of p,n and B with p = 200,1000, n = 50,100, B = 10,50, and we fix

p=0.9.

ExAMPLE A.2. For the second simulated example, the same setup in EXAMPLE 1

is used except that p is fixed to be 0.5. Moreover, a new variable X, is added to the



model, who has correlation ,/p with the other covariates. Therefore we have

Y = 5X1 -I— 5X2 + 5X3 — 15\/5)(4 —I— €,

One could verify that cov(Xy,Y) = 0. As a result, the SIS method is hard to select

the true model.

Table A.1: Simulation results for EXAMPLE A.1 and EXAMPLE A.2 under the RAS
sampling schemes. The numerical performance is evaluated for different parameter
dimensions p, number of subsamples B, and subsample sizes n. For each screening
measure, CR values under SIS and ISIS methods are reported.

v B n CRasis CRisis

AVS DAS AMS | AVS DAS AMS
ExaMPLE A.1
200 10 50 1 1 1 1 1 1
100 1 1 1 1 1
50 50 1 1 1 1 1 1
100 1 1 1 1 1 1
1000 10 50 1 1 1 1 1 1
100 1 1 1 1 1 1
50 50 1 1 1 1 1 1
100 1 1 1 1 1 1
EXAMPLE A.2

200 10 50 | 024 024 0.07 | 09 093 0.99
100 | 0.57 0.58 0.61 | 0.98 098 1.0
50 50 | 0.14 0.14 0.06 1 1 1
100 | 0.49 0.47 0.58 1 1 1
1000 10 50 | 0.0 0.0 0.0 | 052 0.59 0.72
100 | 0.02 0.01 0.01 | 0.72 0.78 091
50 50 | 0.0 0.0 0.0 1 1 1
100 | 0.01 0.01 0.0 1 1 1

We summarize the results in Table A.1. In ExaMPLE A.1, both SIS and ISIS are

able to cover all important variables. However, in EXAMPLE A.2, the performance of
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the SIS is much worse than the ISIS method, especially when p is large. For example,
when p = 1000, B = 50,n = 100, the CR values of the three measures under the SIS
are less than 0.01, while they equal to 1 under the ISIS method. That is because the
SIS method fails to deal with the correlation among the predictors. In addition, the
AMS measure outperforms the other two screening measures especially under the ISIS
method. Finally, the accuracy increases when either n or B increases, which is in line

with our theoretical findings in Section 3.

A.3 Confidence Adjusted Feature Screening

Motivated by one of anonymous reviewers, we propose a novel feature screening ap-
proach, which further involves automatic statistical inference about the feature screen-
ing measures. We show that it can enhance the screening accuracy by taking account
of uncertainty measures. We refer to this extension as confidence adjusted feature

screening method.

Suppose we use the correlation between X; and Y as our screening measure: p; =
XJTY/N (X, and Y are standardized). By using the SIS procedure (Fan and Lv, 2008),
we keep variables with high |p;| values. However, the SIS procedure does not take
account of the uncertainty level of p;, i.e., SE(p;). For variable j with higher SE(p;),
we should have lower confidence in its ranking result. As a result, we could assign
lower weight to variables with higher uncertainty levels in the screening procedure.

Specifically, we consider to standardize p; by SE(p;) as

p; = Pi/SE(D;)-

We refer to p; as the confidence adjusted screening measure. The SE(p;) is usually hard



to estimate especially for complex screening measures. However, in our DAS setting,
we have special opportunity to estimate SE(p;) by repeated sampling as in (3.1). We
conduct simulation studies in the following to illustrate the usefulness of the confidence

adjusted screening measure |p;|.

Finite Sample Performance

To evaluate the finite sample performance of the proposed feature screening method,
we present a numerical example in this subsection. Specifically, the simulation setting
is the same as EXAMPLE 1 in Section 4.1, except that the distribution of the covariate is
not a multivariate normal distribution. Instead, we generate the covariates as follows.
For 1 < j < dy, X;;s are independently drawn from Gamma distribution with shape
parameter a@ = 10 and rate parameter 5 = 1. Next, for j > dy, we generate X;; =
pXi1+ MZU, where Z;;s are also independently drawn from Gamma distribution
with o = 10, f = 1. Here we fix p = 0.9 to ensure a relatively high dependence level
between the non-important variables and the important variables. Therefore, the case
is challenging because (1) the distribution of the covariates is not symmetric and (2)
the non-important variables are highly correlated with the important ones. Under this
scenario, the SE(p;)s of the non-important variables are higher. Lastly, we fix the
whole sample size N = 10° and n = 100, then we consider vary B from 500 to 1000.

For a reliable evaluation, the experiment is replicated for R = 100 times.

We compare the performance of p; with p;. Specifically p; is calculated using the
DAS method and p; is computed by the DCAMS method demonstrated in subection
3.3. Here the DCAMS refers to using the AMS method under the DC setting. For
the DCAMS measure, we consider nB = 1000, 5000 and 10°. Note that when nB =

10° = N, p; is equivalent to the global screening measure. Furthermore, we use the



AUC measure defined in (4.1) to compare the screening accuracy of the two competing
methods. Specifically, for the rth replication, we calculate AUC](;AS and AUCS)C AMS
respectively for p; and p;. The boxplots of the AUC values are shown in Figure A.1.
As one can see from Figure A.1, the average AUC of p; is obviously higher than the
DCAMS measure. This illustrates the potential usefulness of the proposed confidence

adjusted feature screening method with our DAS implementation.
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Figure A.1: Boxplot of AUC values for the original screening measure p; conducted by
the DCAMS method (the left three boxes), and confidence adjusted screening measure
p; implemented by the DAS method (the right two boxes). Particularly the third box
refers to the global estimator when the whole sample is used. The sample size N is
fixed as N = 105.



B Theoretical Properties of AVS Measure

B.1 Uniform Convergence of the AVS Measure under RAS

To establish the uniform convergence property of the AVS measure, we require the

following condition.

Assumption B.1 (Dimensionality for AVS under RAS).

(a) (QUANTITATIVE COVARIATES) Letlogpy < min{nBN~% n'2BN~"} andlogp;+

log B < n''? for some v € [0,1/2) and § € (0,1/2).

(b) (QUALITATIVE COVARIATES) Let log py+max; logl; < min{nBN~2"I;* n'? BN~}

for some v € [0,1/2). In addition, assume log ps+max;logl;+log B < n1/27rrln/ii.

The following theorem establishes the uniform convergence of the AVS measure.

Theorem B.2. Assume Conditions 1, 2 and B.1, then the following conclusions hold.
(a) It holds max; | Ry, svs — R, — Dup| = Op(N™7), where Ay = O(n™1).

(b) It holds max; |R7, ays — R3, — Al = Op(N7), where Ay = O(n~ ).

The proof of Theorem B.2 is given in Appendix C.3. With respect to the results,

we have the following two remarks.

Remark. By Theorem B.2, the bias order of R%j’ avs 1s not only related to n, but also
related to [;. As a consequence, it will be larger if the number of levels for a qualitative
variable is higher. Hence the subsample size should be set larger if the qualitative

covariate of interests has a great number of levels.



B.2 Uniform Convergence for AVS Measure under SAS

To establish the uniform convergence for AVS measure under SAS, we require the

following conditions.

Assumption B.3 (Dimensionality for AVS under SAS).

(a) (QUANTITATIVE COVARIATES) There exists § € (0,1/2) such that logp; <
min{n' "2 BN~% Bn'/?7 N}, logp, + log B < n'/?, logp; + logN < n?%,

where v € [0,1/2).

(b) (QUALITATIVE COVARIATES) There exists 0 € (0,1/2) such thatlog po+max; logl; <

min{nl_%BN_Q”l;z, n1/2_5BN_”l;1}, log pa+max; logl;+log N < n? log py+

1/2

max; logl; + log B < n'/2m. > where v € [0,1/2).

We establish the theoretical properties in the following theorem.

Theorem B.4. Assume Conditions 1 and B.3, then the following conclusions hold.
(a) It holds max; \Rggj,Avs - 'Rggj — Ayy| = Op(N7Y), where Ay, = O(n™1).

(b) It holds max; |R7, ays — R7, — Au| = Op(N7¥), where Ay = O(n~ ).

The proof of Theorem B.4 is given in Appendix C.7 and the result is consistent

with Theorem B.2 and 2 under the RAS setting.

C Proof of the Main Theorems

Define E*(-) and var*(-) as the conditional expectation and variance given X and Y.



C.1 Proof of Theorem 1

1. Proof of (a).

We first consider the case that E(X;;) = 0. Define var(X;;) = o2, o) = var(Y;),

o
and o,,; = cov(X;;,Y;). We first consider the case for the kth subsampling. In this

case, we have

def 1 1

R (X)) & _ x (Y o X, )

2

{ 1 1 1 }
= 0., __ — _
P n Y gy — Y2 X wyll? - ogol

y-xzj
1 1 { - > 02y
_ x 3 (WYX s —az}+ -
n Yy — Y12 07 K 12 (Y Xay) Wl gy
def 02y
= A+ A+ 52
O2j%y

As a result, we have P(|R*(X;) — 02,;/(02,02)] > t) < P(JA1] > t) + P(|As] > t).
Define Ag(t,n, N) as given in Lemma E.2. In the following, we prove that P(|A| >
t) < cAg(t,n, N) and P(|As| > t) < cAg(t,n, N) respectively in two steps. Given

the results, note that Rggj can be treated as independently subsampling for nB times,

hence it yields,
P{}Rggj ~RL| > t} < eA%(t,nB, N, n'?), (C.1)

where ¢ is a constant. By using maximum inequality we have P{max;<;j<p, |R§§j —

Ri,| >t} < epAg(t,nB, N, n'/2) = o(1) by Assumption 2 with t = N7,



STEP 1. Without loss of generality we let aiyj =1 in the following. Note that
B 1 1 1
Yo — Yo l2 0 IR will? - ooz,
{(n7 Y = Yll*) = o3 (07 K@i 1) + {(n 7 I Xsl?) = 03,305
(=Y ) = Yoy [12) (=M IX s l12) (0502,

Ay

In the following we show (1) P{|n7!||Yu — Ywl* — op] > t} < Ag(t,n,N), (2)
P{n KylP = 0] > 1} < Ap(t.n,N), and (3) P{n~! Yoy — T > 02/2) <
Ap(o}/2,n,N), P{n " ||Xuy,ll* > 02,;/2} < Ap(o;/2,n,N). One could immediately
conclude that (3) can be obtained from (1) and (2) by setting t = 0. /2 and t = 02, /2
respectively. As a result, we could derive that P(|A| > t) < cAg(t,n, N) by using

(1), (2), (3), where c is a finite constant. In the following we prove conclusion (1) and
(2).
Note that [|[Yy — Yll2 = n ' 32, (Y — 1y)> — (Y — p1,)% First note that
(Y; — py)? follows sub-Exponential distribution. Then by using Lemma E.2, we have
P Fiags — ) — 021 > 1) < Ap(t,n, N). (€2)

In addition, by Lemma E.10, we have P(|Y ) — p1y]* > t) < Ag(t,n, N). Combining

the result with (C.2), we have
1 —
P{|= ¥ = Yol = 02| >} < Ag(t,n, N). (C.3)

Subsequently, by using the same technique, we could show that P{|n~" || X, ||* — 02, >

STEP 2. Given the results proved in Step 1, we only need to show P|{(n*1Y(Tk)X(k)j)2—

o2 | >t} < cAg(t,n,N). Recall that X;; and Y; follow sub-Gaussian distribution.

xyj
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Consequently, U; def X;;Y; follows sub-Exponential distribution. Let (71 = )Z(k)iji}(k)i.
By Lemma E.2, P(jn"' Y7, U, — Oayil > 1) < Ag(t,n,N). Assuming ¢ = o(1), we
could further obtain P(|(n"' 7, U;)% — 02, | > t) < cAg(t,n, N), where ¢ is a finite

xyj

constant.
2. Proof of (b).

Define 5, = (nB)' S0, Ly, Lay; € RUTD¥G=DSince Z; is generated from
Zj, which is a qualitative variable. Therefore, izj is diagonal and thus we denote
Sz, = diag{F;1,+ Fi—n} € RED*GD where 7y = (nB)"' 370, Z 5 -
Accordingly, define ¥z, = E(izj) = diag{m1, -+, mjg,—1)} € REG-DxE-1 Next,
define ¥y = (nB) ' SO0, LYy € RGD, 53 = (nB) 1307 Yy — Ypyll?, and

szy = (Uzy,jl 01 S [ S lj — 1)T € lefl with Ozy,jl = E(ZUZY;)’ 0’5 = Val"(Y;‘).

Note that

7

1 ¢ ~ N N N
R, ~ R, = { B0,) (82, ) — 5,455 D}
Y

1

T v-1
il i—lE EZjYEZj ZZJY
+ ~9 Z]Y Zg Z]'Y -
o
Y

2
Oy

}défA1+A2

Then we have P(|R, —Rj | > 0) < P(|Ay] > 0/2) + P(|Az| > §/2). Since we have
dealt with 5% and o3 in the proof of (a), we treat 65 = o, = 1 to save space here. We

deal with A; and Ay respectively as follows.

STEP 1. UPPER BOUND FOR P(|A;| > §/2).
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First by using the diagonal structure of izj we could write

lj—1

A= E—erYZijlzij - EZjYZiJ‘IEZJ'Y Z A_l{ Z Z k)j, IY - gy jl}
1;—1 1;—1
~ — def
- Z (ﬂ-ﬂlﬂjl)ﬂjll{ ZZT lY(k - zy]l} ZRﬂ’]lAlh
=1 =1

where R; j = 7

Y and Ay = 7rj_ll{((nB)*1 S Z(Tk)j’lY(k))Q — 02,15 Define the
event &,y = {1/2 < R, j; < 3/2}. Then we have

1—1

P(lal > 6/2) < 3 {P(1au] > 3%

=1 J

gmjl) + P( ﬂ-]l)} S P+ P

We give upper bounds for P; and P, respectively as follows.
STEP 1.1. UPPER BOUND FOR P;.

Define Dy; = 7rl {( B)~ Zk L k,)]l (k) — azydl}. Then Ay = 2D117rj_l1/202y7jl+
D?. We have o, = O(mj;). We first derive the bound for P(|Dy;| > t) for any
t. First, note that Z;; € {0,1} and Y; follows sub-Gaussian distribution. As a
result, the variable U; dof 7Tj_l1/ Q(Zijlyi — 04y,1) follows sub-Exponential distribution.
In addition, E(U?) = Wj_ll{E(Zi)} = O(1). By Lemma E.2, we have P(|Dy| >
t) < Ay(t,nB, N,n'/?). Letting t = §/l; we could obtain P; < P(|Dy| > 6/1;) <

[;A%(5/1;,nB, N,n/?). Then we have py max; ;A%L(N~"/l;,nB, N,n'?) — 0 due to

the condition that log ps + max; [; < min{nBN*m’lj_Q, nl/QBN*”lj_l7 nl/?}.
STEP 1.2. UPPER BOUND FOR Ps.

Next, we have by Lemma E.9, P(|7; — ;| > 7;/2) < Ap(mj/2,nB, N, 7).

As a result, P(7 ;"

Sl > 3/2) + P(7y)

o < 1/2) < Ap(mj/2,nB, N,mj). 1t leads

to P, < ljmax; Ag(mj;/2,nB, N,mj). By the condition that logp, + maxlogl;, <

12



min{miny nBmj, N}, we have po max;; [;Ag(mj/2,nB, N, m;) — 0.
STEP 2. UPPER BOUND FOR P(|Ay| > 4/2).

It can be derived that Ay = ijz_ll(Aj_ll — ﬂﬁl)agwl. Hence we have P(|Ay] >

IN

§/2) < Z;’:_ll P([7;" — ' > 0/(2l02, ;). By Lemma E.9, P([7; — m| > t)
Ap(t,nB,N,mj). By the proof in Step 1.2, it leads to P(|7;; — mj| > m;/2) <

Ap(mj/2,nB, N,m;). Without loss of generality, we assume o2, ; = O(mj;). As a

result, we have P(7; /02, ; > 3/2) < Ap(m/2,nB, N, m;). It further yields P(\%j’ll -

'l > 8/ (2002, ) < P(Ru—mul > 36/(41))+ PR /o2, ;i > 3/2) < Ap(38/(dlm{?),

zy,jl J jl
nB, N,n'"?)+Ap(rj1/2,nB, N, ;). One can verify that p, max; lj{AE(S(S/(éllﬂr;l/Q), nB,
N, w1, n'?)+Ap(m;/2,nB, N, 7;)} — 0if the condition log po+max; I; < nBmin{ N =212,

N*”nfl/zBlJ—_l} and log p; + log B < n'/? hold.

Lastly, letting 6 = N and under Assumption 2 that we have max; [ —R3 | =

0p(N7Y).

C.2 Proof of Lemma 1

Without loss of generality we assume E(X;;) = 0. Define 151 = (X( Wij Y(k)l, X(k)ij?(k)i)T,

D =n'Y" D € R and D = (02,02,0,,)" € R3 In addition, define D; =

I7 Yy

(Xf], Y2 X;;Y;)". For the simplicity of the proof here we omit the subindex j and k
here. Define g(x) = 22/(x122) for & = (z1, 72, 23) . As a result, we have Rszgj(k) = g(D)

and Rggj = g(D). We prove the results for bias and variance terms respectively.

1. Proof the bias order.

13



By using the Taylor’s expansion, we have

D . ) 1 Y . e
o(D) ~ g(D) = (D) (D~ D) + (D — D) §(D)(D ~ D)
1 o o o |
- 6 Z gjljzjs(D)(D(] ) - D(Jl))<D(J ) — D(Jz))(D(B) — D(JS))
jlaj27j3
+ 24 Z g j1j2j3j4(§)<D(]1) - D(]l))(D(Jz) — D(J2))(D(13) _ D(J3))<D(34) — D)
J1,J2,73,74

AL+ A+ A+ Ay

where DY and DY) is the jth element of the vector, and £ is on the line joining D and

D. Note that E(A;) = 0. We deal with Ay—Ay respectively as follows.

STEP 1. Note that

By = 55 3 (D= D) GDND: = D) + 55 3 (Di = D) (D)(D; = D) ™ Ay + A
i=1 i#]

Define ¢; = (2n) " %r{G§(D)Xp}. Then we have

E(Ay) = B{E*(Ay)} = %E{(Di —D)'§(D)(D; — D)} = cg=0(n")

n—1
2n

E(Agg) = E{E*(A22>} -

E{(Dy — D)"§(D)(Dy — D)},

where Dy = N~'Y". D;. Similarly one can show that E{(Dy—D)"§(D)(Dy—D)} =

O(N7Y). As aresult, E(Ay) =O(n™' + N71).

STEP 2. Next, we look at As. Since the dimension of D is finite, we could focus

14



on a single j. It holds

U (N Ve =G) G
(D(J) _ D(g))?: = Z(D(J) _ D(J))S + = — Z (D(J) D(]))Q(D(]) _ D(J))

3 % 4 11 12 12
n i=1 11719
1 =0 iy G _ piy @ _ HW)
+ E Z (D'Ll - Di1 )(‘ng - Diz )(‘DZ:), - Dig )
i17£12,02713,11 713
def

= Ap1 + Apy + Aps.

It can be derived that E(Ap;) = O(n™?), E(Aps) = O((nN)™'), and E(Ap3) =
O(N72). As a result, E(A3) = O(n™?).

STEP 3. Lastly, we look at the A4. First we write Ay = Ay + Ayo in two parts as

1 o o . L |
Au=g Y T ipi(D)DP = DYDY = DU DW — Do) (DP — D)
jlaj27j37j4
1 T = )
Baz =57 > AT Gjaiain€) = T jijuarn (D)} T (D7 = DU
J1,92,33,J4 m=1

It can be verified that F(Ay) = O(n™3) = o(n™?). As a result, we only need to show
that Ay = op(n*Q) to imply that Ay will not produce a bias term which is larger than

the order of O(n™2).

Since [|€ = D||max < ||D—D|lmax = 0p(1), we could verify that || (€)= G (D)]|max <
c||¢€ = Dl|max with probability tending to 1, where ¢ is a finite constant. By Lemma

E.2, we have || — D||max = O,p(n12). As aresult, Ay < c||D— DI, = O,(n"%?) =
0,(n2).
Consequently, we have A, = cn™! + max{n=2, N~ }H{1 + o(1)}.

2. Proof of the variance part.
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To analyze the variance part, we only need to expand g(D) to the second order as

def

o(D) — g(D) = (D) (D~ D) + 5(D — D) §(€)(D — D) L Ay + 4y,
We further write A, as
By =53 S(By = D)TGD)(D, ~ D) + 5 5 > (B~ D) §(D)(B, — D)
i=1 i#j
+ 50— DY () ~ HD)}D — D) ™ Ay + Ay + Ay,

By Lemma E.2, we have A; = O,(n~/2). Next, by Lemma E.3, we have Ay —
E(As) = O,(n~1). By Lemma E.5, Ay — E(Ag) = O,((logn)?/n). Furthermore,
since ||€ — Dllmax < |D — D|lmax = 0,(1), we could verify that [|§(£) — G(D)]lmax <

c||€ = D||lmax < ¢||D — D||max with probability tending to 1, where c is a finite constant.

This implies Ay = 0,(Ag; + Agy). This yields the final result.

C.3 Proof of Theorem B.2

1. Proof of (a).

Define Dyi = (X Yy XewigYooi) " Dy = 07" 30, Dy € RS, D= BT 307 Dy €

(k)3 = (

R? and D = (02,07,04y)" € R®. Define g(x) = x3/(x122) for x = (x1,29,23)". As a

result, we have Rggj’AVS =By, Q(E(k)> and Rggj = g(D).

By using the Taylor’s expansion, we have

B™Y " g(Dw) — (D) = %ZQ(D)T(EU@) -D)+ 3 > (D = D) §(&w) (D) — D)
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o Ay + Ay, where {4, is on the line joining D and D(k) In the following we use two
steps to deal with A; and A, respectively.
STEP 1. First, by Lemma E.2, we immediately have P{|A;| > ¢t} < A%(t,nB, N,n'/?).

STEP 2. First we write Ay as

Ay == 3" (D) — D)D) Dy~ D) + Z(ﬁ(k) — D) {i(éw) — 4(D)} Dy — D)

B B
= B%Q YD (Duyi — D) (D) (Dyayi — an > (D T§(D)(Dyy; — D)
koo ki
+ é > (D — D) {iéw) — 4(D)}( Dy — D) = Aot + Agy + Ags.
k

First, we obtain P(|Agy — Ag|) < Ama(nt,nB, M) by Lemma E.3. Next, we obtain
P(|Ag| > t) < A% (nt,n, B,¢) by Lemma E.15. Setting M = n'/? and ¢ = n'/* we

have p1Aga(nt,nB, M) — 0 and p; A% (nt,n, B,e) — 0.

Next, for each k if it holds ||{k) — Dllmax < || D|lmin/2, then we have |§;,;, (Ew)) —
Givjs(D)] < cll€i) = Dllmax < cl|Diy — D||max, where ¢ is a positive constant. As a re-
sult, we have P(maxij, s, [ (60) — (D) > €) S BAG(IGD) luia/2.m,N) +
BAg(t,n,N) < BAg(t,n,N) for small ¢. By letting ¢ = o(1) and under event
{maxy j, j, 105152 (Ew)) — Gjrja(D)] < t}, we have |Agg] < [Ag + Agy|. As a result
P(|Ay — Ay > t) < BAg(ty,n, N) + A3 (nt,n, B,¢) for t; = o(1). Setting ¢ = n'/*
we could obtain that py A (nt,n, B,e) — 0 and py BAg(t,n, N) — 0. Hence the final

conclusion holds.

2. Proof of (b).

Define D ,y; = (g(kz)ijl, S 2 -1) Z(k)ijli;(k)ia E ,g(k)ij(l-l)?(k)i, (?(k)i_y(k))Q)T €

Rz(lj_l)—H, b(k) —n! Z?:lD e R2(l-—1)+1 D = B! Zk 1 R2(l'—1) . and
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D = (lea Ty (1) Ozy,g1s 07 5 Ozy5(l;—1) y) e R¥G-DH I addition, define
-1
=Dy ) DDy
=1
As a result, we have R7 s = B™' 35, g(Dwy) and R}, = g(D).

By using the Taylor’s expansion, we have

B g(Dw) — 9(D) = é > 4(D)" (D — D) + % > (D — D) §(¢w) Dy — D)
k k

aof Ay + Ay, where &) is on the line joining D and D

STEP 1. (P(|JAy] > €))
Note that g(D) = (=D *D} Dy, -+, —D;2 D} Dy 1,2D7 ' Dy D+, DL

DQ_Z;AD%._Q, _D2_l]2vfl 25];11 Dl_lDlszfl)T. Since D; = O(my) and Dy, = O(my;) for

1 § l S l] — 1, we have Hg(D)Hmax = 0(1) Write Al = All + A12 -+ A137 where

where ¢,(D) and Dy is the [th element of vector ¢(D) and D). By Lemma E.2 and
E.9 we have P(lAll‘ > 6/3) S leB(e/lj,nB,N, ’/Tmin), P(‘A12| > 6/3) 5 leE(G/l]’,TLB,N),
and P(|A13] > €/3) S Ap(e,nB, N). As a result, poP(|A1] > €) < pomax; [;Ag(e/l;,

nB, N) — 0 with e = O(N~") by Assumption 2 (b) and B.1 (b).

STEP 2. (P(|A2 — Al > €))

18



Next, we have Ay = Agj + Agg, where Agy = B2 >, (D) — D) "§(D)(Dy — D) +
B (Dy — D) {3(Ewy) — §(D)}(Dwy — D).
STEP 2.1. (P(|Ag — ALl > €))

It can be verified that §(D) = (Gy, G2; G3, G4), where G = (1,17 )xdiag{m;',- -+ ;7] 1},

G107 T—-1)

Gy =1y, 5, G3 = G, Gy = 1. Then it can be derived that Ay = A211 + A(221) +A2§) +

Ay,
-1
21 = CZ m— D)2, (C4)
2l;—-2
A —CZW Dy — Di)?, (C.5)
-1
Af) = CZWZ w1 — D) (D) — Digay) (C.6)
2l;—2
Ay =c Z 7 (D — DO)(Dgyar; -1 — Daiy—1)- (C.7)

where ¢ is a constant.

One could verify that A,, = F(Ag) = O(n'l;) as in the proof of Lemma 1.
Next we focus on the tail bound of the four parts. Since the proof procedures are
similar, we prove the case for Aéll). First, for we could write I(E(W - D)? =

n2 3 (D — Dua)® + 172 Sy (Dagni = D) (D — Dig) = Apy + Aps.
By Lemma E.3 and E.7, we have P(|Ap; — E(Ap1)| > €) < Apga(ne/l;,nB, M) and
P(|Aps)| > €) < A3%(ne/lj,n,nB,e). Setting M = n'/? and € = n'/* we have
pomax; [;Aga(ne/l;,nB, M) — 0 and py max; [;A3 (ne/l;,n,nB,€) — 0 by the condi-
tion that log py + max; [; < min{fnBN~2"I;% n'?BN~"I-'} — 0 with e = N~ and

log ps + max;log!l; +log B < nl/2.

STEP 2.2. (P(|Ag2| >¢€))
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Next, we focus on Agy. As we have shown in (C.4)—(C.7), we could also decompose
Ay into four parts as A%) to Aéé). We prove the case for the first part for illustration.
Note that §;(D) = 2Dl_3Dl2j+lDi;71 for 1 <1 <1; —1and §j,(D) = 0 for i1 # l,.
Under the event that {maxy ||£x) — D||max < €} with € small enough, it can be derived
that [gu(Ery) — gu(D)| < emy {UTjur) — Tl + 0oy eyt — Oyt } + 75150 ) — o3l where
Ra = 17V Zwyigts Gyt = 1702 Y Zain, and 62, = n7Y Yy — Y2
As a result, P(maxi{|gu(§w)) — gu(D)| > t/mu}) < P(ﬂ';ll maxy, [Ty — T > t) +
P(7rj_l1 Maxy, 0.y, ()it — Ozyj1| > t) + P(max;, |3§(k) —oo| > 1) S BAE(th/2 n,N) — 0

min?

/27T1/2

min?

by the condition that log p, + max;logl; + log B < nt where 7, = min,; 7j;.

Consequently, we have maxi{|Gu(§w)) — Gu(D)| = op(wj’ll). Consequently, Agy is dom-

inated by Agj, which implies P(|Ag| > €) < P(]Ag| > €). This yields the final

result.

C.4 Proof of Lemma 2

Without loss of generality we assume E(X;;) = 0. Define D; = (X(Qk) ?(i)i, )?(k)ij?(k)i)T,

D =n'Y" D, € R and D = (02,02,0,,)" € R® In addition, let D_; =

x? Y

157

(n—1)"1% 2 Dm € R3. For convenience we omit the sub-index k and j here. Define
_ 2 _ T 2 — D
9(x) = a3/(2122) for @ = (z1,22,23) . As a result, we have Ry ) pyg = (D) and

R%, = g(D). Without of loss of generality we assume n* < N. Since all variance terms

are proved in Lemma 1, we only need to focus on the bias estimator Ay).

By using the Taylor’s expansion, we have

9(D-i) = g9(D) = §(D)" (D-; = D) +27(D—; — D) '§(&)(D~: — D)

def =N

= g(D)"(D_; — D) + A,
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where &; lies on the line joining D and D_;. Note that for the first term we have

D)+ 2" Y(D_; — D){ij(&) — §(D)}(D_; — D) & A% + AL, Then we have

b def Aqa b

n—1 P ¢

Define V = tr{§(D)cov(D;)} & tr{§(D)Sp}. Then Ay = (2n)~'V. In the following

we deal with the two parts respectively.
STEP 1. (BIAS AND VARIANCE OF Af) — Agy)

First note that D_; — D = (n — 1)™'(D — D;). Then it yields

A= Ly S D DN - D) 2 L i(D)o)

Note that n=tr{j§(D)Sp} —n~r{i§(D)Ep} = n tr{§(D)(Ep—Xp)} +n~'tr{(§(D)—
§(D))Xp). One could verify that the leading bias terms of the above two parts are of

O(n=2). Then we derive the variance order. It suffices to derive the upper bound for

n[Ep = Xpllmax and (D) — (D) lmax-

Note that each element of D; follows sub-Exponential distribution, then by Lemma
E.3 we could obtain that n7Y|Sp — ¥p |lmax = 0,(n1). Second, we have || D — D||max =

S > DU /2 for 1 < j < 3 with probability tending

0,(1) by Lemma E.2. Tt implies D"
to 1. Within the region {ﬁ] > DW/2:1 < j <3}, we could verify that §(D) < cp
with c¢p being a finite constant. Then we have ||G(D) — §(D)|lmax < ¢p||D — D||max.

By Lemma E.2 we have n71||D — D||pmax = 0,(n71). Consequently we have the leading

bias of A%, — A,y is O(n™2) and leading variance term is of o,(n™').

(k)

STEP 2. (BIAS AND VARIANCE OF Af,)
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One could also verify by using Taylor’s expansion technique that the leading bias
of Alis O(n™2). Next, it can be derived that [|§(&) — G(D)|lmax < cl|& — Dllmax <

c|[D_i = D||max = ¢(n — 1)7Y||D; — D||max- As a result, we have by Lemma E.3

max

P(max [|§(&)=§(D)llmax > t) < P((n — 1)"* max||D; — DGy > ct?)

< P((n—1)") _|D; = D|* > ct*) < Apsy(nt®,n, M). (C.8)

Letting t = n~3/* and M be small enough, we have max; ||§(&) —§(D)||max = Op(n=3/%).
Consequently, [n=! (n—1) =, A < max; 04(§§(&)—i(D)) < max; [|§(&)—§(D)|[rn~ tr(Ep) =

O,(n~"*) = 0,(n~!) due to that tr(EA]D) = 0,(1).

As a result, the leading bias of A’(’k) is O(n™?) and leading variance term is of

o,(n71).

C.5 Proof of Theorem 2

Based on the result of Theorem B.2 and Lemma 2, it suffices to derive the tail bound

for the bias estimator.

1. Proof of (a).

Define D) = (X(Qk)ij’y(?f)i’

(02,07,00)" € R®. In addition, let Dyy_; = (n = 1)"' Y Dgym € R®. For

x? Y

Xayi¥i) s Dy = n™' 20, Dy € R and D =
convenience we omit the sub-index k and j here. Define g(z) = 23/(z113) for z =

(1,22, 23) 7. Then the bias estimator is B~ 37, A LBy (nin-1)3 9(Dgy-i)}

and R = g(D). Without of loss of generality we assume n* < N.
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By using the Taylor’s expansion, we have

9(Dy—i) — 9(Dy) = ¢(Dy) " (Dgy—i — Diay) + 2" (Diay—i — Dry) " 6(€yi) (Diy—i — Diwy)

def . —< - =
= §(D) " (Dgy—i — Diwy) + Ay

where {); lies on the line joining 5(14) and E(k),,;. Note that for the first term we

have Zz’(ﬁ(k)—i - E(k)) = (n — 1)_1 Zi(ﬁ(k) — D(k)z‘) = 0. Write A(k)z‘ = 2_1(E(;€)_i -

= — — = e — - def
D) "9(Diy) (Digy—i — Diay) 27 (Dy—i — Diy) "{3(Eryi) — 3(Dioy) }(Dgy—i — Diy) =

b def 1 1 b def Aq b
i = 5 2 Ay + 5 DAl = AT+ A"
k k

Define V' = tr{g(D)cov(D;)} o tr{g(D)Xp}. Then Ay = (2n)~'V. In the following

we deal with the two parts respectively.
STEP 1. (PROOF OF P(|A" — Ayl > €))

It can be derived that

1 1 — _
A= N - Dayi — D) " §(Dy) (D gy — D
25 2= n(n— 1) Z( *) ) G(D @) (D) QnBZ r{§(D

(2

Further write A* = (2nB)~' Y, tr{§(D ZD(k)}—I—(ZnB)*l S tr{(§(Dw) (D))ED(k,) def

A+ A®2 First, by Lemma E.3, P(|A® — Ay| > t) < Ape(nt,nB, M). Letting M =
n'/? we obtain p;Aga(nN ™", nB, M) — 0 by the condition that log p; < min{nBN~%,

nl/QBNfzz’ n1/2}‘

23



By Taylor’s expansion, we have

hid Y . )
9j1j2(D(k)) - gjm Z g]m],3 D(Z;S _ D(]B))

—(J3) i)\ () def
+ G i ) (D) = DU (Dy = DY) Z Agjiiry + Dg2jsothy;
73,74
where §) lies on the line joining D y and D. We deal with the above two parts

respectively as follows.

STEP 1.1. (P(|(nB)™" 32,325, 5 Dotjijam ZD,jja (k) — O(n72)] > €))

First note the bias of the first term Agljle(k’)iD,ﬁjz(k) is in the order of O(n~?). Next
by Lemma, E14, we could obtain P(’( ) Zk Z]l g2 glj1j2(k)§D,j1j2(k)2D,j2j1(k) —
O(n72)| > €) < Asg*(nt,n, B,¢). Let e = n*/4. Then we have p; A3 (t,n, B,e) — 0

as long as log p; < min{nBN~% n'2BN~" n'/?}.

STEP 1.2. (P(|(nB)~" 32,37 ) Ag2jija(t) XD gain (k) — O(n72)] > €))

Next, we have P(maxy [|[Zpx) — plmas > €) < BA% (6,1, N, 2/3) by Lemma E.4.
Note we have p; BA%,(e,n, N,2/3) — 0 as long as logp; + log B < min{n!/3 N1/4}.

As a result, we have max;, Hf] D(k)|lmax < ¢ with probability tending to 1.

In the meanwhile P{maxy, |D — D| > ¢} < BAg(e,n,N) by Lemma E.2 and
p1BAg(e,n, N) — 0 as long as logp; + log B < min{n'/2, N*/4}.  Hence under
the event {maxy|Dg) — D|| > €} with small enough e (which holds with proba-

bility tending to 1), we have max || 9 (§u))|lmax < ¢ This leads to |A | <

925152(k)
c|[Dg) — DJ|?. The bias of ||[Dgy — D||? is O(n™!). Next using Lemma E.7, we have
(|( ) Zk Z]l 2 92j1j2(k)iD,j2j1(k’)_O(n72)| > 6) SJ AE4(ngBt7 M) Then we have
p1Ags(n®Bt, M) — 0 by setting M = n3/* aslong as log p; < min{nBN~2 n'/2BN~
STEP 2. (PROOF OF P(|A* — O(n72?)| > ¢))

24
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Under the event that {maxy Hﬁ(k) — Dllmax < €} and {maxy; [y — D|lmax < €},
we have [|§(§w)i) — §(Dgry)llmax < cll€myi = Diwyllmax < ellDwy—i — Digylmax = ¢(n —
1)_1||D(k)i — b(k)HmaX. In the meanwhile, it holds, P{max; ||E(k) — Dllmax > €} <
BAg(t,n, N) by Lemma E.2 and P{maxy; ||{x); — Dllmax > €} < nBAg(t,n —1,N).
Hence we have |AP| < eB ' (n — 1) 3" Dy — Diyll3ax- As a result, the bias
term of |A%| is at most O(n~2). By Lemma E.8, we have P(|JA* — O(n72)| > t) <
Agps(n®t,nB, My) + bBAg(t;,n, N). Setting M; = n?3 t = N7 and t; = o(1), we

could achieve the result.
2. Proof of (b).

We decompose the R%ﬁD As as in (b) of Theorem B.2. For simplicity, we treat 05 as

known and focus on others. For convenience, we define D); = (ZN(k)ijl, o Z)ijt-1)s
Zv(k)ijli;(k)i? e ,g(k)ij(lrl)?(k)i)T e R, E(k) =n 1ty Dy € RYG-D D =
B Zszl E(’C) € RZ(lj—l) and D = (7T17 Tty =15 O0zy,51, " 0 7Uzy,j(lj—1))T € R2(lj_1)- In

addition, define

1—1

9(D) = UJQZDleZQjH
=1

Then the bias estimator is B~' Y, Ay © B {nl(n — 1) > 9(Day—i)} and

By Taylor’s expansion, we have

9(Dy—i) — 9(Dwy) = ¢(D@y) " (Dgy—i — Diay) + 27 (Digy—i — Dwy) " §(§yi) (Disoy—i — Dy

def . =T /5 —
= 9(D)" (Duy~i = D) + Aewyi-
Similarly as in the proof of (a), we have Y, ¢(D) " (D)—; — D)) = 0. It leaves to deal
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with the second part. Define A, A®, AP as in the previous proof of (a).
STEP 1. (PROOF OF P(|A* — Al > ¢))

In STEP 1, we have A® = (2nB)~* >, tr{g§(D ZD b+ (@2nB) 7Y, tr{ (4(
§(D))Ypw} =
(C.4)—(C.7). The bias can be verified in the order of O(n 2l;). Then by Lemma

© ATl 4 A9 For A it can be decomposed into four parts as in

E.3, P(|AY — O(n~2l;)| > €) < Aga(nt/l;,nB, M). Setting M = n'/? then we
have p, max; [;Aga(nt/l;,nB, M) — 0 using the condition that log p, + max;logl; <

min{nBN~21;% n'2 BNV n'/?}.

By Taylor’s expansion, we have

. — . —(js) .
gjle(D(k)) - gj1j2<D) = Z gj1j2j3<D) (D(fj - D(B))

—s) ) ) def
) G i (S) Dy = DY (Diy = DYDY = Agrjjory + Dgagiiae):
J3:Jja
where &) lies on the line joining D y and D. We deal with the above two parts

respectively.

STEP 1.1. P(|(nB)™" 32,32, 1, Agtjuiae) Znjjn(ey — O(n 72 30,151 )| > )

First note that when j; = js or |j; — ja| = {; — 1, we have §;,;,(D) # 0, otherwise
we have §;,j,(D) = 0. The nonzero positions are the same for ¢ ;,;,;,(D) for any js. In
addition, we have Xp;; = O(n;;) and Xp,, = O(7j) when |l —m| = {; — 1. Moreover,
Jujs(D) = O(Wﬁz) and G5, (D) = O(ij) for |m — 1] = 1; — 1. Hence for the first
part we note that the bias of 3, Agljm(k)imjl(k) is in the order of O(n™2Y", Wﬁl).
Next, by Lemma E.6, P(|(nB)~' 3", > gljle(k)EA]Dml Bw—O0m2Y 1) >e S

Ases*(ner2 /1. n, B.t). Let t = n/*. Then we have py max; A3 (nemt2 /1, n, B, t) —

0 as long as log ps + max; logl; < min{nBN_Z”wminl; ,n'/2BN~ vt/ n'/2}.

min®j >

26



STEP 1.2. P<|< ) Zk 231 2 92j1j2(k)EDj2j1(k) - O(n_2 Zl 7T-jill>| > 6)

Next, we find that | G j,j,j,. (D)] is nonzero only if for all 1 < my,ma < 4, |jm, —
Jms| = 0 or I; — 1. Hence the total number of nonzero elements in | j,js.(D)]
is O(l;). Hence under the event that {maxy [[{x) — Dljmax < €min/2} with ¢ small
enough, we have | 9, j, . ()| = 0(71';13) for any j,, =1 (jm € {jl,jg,jg,j4}). This

can be guaranteed by P{maxy ||{x) — D|lmax > cTmin/2} S Bl JAp(rt2 n, N) and

m1n7

log ps +log B + max; logl; < mln{n1/2 Nl/z}

1'1’111’17

Next, we have P(maxy ||§]D7ij(k) — Xpijllmax > €Xpis]) S BZJQ-A*EQ(E,H,N, 2/3).
In addition, under the condition that log p; +log B +max; logl; < min{n'/3 N1/4} we
have py Bmax; I3A%,(e,n, N,2/3) — 0. Hence with probability tending to 1 we have

maxy,; j |Xp,ijk | < ¢|Xp,ij|, where ¢ is a finite constant.

Tn addition we have [(Diy} — DU))(D4y — DU)| < 21{(D43 — D)2 4 (D)) —
DUDY2Y for ji # j4 and |js—j4| = I;—1. Hence the bias term of (nB)’1 Dok D s Dina
o (ja) NS . _ _ s
| 9 jujagaia (€)1 (D B D) (D) —DY)||Spjyj9 | is O(n=2 Y, ;") by omitting the

zero elements in .g‘j1j2j3j4 (Emy)-

As a result, we obtain P(] 35, o [(nB) ™" 324 Agaji o [|Z0.goin | — O(n ™2 35, m31) | >
€) < Apa(n®Bryine/l;, M) by Lemma E.7. Letting M = n!/3 then we obtain the result

as long as log py + max; log l; < min{n BN~27,,1-% n'/? BN™" 2= n'/3}.

7 7 mln] )

STEP 2. (PROOF OF P(|A*—O(n=2Y m;')| > €))

In STEP 2, we still have P{maxy, || D) — D|lmax > t} < BAg(t,n, N) and P{maxy;
1€kyi — Dllmax >t} < nBAg(t,n—1,N) by Lemma E.2. Setting t = 7y, then we have
pemax; [;nBAR(t,n—1, N) — 0 as long as log po+max; log [; < min{(nmu,)?, N*/2}.
Recall that '!']'UB(D) = O(my, ) and G4, (D) = O(7r._12) for |/m—1I| = [;—1. Define D, =

diag{m;>

]17.“7 ] Hmax

_yy}- Thisleads to [Ay| < B~ (n—1)72 37, ;[ Da (Do — D)
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Hence by Lemma E.8 we have P(|A, — O(n™2)| > ) < AE5(n2t7rr1n/ii/lj,nB,M). Let
M = n?/3. Then we could obtain that py max; [;Ags(n2tw2 /L, nB, M) — 0 as long
as log ps + max; logl; < min{nBN‘2”7rmmlj_2,nl/zBN_Vw;/iilj_l, n?/3}. This leads to

the final conclusion.

C.6 Proof of Theorem 3

1. Proof of (a).

The proof follows the proof of (a) of Theorem 1. Specifically, it can be derived that
P(max; |RE avs — RE,| > N77) < piAFS(N™,n, B, N) by Lemma E.11. As a result,

as long as Assumption 4 (a) holds, we have P(max; |[Rg svs — Ri,| > N7") — 0.
2. Proof of (b).

The proof follows the proof of (b) of Theorem 1. It can be derived that P(max; 1R§§j7 AMS—
R, | > N77) < pamax; AR (N7 /1j,n, B, N) + py max; [ max; A§* (75, n, B, N, 7)
by Lemma E.17. Then under Assumption 4 (b) we have P(max; |R7 svs — R7,| >

N77) —0.

C.7 Proof of Theorem B.4

Under the SAS setting, the bias order of AVS measure is the same as in the RAS
setting, so omit the proof of the bias here. Next, we prove the uniform convergence for

AVS under SAS as follows.
1. Proof of max; |R%, ays — Au — RE | = Op(N7") with Ay = O(n™?).

The guideline of the proof follows the proof of Theorem B.2, hence we only state

the difference here.
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Define D(y);, D), and D as in the proof of Theorem B.2. By using the Taylor’s

expansion, it leads to

B™'Y 9(Dw) —9(D) =5 > 4(D) (D) — D) + 5 > (D) — D) "ij(éw) (D) — D)

o A + Ay, where £ is on the line joining D and E(k). In the following we use two
steps to deal with A; and A, respectively.
STEP 1. First, by Lemma E.11, we have P(|Aq] > t) < A3(t,n, B, N).

STEP 2. First we write A, as

8 = 5 YDy = D) HD) Dy = D) + 5 X (Doy = D) {iléaw) (D)} Doy = D)
o Aoy + Ags.

By Lemma E.12, we have P(|Ag | > t) < A% (¢t,n, B, N). Next, as shown in the proof
of Theorem B.2, as long as ||x)— D||max < € and € small enough, we have [Ags| < [Ag].
In summary, it holds P(|Ay] > t) < As%(t,n, B, N) + BAg(t1,n, N), where t; = o(1).
Under the condition that logp; + log B < n'/?, logp; + log N <« n?, and logp; <

min{n'"2BN~% n/2° BN~} we have py A% (N, n, B, N)+p BAg(t;,n, N) — 0.
2. Proof of max;|R7, svs — A — R7 | = Op(N77) with A, = O(n™'l;)

The proof follows the conclusion (b) of the Theorem B.2. Define all the nota-
tions in the same way except under the SAS sampling scheme. In STEP 1, we ob-
tain P(|A1] > €) < [;jAY(e/l;,n, B,N). Hence pymax; [;A*(N~V/lj,n,B,N) — 0
as long as log py + max;logl; < min{n'"*BN~2"[;% n!'/>7 " BN~"I-'} and logp; +
max; logl; + log N < n*. In STEP 2.1, we obtain P(|Ap; + Aps — E(Apy)| > €) <

~Y

A5 (e/l;,n, B,N). Hence as long as log ps + max;logl; + log N < n* and logps +
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max; logl; < min{n'"2BN~21-* n!/22 BN ="'} it holds p, max; [; A% (N~ /l;,n,
B,N) — 0. Next, in STEP 2.2, we further have P(7rj_l1 maxy, [T j — Tl > t) +
P75 max, [Gay iyt — Oyl > ) + P(maxy, [6%,) — 0% > t) S BAp(tm . n, N) with
t = O(1). Then we have p, max; ljBA%“(ﬂl/Q n, N) — 0 as long as log po+max; log [+

min’

log B < nl/2r/?

min*

C.8 Proof of Theorem 4

Under the SAS setting, the bias order of DAS measure is the same as in the RAS
setting, so omit the proof of the bias here. Next, we prove the uniform convergence for

DAS under SAS as follows.
1. Proof of max; |R§§j,DAs — Ay — Rggj\ = O,(N7") with A, = O(n™?)

The idea of the proof is the same as in the proof of Theorem 2. The notations are
defined in the same way as in Theorem 2 but under the SAS sampling scheme. The

main proof differences are in STEP 1 and STEP 2.

In STEP 1, we first obtain P(|A® — Ayl > €) < A5 (nt, n, B, N, M, €) by Lemma
E.13. Let M =n%* ¢ =n'/?*° Then we have p; A% (nt,n, B, N, M, ¢) — 0 as long as

log py+log N < min{n?, n3/2739 n?=69 for § € (0,1/3) and log p; < min{n'"* BN~ nl/2-9BN—V},

In STEP 1.1, we obtain P('(?’LB)_l Zk Zjth Agljle(k)EDJU'Q(]{)ZDJQJ'I(]Q)—O(n_2)| >
t) < Ases*(nt, n, B, €) by Lemma E.14. Let € = n'/47%/2, Then we have py A%5*(nt, n, B, €) —
0 as long as log p; < min{n'"2BN~% n!=9BN~"} and log p; +log N < min{n?®2+9 n>/8+/4}

under the condition that 6 € (0,1/3).

In STEP 1.2, we also have max;y, ||§]D(k) |lmax < ¢ with probability tending to 1 as long
as log p1 +log B < min{n!'/?, N¥/4}. Similarly we can show that max||'§ () |lmax < ¢

with probability tending to 1 as long as log p; +log B < min{n'/?, N'/*}. This leads to
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|A92j1j2(’€)| < C||§(k)_DH2' Next, by using Lemma P(|(nB)~ Zk 231 Jo Ag2j1 5o (k) 5D g (k) —
O(n™?)| > t) < A% (nt,n, B,N). We have p;Ai%s(nN~",n,B,N) — 0 as long as

logpy < min{n'="2 BN~ p!'=9BN~ n*}.

In STEP 2, we still have P{maxy || D) — D||max > €} < BAg(t,n, N) and P{maxy;
1€kyi — Dllmax > €} < nBAg(t,n — 1, N) by Lemma E.2. This leads to |A,| <
B (n—1)"2 3", | Dkyi—Dpy |3,y Hence by Lemma E.16 we have P(|A,—O(n?)| >
t) < A3 (n%t,n, B, N,M,¢). Let M =n? and e = n*>*9. Then we could obtain that
p1AE (%, n, B, N, M,e) — 0 as long as logp; < min{n!"2®BN~% n!=° BN~ n?},

This leads to the final conclusion.
2. Proof of max; |R} s — A — RE, | = Op(N™7) with A,y = O0(n™2 3, 7"

The proof follows the conclusion (b) of the Theorem 2. All the notations are defined

in the same way.
STEP 1. (PROOF OF P(|A* — A, > ¢))

In STEP 1, we first obtain that P(|A* —O(n™2l;)| > €) < A% (¢/l;,n, B, N, M,e).
Let M = n? e = n'/**%. Then we have pymax; ;A% (t/lj,n, B, N,M,e) — 0 as
long as logp, + max;logl; + log N < min{n? n*?73 n2=%1 for § € (0,1/3) and

log ps + max; log [; < min{n'"* BN~ n!/>° BN~V }.
STEP 1.1. P(|(nB)™" 32,32, 1, Agijuistt) Zpiajn(ey — O(n 72 30,73 1)| > )

Next, In STEP 1.1, we have P(|(nB) ™' 32, 32, J, At Ensann—O0(n > )| >

&) < Awst(ntxl/? /1 n, B,€) by Lemma E.14. Let ¢ = n'/*9/2. Then we have

min

12
min

p2 max; LA (tm 0 /1, n, B, €) — 0 as long as log po+max; log l; < min{n'"* BN~ my,,

77,1_‘53]\/'_”[]-_1 °1 and log ps + max; log [, +log N < min{n?®/?+9, n®/8+3/41  Note that

IIllIl

n2 < pb/8+9/4 < n3/2+9  Hence the results hold.
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SteP 1.2. P(|(nB)~ Zk 231 Jo Ag2jija(k) EDjajr (k) — O(n_2 Zl 7Tjill>| > €)

In STEP 1.2, first under the event that {maxy ||{x) — D||max < CTmin/2} With ¢ small
enough, we have |'G';, 5,5, (Ew)| = O(3,°) for any ju =1 (jm € {j1,J2, js, Ja}). Under
SAS scheme, we still have P{maxy, [|{x) — D||max > ¢Tmin/2} S Bl;Ag(7 rln/li,n N) and

log py +log B + max; logl; < min{n'/?z Iln/li’ NY21,

Next, we have P(maxy;; [|[Spijg) — Zpujllmax > €/Epis]) S BEAg,(e,n, N,2/3).
In addition, under the condition that log p; +log B +max; logl; < min{n'/? N1/4} we
have p, B male A%o(e,n,N,2/3) — 0. Hence with probability tending to 1 we have
maxy; ; @D,Zj(kﬂ < ¢|¥p,j|, where ¢ is a finite constant.

o (J3) (Ja) 7 da)
In addition we have |(D(f; —D(JS))(D(?S — DU < 27 1{( j?’ —DOS)) + (D(?S —

DU} for js # j4 and |j3—ja| = I;—1. Hence the bias term of (nB)~* Y, D s Daa
| 9 j1iogaga €k )||( —D ]3))(D(j) (94))||2Dj2j1(k)| isO(n=2Y, 7rﬂ1) by omitting the

zero elements in ':q”jmjm (Eky)-

As a result, we obtain P(| 231 Gl B) 'Y A s XD jajs | — O(R72 Y, 7Tj_l1)| >
€) S A% (ntmin/lj, n, B, N) by Lemma E.12. Then we have ps max; {; A% (ntTmin /15, 1,
B, N) — 0 by the condition log po+max; logl; < min{n!"*BN~2% n'~*BN~I-' n*}

and Ny, — 00.
STEP 2. (PROOF OF P(|A* = O(n 23 m;")| > €))

In STEP 2, we still have P{maxy, || D) — D||lmax > t} < BAg(t,n, N) and P{maxy;
1€y — Dllmax >t} < nBAg(t,n—1,N) by Lemma E.2. Setting ¢t = 7, then we have
pemax; [;nBAg(t,n—1, N) — 0 as long as log po+max; log [; < min{(nmum)?, N*/2}.

Recall that ‘Q'”j?)(D) = O(r;;%) and § 5 (D) = 0(772) for [/m—1I| = [;—1. Define D, =

jl

_yy}- This leads to [Ay| < cB~ n=1)72 3 D= (D i— D)2

||H13.X'

diag{m ;>

]1’...’ il

Hence by Lemma E.16 we have P(|A, —O(n~2)| > t) < A3 (n2tx 2171 n, B, N, M, ¢).

min”’jy >
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Let M = n? and e = n*". Then we could obtain that p1AE5(n2t7Trln/ii/lj,nB, M) —
0 as long as logpy + max;logl; < min{n' " * BN~ mynl; % n' " BN~ iﬁlj 1 and

log po+max; log [;+log N < min{n? n>1=29) p3-591  Further note min{n?,n32-%} <

5(1—26)

min{n?,n n37%}. Then we have the final conclusion.

C.9 Proof of Theorem 5

The proof of (a) for the RAS is given in Theorem 2 of Wu et al. (2020). In the following
we prove (c) for RAS and (b) and (c) for the DC method.

1. Proof of (c) for RAS setting.

Define gp = B™' 30, g( ))s 6 be the global moment estimator of 8, and 6 =

B0 é(,c). Then it could be verified that

S {0 - Bl =3 Lo - 35}

k=1 k=1

where ¢ & nB~Y{1/(nB) + 1/N}, and A, is the remaining term of Taylor’s ex-
pansion, which can be ignored compared to the leading term by Lemma 1. Sub-

sequently, we study the expectation and variance respectively for the leading term

Sp défczk Hg(0 )" ( k)—HB)} respectively.

1.1. EXPECTATION OF THE LEADING TERM.
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It could be computed that

B> {90) Oy — 00}’ = B[ D {90) (B — D)} = B{9(®) (65~ D)}
= E(Q1 — Qo).
We have B(Qi) = BB L {90) G — D)Y'] = BE[E{3(0) @y - Y] =

E(Bn™'7) = Bn '7{1 + 0(1)}, where 7 = g(@)TEgg(Q) and &, is the global estimator
of ¥y. Therefore B72E(Q;) = (nB)~'7{1 + o(1)} = SE?. Next, it could be verified
that B?E(Q2) = B '(nB)"'7{1 + 0o(1)} = O(B™'E(Q:)). As a result, F(Sp) =
SE*{1+O0(B 1)}

1.2. VARIANCE OF THE LEADING TERM.

By Taylor’s expansion, it suffices to derive the variance of Sg. Note that since
var(Sp) = E{var*(Sp)} + var{ E*(Sp)}, where E*(:) and var*(-) are the conditional
expectation and variance, we then study the two terms E{var*(Sp)} and var{ E*(Sg)}

separately in Step 1 and Step 2.
Step 1. Expectation of conditional variance.
It could be proved that

var [ Z{n —93 } —cvar*[zB:{ k:)_e} —B{nT(éB_a)}Q}

k=1

dﬁf c var (Ell - Elg) 2{Var*(E11) + var* (Elg) -2 COV* (EH, Elg)},

where n = ¢(0). It suffices to study var*(Fi;) and var*(Ej,) respectively. First we
have var*(Fy;) = Bvar*[{nT(a(k) — 6)}?]. Furthermore it holds var*[{nT(g(k) —)? <

E*[{nT Oy —0)}) = n*{nE*(n" D;— 1" 0)* +3n(n—1)E*2(1" D; —n"8)2} = n~3(G4+

34



3(n — 1)72), where 54 = E*(n"D; — 07 0)*. As a result, var(E;) = E{var*(En)} =
O(Bn™?).

Similarly, we have var*(Eys) = B>var*[{n" (65 — 0)}2] < B2E*[{n" (65 — 0)}1]. As
a result, var(E1p) = E{var*(E;p)} = O(B*(nB)~?) = O(n™?) = o(var(E11)). Conse-

quently, we have that E{var*(Sg)} = O(1/B){1/(nB) + 1/N}>.
Step 2. Variance of conditional expectation.
In this step, we are going to compute var{E*(S B)}. It could be proved that

B (5) =B [ {0 Gy -0 - Bl @5 - D))

k=

—_

dcf

= CE*(Egl — EQQ) {E*(Egl) — E*(EQQ)}

Then it suffices to study E*(E2;) and E*(Ey) respectively. First we have

B [EB: 070w~ 0)} | = BE {0 @ - D)} = Bn 7,

k=1

similarly, we have E* [B{UT (éB—g)}Q- = n~'7. Subsequently, we have var{cE*(Es;) } =
{1/(nB)+1/N}*var(7) = {1/(nB)+1/N}*O(N ), and var{cE*(Es) } = o(var{cE*(Ex)}).

As a result, we have var{ E*(Sp)} = O(N"1){1/(nB) + 1/N}*.

Combining the results of Step 1 and Step 2, and recall that SE* = 7(1/(nB) +
1/N){1 4 o(1)}, which leads to (SE*)"2var(Sg) = O(B~! + N~'). We finally have

SE’ = SE*{1+ O,(B~Y2 + N~1/2)}. This accomplishes the proof.
2. Proof of (b) for DC setting.

Under the DC setting, @\(k) is calculated based on non-overlapped and independent
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segments. As a consequence, we have

Var{% Zg(é\(k))} = %Var{g(é\(k))}'

Without loss of generality we let £(X;;) = 0and E(Y;) = 0. Define Dy = (X ki Ykyir Xy Yé)i)T.

Therefore é(k) =n"'>"" | Dy By using the Taylor’s expansion, we have

~

9(0w) = 9(0) + §(0)T Oy — 0) + Oy — 0)"§(E0)) By — 0)

where () is on the line joining g(k) and #. The variance of the leading term g(e)T(% —
0) is given by 7(nB) {1 + o(1)}. Further note that E, is dominated by E; by the

proof of Lemma 2. That yields the conclusion (b).
3. Proof of (c) for DC setting.
Recall the definition of gz and fp. First we have
B B
1 ~ 21 ~ 2
SE = = > {00 ~ 95} = 7> {90w) — 35}
k—

1

where Ay is the remaining term of Taylor’s expansion and can be ignored compared to
the leading term by Lemma 1. In the following we discuss the expectation and variance

respectively for the leading term SB¢ & p-2 Z,f:l{g(e)T(é\(k) — 0p)}? respectively.

3.1. EXPECTATION OF THE LEADING TERM.
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Note that

B> {a0)T @~ 05)}] = B 3 {a(0) By — )} = BL3(0) (05 — 0)}]
= E(Qs — Qi)

We have E(Q3) = Bn1g(0)" E{(D;—0)(D;—0)"}§(0) = Bn~'r. Therefore B~ 2E(Q3) =
(nB)~'t = SE?. Next, E(Qs) = B(nB)™'t = o(E(Qs)). As a result, E(SE°) =
SE*{1+ O(B~YH}.

3.2. VARIANCE OF THE LEADING TERM.

By using the Taylor’s expansion result, it suffices to derive the variance of ZkB:l{nT(é\(k) —

05)}%. Note that we have

B

V&I[Z{UT(é\(kz) B 9_3)}2} _ var[i {WT(é\(k) B 9)}2 B B{nT(Q_B — 9)}2]

k=1 k=1

o var(Es — Fy).

It suffices to study var(E3) and var(Ey) respectively. First we have var(F3) = Bvar[{nT(g(k) -
6)}2]. Furthermore it holds var[{nT () —0)}2] < E[{n" (B —0)}'] = n~*{nE(n D;—
") +3n(n—1)E?(n" D;—n"0)?} = O(n=%). Asaresult, var(FE3) = O(Bn~2). Next we
have var(E,) = Bxvar[{nT(0p—0)}*] < B2E[{nT(05—0)}*] = O(B*(nB)~2) = O(n™2?).

Consequently, we have for the leading term that (SE?*)~2var(S5¢) = O(B™1).

In summary, we have SE = SE?{1+0,(B~%/?)}. In the DC setting we have N > B

and N > nB, hence the final conclusion holds since B~/? is the leading order.
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D Screening Consistency

D.1 Proof of Theorem 6

To prove the screening consistency, we follow the following 4 steps. Let @ = (37, ~;",- -+, ’Y;QT )7
where 7} = ( ]1/27]1, : ,ﬂ;(/li_l)yj(lj_l)). We prove the case for the AMS measure. For

the AVS and DAS measure, the following STEP 3 could be slightly revised by using

the results from Theorem B.2 and 2.
STEP 1. (32, R, <c,and 33, R3 <c.)

For convenience, we assume var(X;;) = 1. First, for the quantitative covariates, we

def
have Y7 07, = >0 1(07%5)% = 07570 < Xpax () (0720) < 07 Anax(X) = ¢ < 00 by
Assumption 6, where we have ' X0 = var{ X, 3 + Z[~} < 03. Next, note that R%j =

o, Zl 1 T O’Zyjl =0,? Zl 1 Uzyﬂ, where o}, ., = E(Z;;,Yi)/\/7 ;. Following the

< )\max (Z>02

same procedure we can show that » ., o ot

Jil Zy Jl

STEP 2. (max;|RE — R%, | = 0,(N™") and max; |R7, — R | = 0,(N™")) This can
be directly obtained from Theorem 1.

STEP 3. (P(M5 ¢ ME) = 0 and P(M}. ¢ MJ) — 0)

Recall that Ry = min{min;_, R%,, minje g R7 . Define M= {j RZ >
Ruyin} and M7 = {j : R%j > Ryim}. Immediately we have M5 ¢ M5 and M7 C
M7, By Assumption 7, we have Ry, > 2¢p > 0. In addition, recall that /\7? ={j:
R, > cp}. In this step we show that ME* ¢ ME and MJ* ¢ M, with probability
tending to 1.

We first prove P(M5* ¢ MB) — 0. If M5 ¢ M2, then there exists at least one j

which is not covered by /\//Yg As a result, it indicates Rggj < 27'Rin. However, due to
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the definition of Mq’gf, we should have Rggj > Rpmin. This implies \Rggj — R§j| > Ronin/2.
Hence P(M5* ¢ MP) < P(max; |R%, — R%,| > Ruin/2). By Theorem 1, we have
P(max; \R;zgj — R§j| > Ruin/2) — 0 for Ry, = N7Y. Therefore P(./\/lg* ¢ /\7@) — 0.
Similarly, using the same technique, we can show that P(M}" ¢ /(/l\}) — 0. Hence,

(3.2) holds.
STEP 4. (P(max{|MZ|, |IM}} < mumax) — 1)

Define MJ™ = {j - R, > Ruin/4}. Then immediately we have | M| Roin /4 <

ZjeMﬁ** RJQ- < TmaXO'S. As a result, |M§**| < 4/RupinTmax0> < 00. by Assumption
T

v
3. If [MB| > |[MBZ™|, we must have at least one j € M5 with R%, > Ruin/2 but
Rggj < Ryin/4. Hence it implies max; \Rggj — R§j| > Runin/4. Following Theorem 1, we
have P{max; |R§2§j — R§j| > Ruin/4} — 0 for Ry = O(N™Y), which leads to the final

result. Similarly, it holds P(|/\/l | < Mmax) — 1. Hence, (3.3) holds.

D.2 Proof of Lemma 3

Recall that Z*

ijl =

Zij1/+/Tji. Then the regression coefficient of Z;}l is /v Let

* % % 1/2 1/2
0= (ﬁT771T7 e 771)2—'—)1—7 where ’YJ = (ﬂ-]l/ Vi1, 77Tj(/lj—1)r>/j(lj—1))—r' Then we have

min{ mln Rx , min R, ;1 = min (Z 0)*/a?

]GM JEMY, JEMT %y
Z .mln( § : UZJ) rn111/0y7
JEMT
iEMp

where O = minjepa, |60;] > min{|Buminl, [Ymin|} by Assumption 7, My denotes the
true model. The first inequality is due to that o;; > 0 for 7, j € My and the nonzero

model coefficients are positive. This yields the result.
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D.3 Proof of Theorem 7

The proof of Theorem 7 follows the same as Theorem 6. We give basic steps here to
save space. First the uniform convergence result can be obtained as in Theorem 3 and
4. Next, the screening consistency result can be obtained by following the same proof

procedure in Theorem 6.

E Technical Lemmas

E.1 Technical Lemmas for RAS Sampling Scheme

Lemma E.1. Define the ¢o-norm of variable X as

XOé
HXH%:inf{t>0:Eexp(| | )gz}.

ta

Let Xy,---,X, be independent variables satisfying E(X;) = 0, E(X?) = o2, and

1 X || < M for some o € (0,1] U {2} and A be a symmetric n x n matriz. For any

t >0, we have

P<|XTAX — tr(AY,)] > t) < 2exp{ — cmin <M4EZA||%’ <M2;1(A)>a/2>}7

where X = (X1,--+,X,)", 8, = diag{a?,--- ,02}.

Proof. The proof is shown in Proposition 1.1 of Gotze et al. (2021). O

Lemma E.2. Let Z = {Z1,Z3,--- ,Zn} be independent and identically distributed
random wvariables following sub-Erponential distribution with mean p. Subsamples

{Zl, e ,Zn} are drawn from Z independently with replacement. Then for any t > 0,
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we have

2

) + nexp(—ci M) 4 exp(—cyNY?)

L~ nt
P(‘ INT 7 ‘>t><2 (——
" ; K =P T 361 20t /3

o A% (t,n, N, M), where ¢ = E(Z?), c1 and cy are finite positive constants. Particu-

larly with M = n'/? we have

2

— = t
P(’n_l Zlei — ,u’ > t> < 2exp ( - m> + nexp(—ec1v/n) + exp(—ca NY?)

déf AE(t,n, N)

Proof. Consider the event & = {max; |Z;—u| < M}. Note that var(Z;|Z) = N~ > (Zi—
Z)? < N7 72 72 where Z = N~ SV Z:. Under event &, we could use Bern-
stein inequality on n~'37,(Z; — p) to obtain,

P(‘n_l Z (Z — ,u)‘ > t‘Z,&) < 2exp ( — n—t2>

- 277 +2Mt/3

Define the event & = {Z2—¢ < ¢/2}, where ¢ = E(Z?2). Then we have P(|n"' >, Zi—

pl>1t) <

E{P(\ml S (Zi- )| > t‘Z, &, 52)13(51, 52)} + P(ES) + P(EY) (E.1)

We derive upper bounds for each part of (E.1).
PART 1. For the first part under event & and & immediately we have

nt?

E{P(|n71 S (Zi—u)| > t’Z,&,&)P(&,&)} < 2exp ( _ m)

)
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PART 2. Next we derive an upper bound on P(Ef). Note that Z; follows sub-
Exponential distribution. Define var(Z;) = o2. This implies P(|Z; — u| > t) <
exp(—cyt). Therefore E{P(|Z; — p| > M|Z)} = E{N! Y I(Zi —pl > M)} =
E{I(|Z; — p| > M)} < exp(—c1M/o?) < exp(—ciM/¢). By using the maximum

inequality we have P(max; |Z; — p| > M) < nexp(—c;M/¢).

PART 3. By Lemma E.1, we have
N
P(’N‘l Nz - ¢’ > t) < exp(—csN'/?),
i=1

by using a = 1/2 and ¢ = E(Z?). By setting t = ¢/2 and adjusting the constants we

could obtain the result.

O]

Lemma E.3. Let Z = {Z1,Z5, -+ ,Zn} be independent and identically distributed
random variables following sub-Ezponential distribution with mean 0 and variance o2.
Subsamples {Zl, e ,ZL} are drawn from Z. independently with replacement. Then for

any t > 0, we have

2 nt

MY M?

>t> §Qexp{—cmin< >}—i—nexp(—M)

n
-1 72 2
P(‘n E zZ; — o,
i=1
def

= AEQ(t,n, M)

Proof. Define the event & = {max; \Z| < M}. Let 7 = (Zl,~-~ ,ZL)T and A = I,,.

Then we could write 32, Z2 = ZTAZ. Tt could be further verified that || A% = O(n)
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and o1(A) = 1. Given Z, we have

/nt? nt
>t]z) < 2exp { — emin (7. 97) |

P(nt n?
(X

i=1

with @ = 2 and HZH% < M in Lemma E.1. Next recall that Z; follows sub-Exponential

distribution, then we have P(Ef) < nexp(—M).

]

Lemma E.4. Let Z = {Z1,Z5,--- ,Zn} be independent and identically distributed

2

2

random variables following sub-Ezxponential distribution with mean 0 and variance o
Subsamples {Zl, e ,Zn} are drawn from 7 independently with replacement. Then for

any t > 0, we have

nt?

~ t) = 2exp ( " 34+ 2n9t/3

P(}n_l Z 72— o ) + nexp(—cin®?) + exp(—co N4

=1

o A%, (t,n, N,3), where ¢ = E(Z}), ¢ and ¢y are finite positive constants.

Proof. Consider the event & = {max; |Z2—02| < n®} for § > 0. Note that var(Z2|Z) =
NI (22 =72 < N7'S2, 74 where 22 = N='S°N 72, Under event &, we could

use Bernstein inequality on n~! ZZ(ZQ — 02) to obtain,

2

P<|n71 Z (7% - o)| > t)Z,&) < 2exp ( - #75271515/3)

i

Define the event & = {Z%—¢ < ¢/2}, where ¢ = E(Z4). Then we have P(|n"* 3" | 72—

ol >1t) <

E{P(lnY (2202 > t‘Z, £.6) P&, &) } + P(E) + P(&5) (E.2)

i
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Recall that Z; follows sub-Exponential distribution, hence we have P(EY) < nP(|Z;| >

n9/?) < nlog(—c1n%?). Next, by Proposition 1.1 of Gétze et al. (2021) we have
P{\N*l S zh- gl > t} < 2exp ( — cmin(N£2, (Nt)1/4)).

By letting t = ¢/2 we could obtain the above result.
O

Lemma E.5. Let Z = {Z1,Z5,--- ,Zn} be independent and identically distributed
random variables following sub-Ezponential distribution with mean 0 and variance o2.
Subsamples {Zl, e ,Zn} are drawn from Z. independently with replacement. Then for

any t > 0, we have

NP t? t
P(‘ ZZiZj > t) < 2exp{ — cmin (MTnQ’ M—2n>} + nexp(—M).
i#j
d:ef AEB(t7n7 M)

Proof. Define the event £ = {max; |Z| < M}. Let 7 = (Z,--- ,Zn)T and A =

1,1 — I,,. Then we could write > ZZ] = ZTAZ. Tt could be further verified that

i#
|A]|% = O(n?) and 0,(A) = n. Given Z, we have

1) <200 -omin (g 1)
exp{ —emin [ ——, ——
- P M4n2’ M2n

(Y22

i#]

with o = 2 and HZH% < M in Lemma E.1. Next recall that Z; follows sub-Exponential

distribution, then we have P(ES) < nexp(—M).
[

Lemma E.6. Let Z = {Z1,Z5, -+ ,Zn} be independent and identically distributed
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random variables following sub-Ezponential distribution with mean 0 and variance o2.
In the kth subsampling round, {Z(k)l, e ,Z(k)n} is drawn from Z independently with

replacement. Then for any t > 0, we have

B n
i i 1/2
def o
= Afy(t, M).
Proof. Then proof follows Lemma E.7 and Lemma E.3 but \ZP <M. n

Lemma E.7. Let Z = {Z1,Z5,--- ,Zn} be independent and identically distributed
random variables following sub-Ezponential distribution with mean 0 and variance o2.
In the kth subsampling round, {Z(k)l, e ,Z(k)n} is drawn from Z independently with

replacement. Then for any t > 0, we have

B n
-~ , t? t
P(‘ ; ; Z )i Ly | > t) < 2exp { — cmin (m, m)} + nBexp(—M)
& Apa(t, M),

Proof. Let Z(k) = (Z(k)la s ,Z(k)n)T € R" and Z = (Z(—g), s ,Z(—SB))T € R"5. Define

A=1,1" — I, and A = Iz x A. Then we have ||A[|2 = O(n?B) and o.(A) = O(n).

Consequently, by using the same technique as in Lemma E.5 we can obtain the result.

O]

Lemma E.8. Let Z = {Z1,Z5, -+ ,Zn} be independent and identically distributed

random variables following sub-Exponential distribution. Subsamples {Zl, e ,Zn} are
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drawn from Z independently with replacement. Then for any t > 0, we have

n 2

t t
P(‘n_IZZZ»*?’ — 0,3 > t) < Qexp{ — cmin (%,%
i=1

)} + nexp(—M)

def

= Aps(t,n, M), where 0,3 = E(Z?), ¢1 and cy are finite positive constants.

Proof. Define the event & = {maxﬂZ-\ < M}, Let Z* = (Zf/z,--- ,Z‘i/z)T and
A = I,. Then we could write ), 73 = 7Z*TAZ*. Tt could be further verified that
|A||% = O(n) and 01(A) = 1. Given Z, we have

P(?”F1

2 nt
> 2) < 20 { - cmin (575, 15))

2.7
i=1
with @ = 2 and ||Z7|ls, < M3? in Lemma E.1. Next recall that Z; follows sub-

Exponential distribution, then we have P(&f) < nexp(—M).

]

Lemma E.9. Let Z = {Z1,Z5,--- ,Zn} be independent and identically distributed
random variables following Bernoulli distribution with mean 7, i.e., P(Z; = 1) = 7.
Subsamples {Zl, e ,Zn} are drawn from 7. independently with replacement. Then for

any t > 0, we have

no 2 .
P(’n_llzlzz —W‘ > t) < 26Xp(— m) —f-eXp(—cN) def AB(tn,N,ﬂ')

where ¢ is a finite positive constant.

Proof. The proof is the same with the proof of Theorem E.2 but noting that |Z;| < 1

and var(Z;) = O(m). O
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Lemma E.10. Let Z = {Zy,Zs, -+ ,Zn} be independent and identically distributed
random variables following sub- Gaussian distribution with mean p. Subsamples {Zl, ceey Zn}

are drawn from 7. independently with replacement. Then for any t > 0, we have

2

P(‘n—liz —M‘ > t) < 2exp(— m) +nexp(— %) + exp(—coN)
=1

o Ac(t,n,N), where ¢ = E(Z?), ¢1 and cy are finite positive constants.

Proof. Consider the event & = {max;|Z; — u| < /n}. Note that var(Z;|Z) =

def

N (Zi —Z)? < N7V, 22 = 72, where Z = N-'S°N 7, Under event &,

we could use Bernstein inequality on n~'32,(Z; — p) to obtain,

P(‘n—lz(Z—MH >t’Z,51> §2exP<_ nt2 )

i 272 +2\/nt/3

Define the event & = {Z2—¢ < ¢/2}, where ¢ = E(Z2). Then we have P(|n=' S, Z;—

i=1

pl>1) <

E{P(‘n’l S (Zi- )| > t‘Z, &, 52)13(51, 52)} + P(ES) + P(EY) (E.3)

i

We derive upper bounds for each part of (E.3). The rest of the proof follows the same
procedure as in Part 1-3 in Lemma FE.2. Specifically, in Part 2, we use the definition
of sub-Gaussian definition to obtain P(£f) < nexp(—cin/o?). In Part 3, accordingly
we obtain P(E5) < exp(—caN¢/o?). Further note that 6 < ¢ then the results can be

obtained. ]
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E.2 Technical Lemmas for SAS Sampling Scheme

Lemma E.11. Let Z = {Z,Zs, -+ ,Zn} be independent and identically distributed
random variables following sub-Ezponential/sub-Gaussian distribution with mean 0.
Under the SAS sampling scheme, let {Z(k)l, e ,Z(k)n} be the subsample drawn from

the kth subsampling round and Z(k) =nty, Z(k)i. Then for any t > 0, we have

) 5 Bnl/2—642 05
P(‘B ZZ(’“)‘ > t> < 2exp < iy 275/3) + N exp(—cen®),
k=1

o A33(t,n, B, N), where c is a positive constant and § € (0,1/2).

Proof. Since Z; follows sub-Gaussian distribution, then it also follows sub-Exponential
distribution. Then we prove the result for sub-Exponential distribution. Let Z; =

(Ziy Zysrs - Zign—1) | as asequential subsample starting from 7, and Z; = n~"! Yoy Zigioa.
Consider the event & = {maxy, |Z;| < n~/**} with § € (0,1/2]. Note that var(Zy,|Z) =
K1y, Zz —72 < n~ 2 under event &. Under the event &, we can use the Bernstein

inequality to obtain,

B
_ Bt?
-1
P(‘B ZZ(@ — u‘ > t’Z,&) < 2exp < T on—1H20 4 2n—1/2+6t/3)'

Next, since Z; follows sub-Exponential distribution, then we have P(|Zy| > t) <

exp(—nt?/o?) for sufficiently small ¢. Letting t = n~'/>*% we have P(|Z,)| > n=1/219)

VAN

exp(—n?/(20?)), where 02 = var(Z;). As a result, it leads to P(maxy, |[Z| > t) <

K exp(—n*/0?), where K = N —n + 1. Then it leads to the final result.

]

Lemma E.12. Let 7Z = {Zy,Zs,--- ,Zn} be independent and identically distributed
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random wvariables following sub-Exponential/sub-Gaussian distribution with mean 0.
Under the SAS sampling scheme, let {Z(k)l, e ,Z(k)n} be the subsample drawn from

the kth subsampling round. Let Z(k) =nty ", ZW. Then for any t > 0, we have

Bpl-2542
2n~1420 + 21/3

P(’B”ZZ?@ — O™

> t) < 2exp ( — ) + N exp(—cn®),

def AsE(t,n, B, N), where c is a positive constant, n=' <t and § € (0,1/2).

Proof. Let Zy = (Zi, Ziy1, -+ » Ziin-1) as a sequential subsample starting from Z,
and Zy = n 'Y Zyyio1. Consider the event & = {maxy |Z;| < n~Y/?%} with

d € (0,1/2]. By the Bernstein inequality, we have

S Bt?
P(’B ZZ(k)) > t‘glaz> S 2€Xp<_ 2¢+2n—1+25t/3>
k=1

where ¢ = var(Z?k)]Z) <K1Y, Z, < n~2*% ynder the event &;.

Next, since Z; follows sub-Exponential distribution, then we have P(|Zg)| > t) <

IN

exp(—nt?*/o?) for sufficiently small ¢. Letting ¢ = n~'/>*% we have P(|Z,)| > n~1/29)
exp(—n?/(20?)), where 0 = var(Z;). As a result, it leads to P(maxy |Z| > t) <

K exp(—n?/0?), where K = N —n + 1. This leads to the final result.

]

Lemma E.13. Let Z = {Z,Zs,--- ,Zn} be independent and identically distributed
random wvariables following sub-Exponential/sub-Gaussian distribution with mean 0.

Under the SAS sampling scheme, let {Z(k)l, e ,Z(k)n} be the subsample drawn from
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the kth subsampling round. Then for any t > 0, we have

Bt?

B
-1 72 2
p<‘(nB) ZZ(k)i—az’ >t) §26Xp<— 27 1 26t/3

k=1

) + NApgo(e,n, M),

o A%S(t,n, B, N, M,¢), where Ags(e,n, M) is given in Lemma E.3.

Proof. Let Zy, = (Zy, Zyy1, - ,Zmn,l)T as a sequential subsample starting from Z.
Consider the event £ = {maxy [n™' >, E(Qk)l — 02| < €}. Define D(y =n~? Zl(gfk)z —
02). By the Bernstein inequality, we have

Bt? )
2¢% + 2¢t/3

B
P([B Y Dow| > tfe12) < 2050 ( -
k=1

p< K1Y, B?k) < €% under the event &;.

Next, by using Lemma E.3, we have P(|D)| > €) < Aps(e,n, M). Using maximum

inequality we obtain P(maxi<y<s |D)| > t) < NAga(e,n, M).
[l

Lemma E.14. Let Z = {Z1,Zs,--- , Zn} be independent and identically distributed

random variables following sub-Ezponential distribution with mean 0 and variance o2.
Under the SAS sampling scheme, let {Z(k)l, e ,Z(k)n} be the subsample drawn from

the kth subsampling round. Then for any t > 0, we have

B n
1 -~ -
P D00 Zu(Ziys 02| > 1)
k=1 i
Bt?

<2 (——
=SSP\ T oa 23

)+ Nexp ( ~ cmin(ne?, (n0))
def

= A3 (t,n, B,e).

20



Proof. Let Zy, = (Zg, Zgs1,- - ,Z;Hn,l)T as a sequential subsample starting from Z.

Define Zy, = n= ' 30", Zpyiq and Z2 = n~ 'S0 Z2., | — o2 Consider the event

z

& = {max,{|Zy|, |Z2|} < €} with 6 € (0,1/2). By the Bernstein inequality, we have

Bt? )
2¢ + 2€%t/3

P(’B‘li%-Z(m‘ >t 51,Z> < 2€Xp(—
k=1

where ¢ = var(Z,, - Z)|Z) < K S (Z2 - 7)? < €* under the event &.

Next, since Z; follows sub-Exponential distribution, then we have P(|Zg)| > €) <

exp(—ne?/o?) for € sufficiently small. In addition, by Lemma E.1, we have P(]%[ >

€) < 2exp(—cmin(ne?, (ne)'/?)). This leads to the final result.
[

Lemma E.15. Let Z = {Zy,Zs,--- ,Zn} be independent and identically distributed
random variables following sub-Ezponential distribution with mean 0 and variance o2.

Under the SAS sampling scheme, let {Z(k)l, e ,E(k)n} be the subsample drawn from

the kth subsampling round. Then for any t > 0, we have

>t>

B n
1 -
P( 5] 2 2 Zunw,
k=1 1,j

Bt? )
SQQXP(—m) +Nexp(—cne)
© Ag(tn, B,e).
Proof. The proof follows Lemma E.14 but using Lemma E.1 with o = 2. [

Lemma E.16. Let Z = {Zy,Zs,--+ ,Zn} be independent and identically distributed
random wvariables following sub-Exponential/sub-Gaussian distribution with mean 0.

Under the SAS sampling scheme, let {Z(k)l, e ,Z(k)n} be the subsample drawn from

o1



the kth subsampling round. Then for any t > 0, we have

Bt?
2€2 + 2¢t/3

>t>§26Xp<— >+NAE5(e,n,M),

B
P(E 30 R -
k=1 i
def AS%(t,n, B, N, M,¢), where 0,3 = E(Z}) and Ags(e,n, M) is defined in Lemma
E.S.

Proof. Let Zy, = (Zy, Zgs1,- - ,ZHn,l)T as a sequential subsample starting from Z;.
Consider the event & = {maxy [n™ 'Y, Z(gk)z — 03| < €}. Define Dy = n~! ZZ(Z(Sk)z -
0.3). By the Bernstein inequality, we have

Bt? >

B
P[5 P ¢ -
; *) 20 + 2¢t/3

El,Z) < 2exp<—

¢ < K1 Zkﬁik) < € under the event & . Next, we obtain P(Ef) < NAgs(e,n, M)

by Lemma E.S8.

]

Lemma E.17. Let Z = {Z,,Zs,--- , Zn} be independent and identically distributed
random variables following Bernoulli distribution with mean 7, i.e., P(Z; = 1) = 7.
Under the SAS sampling scheme, let {Z(k)l, e ,Z(k)n} be the subsample drawn from

the kth subsampling round and Z(k) =nty, Z(k)i. Then for any t > 0, we have

5 Bnl/2-542
P(‘B_lzZ(k) —ILL‘ >t> §2€Xp<—m> +NeXp(—c2n26)7
k=1 T

def . _ .-
= A%(t,n, B, N, ), where c; = min{m,n"?™} ¢, ¢y are positive constants and

5 €(0,1/2).

Proof. The proof follows the proof of Lemma E.11 but replacing u = . ]
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F Additional Numerical Results

In this section, we report some additional numerical results.

F.1 Numerical Results for Statistical Inference under RAS

and DC

In this section we compare the statistical inference performances under RAS and
DC respectively. Specifically, we consider the same EXAMPLE 1 and EXAMPLE 2 in
the main text with a fixed N = 10* and n = 500. For the DC setting ,the number
of subsamples is automatically set to be Bpc = N/n = 20. For the RAS setting, we
set Bras = 400. For each example, we calculate SE” for AVS by (3.1) under the two
settings respectively. To compare the performance of the automatic statistical inference
for the different settings, we present RSE o §]\32 /SE? — 1 for the first five variables
using boxplot in Figure F.1. For a reliable evaluation, we replicate the experiment for
R = 100 times. As we can observe from Figure F.1, with larger number of B under

RAS setting, we could obtain more accurate estimation of SE?, and then it could yield

more reliable statistical inference result.

F.2 Numerical Results for a Large p Setting

In this section, we report the finite-sample performance of the proposed method
which is similar with that in Section 4, but under a larger dimension p setting. Specif-
ically, we consider the same EXAMPLE 1 and EXAMPLE 2, but with a fixed dimension

p=>5x 10* and N = 10*. To gauge the finite-sample performance, the same measure-
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ments in the main text (i.e. SE, Bias, RMSE, AUC and TC ) are reported. Experiment
is replicated R = 100 times. The details are summarized in Table F.1. From Table
F.1, it could be observed that the finite-sample performance under a large p setting is

consistent with the results stated in Section 4.2.

0.8

B DC ‘ B3 DC
E3 RAS B3 RAS
044 o 0.4
Y 0.01 % % é 0.0 H Q H
B 7
-0.4- -0.4

Variable Variable

Figure F.1: Boxplot of RSE for the DC (light box) and RAS (dark box) for EXAMPLE 1
(left panel) and EXAMPLE 2 (right panel). Each box is summarized based on R = 100
simulation replications.

F.3 Additional Numerical Results in Section 4.2.

In this subsection, we report the remaining numerical results which are not specified
in the Section 4.2. Specifically, the Bias, SE and RMSE values of three screening
measures (i.e., AVS, DAS, AMS) under RAS scheme with N = 10° are given in Figure
F.2. Correspondingly, the statistical performances under RAS scheme and SAS scheme

with V = 10° are given in Figure F.3 and F.4.

In addition, we report the result for stronger signal case in EXAMPLE 1 by setting
a = 0.04,p = 0.1, and 0 = 0.4. Under this case we can calculate that 7., = 1.22,
o; = 0.34 and Ry = 2.81 x 1072, Correspondingly we have mup,a = 585 in Theorem
6-7. Then we set |M\ | = Mmmax and calculate the true model covering rate as TCR=

Zn]‘le I(Mp C M (m)) /M , where M(™ denotes the selected model in the mth replicate

o4



and M = 500. We present the simulation results in Table F.2. The results show that
all the methods are able to achieve a relatively high screening accuracy when the signal
strength is higher. In addition, the Biases of both DAS and AMS methods are smaller
than the AVS method. Furthermore, the selected model is able to consistently cover the
true model (with TCP~ 1) as nB increases, which corroborates with our theoretical

findings in Theorem 6-7.

F.4 Detailed Variable Information in Section 4.3.

In this subsection, the detailed variable information for the airline dataset in Section

4.3 are summarized in Table F.3.
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Figure F.2: Bar chart of SE, log(Bias) and log(RMSE) values for the AVS, DAS and
AMS measures for different (n, B) under the RAS sampling scheme for EXAMPLE 1
(left panels) and EXAMPLE 2 (right panels). The sample size N is fixed to N = 10°.
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Figure F.3: Bar chart of SE, log(Bias) and log(RMSE) values for the AVS, DAS and
AMS measures for different (n, B) under the RAS sampling scheme for EXAMPLE 1
(left panels) and EXAMPLE 2 (right panels). The sample size N is fixed to N = 10°.
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Figure F.4: Bar chart of SE, log(Bias) and log(RMSE) values for the AVS, DAS and
AMS measures for different (n, B) under the SAS sampling scheme for EXAMPLE 1
(left panels) and EXAMPLE 2 (right panels). The sample size N is fixed to N = 10°.
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