
Supplementary Material of “Feature Screening for
Massive Data Analysis by Subsampling”

A Extensions and Discussions

A.1 Extension to ISIS Method

Strong correlation among predictors typically exists especially for ultrahigh linear

regression models. Regarding to this issue, a common practice is to develop iterative

sure independence screening (ISIS) procedures (Fan and Lv, 2008; Cho and Fryzlewicz,

2012). We would like to remark that both DAS and AMS methods are flexible to extend

to ISIS procedure.

Specifically, with massive datasets, we could implement the ISIS procedure (Fan

and Lv, 2008). as follows. In the first step, we select a subset of k1 predictors A1 =

{Xi1 , · · · , Xik1
} by SIS-ALasso method. To be specific, we first screening a set of

[n/ log(n)] predictors and then use distributed adaptive Lasso (DAL) algorithm recently

developed by Zhu et al. (2021) to select the subset M1. We remark that we do not rely

on a distributed architecture to implement the DAL algorithm since it can be applied

sequentially to pre-splitted data segments. Then we obtain a residual vector of length

N by regressing Y on variables in M1. Subsequently, we treat the residual vector

as the new response and repeat the above step to obtain subset M2. As commented

in Fan and Lv (2008) and Cho and Fryzlewicz (2012), fitting the residuals from the

previous step on MF\M1 can significantly weaken the priority of the unimportant

variables which are highly correlated with the response by associating with variables

in M1. Here MF denotes the full model. In addition, it makes it easy to pick up those
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important variables which are missed in the previous round. We repeat the above

procedure until we obtain l disjoint subsets M1,M2, · · · ,Ml with | ∪l
k=1 Mk| ≤ d,

where d is a pre-specified integer. In practice we set d = [n/ log n].

Finite Sample Performance

To evaluate the finite sample performance of the ISIS method, we present two

examples in this section following Fan and Lv (2008). In each example, the whole

sample size N is fixed with N = 105, and we perform feature screening procedures under

the RAS setting. For each model, we apply the SIS and ISIS to select d = n variables.

For a reliable evaluation, we replicate the experiment for R = 100 times. Denote M̂(r)

as the selected model and M(r)
T as the true model in the rth experiment. We evaluate

the screening accuracy by the true model covering rate CR = R−1
∑

r I(M
(r)
T ⊂ M̂(r)).

The examples are given as follows.

Example A.1. We consider a linear model

Y = 5X1 + 5X2 + 5X3 + ϵ,

where X1, . . . , Xp are p predictors drawn from a multivariate normal distribution

N(0,Σ) with Σ = (σij)p×p. Here σii = 1, for any 1 ≤ i ≤ p, and σij = ρ for any

i ̸= j. The noise ϵ ∼ N(0, 1) is independent of the predictors. We consider different

combination of p, n and B with p = 200, 1000, n = 50, 100, B = 10, 50, and we fix

ρ = 0.9.

Example A.2. For the second simulated example, the same setup in Example 1

is used except that ρ is fixed to be 0.5. Moreover, a new variable X4 is added to the
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model, who has correlation √
ρ with the other covariates. Therefore we have

Y = 5X1 + 5X2 + 5X3 − 15
√
ρX4 + ϵ,

One could verify that cov(X4, Y ) = 0. As a result, the SIS method is hard to select

the true model.

Table A.1: Simulation results for Example A.1 and Example A.2 under the RAS
sampling schemes. The numerical performance is evaluated for different parameter
dimensions p, number of subsamples B, and subsample sizes n. For each screening
measure, CR values under SIS and ISIS methods are reported.

p B n
CRSIS CRISIS

AVS DAS AMS AVS DAS AMS
Example A.1

200 10 50 1 1 1 1 1 1
100 1 1 1 1 1 1

50 50 1 1 1 1 1 1
100 1 1 1 1 1 1

1000 10 50 1 1 1 1 1 1
100 1 1 1 1 1 1

50 50 1 1 1 1 1 1
100 1 1 1 1 1 1

Example A.2
200 10 50 0.24 0.24 0.07 0.9 0.93 0.99

100 0.57 0.58 0.61 0.98 0.98 1.0
50 50 0.14 0.14 0.06 1 1 1

100 0.49 0.47 0.58 1 1 1
1000 10 50 0.0 0.0 0.0 0.52 0.59 0.72

100 0.02 0.01 0.01 0.72 0.78 0.91
50 50 0.0 0.0 0.0 1 1 1

100 0.01 0.01 0.0 1 1 1

We summarize the results in Table A.1. In Example A.1, both SIS and ISIS are

able to cover all important variables. However, in Example A.2, the performance of
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the SIS is much worse than the ISIS method, especially when p is large. For example,

when p = 1000, B = 50, n = 100, the CR values of the three measures under the SIS

are less than 0.01, while they equal to 1 under the ISIS method. That is because the

SIS method fails to deal with the correlation among the predictors. In addition, the

AMS measure outperforms the other two screening measures especially under the ISIS

method. Finally, the accuracy increases when either n or B increases, which is in line

with our theoretical findings in Section 3.

A.3 Confidence Adjusted Feature Screening

Motivated by one of anonymous reviewers, we propose a novel feature screening ap-

proach, which further involves automatic statistical inference about the feature screen-

ing measures. We show that it can enhance the screening accuracy by taking account

of uncertainty measures. We refer to this extension as confidence adjusted feature

screening method.

Suppose we use the correlation between Xj and Y as our screening measure: ρ̂j =

X⊤
j Y/N (Xj and Y are standardized). By using the SIS procedure (Fan and Lv, 2008),

we keep variables with high |ρ̂j| values. However, the SIS procedure does not take

account of the uncertainty level of ρ̂j, i.e., SE(ρ̂j). For variable j with higher SE(ρ̂j),

we should have lower confidence in its ranking result. As a result, we could assign

lower weight to variables with higher uncertainty levels in the screening procedure.

Specifically, we consider to standardize ρ̂j by SE(ρ̂j) as

ρ̃j = ρ̂j/SE(ρ̂j).

We refer to ρ̃j as the confidence adjusted screening measure. The SE(ρ̂j) is usually hard
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to estimate especially for complex screening measures. However, in our DAS setting,

we have special opportunity to estimate SE(ρ̂j) by repeated sampling as in (3.1). We

conduct simulation studies in the following to illustrate the usefulness of the confidence

adjusted screening measure |ρ̃j|.

Finite Sample Performance

To evaluate the finite sample performance of the proposed feature screening method,

we present a numerical example in this subsection. Specifically, the simulation setting

is the same as Example 1 in Section 4.1, except that the distribution of the covariate is

not a multivariate normal distribution. Instead, we generate the covariates as follows.

For 1 ≤ j ≤ d0, Xijs are independently drawn from Gamma distribution with shape

parameter α = 10 and rate parameter β = 1. Next, for j > d0, we generate Xij =

ρXi1+
√

1− ρ2Zij, where Zijs are also independently drawn from Gamma distribution

with α = 10, β = 1. Here we fix ρ = 0.9 to ensure a relatively high dependence level

between the non-important variables and the important variables. Therefore, the case

is challenging because (1) the distribution of the covariates is not symmetric and (2)

the non-important variables are highly correlated with the important ones. Under this

scenario, the SE(ρ̂j)s of the non-important variables are higher. Lastly, we fix the

whole sample size N = 105 and n = 100, then we consider vary B from 500 to 1000.

For a reliable evaluation, the experiment is replicated for R = 100 times.

We compare the performance of ρ̃j with ρ̂j. Specifically ρ̃j is calculated using the

DAS method and ρ̂j is computed by the DCAMS method demonstrated in subection

3.3. Here the DCAMS refers to using the AMS method under the DC setting. For

the DCAMS measure, we consider nB = 1000, 5000 and 105. Note that when nB =

105 = N, ρ̂j is equivalent to the global screening measure. Furthermore, we use the
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AUC measure defined in (4.1) to compare the screening accuracy of the two competing

methods. Specifically, for the rth replication, we calculate AUC
(r)
DAS and AUC

(r)
DCAMS

respectively for ρ̃j and ρ̂j. The boxplots of the AUC values are shown in Figure A.1.

As one can see from Figure A.1, the average AUC of ρ̃j is obviously higher than the

DCAMS measure. This illustrates the potential usefulness of the proposed confidence

adjusted feature screening method with our DAS implementation.
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Figure A.1: Boxplot of AUC values for the original screening measure ρ̂j conducted by
the DCAMS method (the left three boxes), and confidence adjusted screening measure
ρ̃j implemented by the DAS method (the right two boxes). Particularly the third box
refers to the global estimator when the whole sample is used. The sample size N is
fixed as N = 105.
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B Theoretical Properties of AVS Measure

B.1 Uniform Convergence of the AVS Measure under RAS

To establish the uniform convergence property of the AVS measure, we require the

following condition.

Assumption B.1 (Dimensionality for AVS under RAS).

(a) (Quantitative Covariates) Let log p1 ≪ min{nBN−2ν , n1/2BN−ν} and log p1+

logB ≪ n1/2 for some ν ∈ [0, 1/2) and δ ∈ (0, 1/2).

(b) (Qualitative Covariates) Let log p2+maxj log lj ≪ min{nBN−2νl−2
j , n1/2BN−νl−1

j }

for some ν ∈ [0, 1/2). In addition, assume log p2+maxj log lj+logB ≪ n1/2π
1/2
min.

The following theorem establishes the uniform convergence of the AVS measure.

Theorem B.2. Assume Conditions 1, 2 and B.1, then the following conclusions hold.

(a) It holds maxj |R2
Xj ,AVS −R2

Xj
−∆xb| = Op(N

−ν), where ∆xb = O(n−1).

(b) It holds maxj |R2
Zj ,AVS −R2

Zj
−∆zb| = Op(N

−ν), where ∆zb = O(n−1lj).

The proof of Theorem B.2 is given in Appendix C.3. With respect to the results,

we have the following two remarks.

Remark. By Theorem B.2, the bias order of R2
Zj ,AVS is not only related to n, but also

related to lj. As a consequence, it will be larger if the number of levels for a qualitative

variable is higher. Hence the subsample size should be set larger if the qualitative

covariate of interests has a great number of levels.
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B.2 Uniform Convergence for AVS Measure under SAS

To establish the uniform convergence for AVS measure under SAS, we require the

following conditions.

Assumption B.3 (Dimensionality for AVS under SAS).

(a) (Quantitative Covariates) There exists δ ∈ (0, 1/2) such that log p1 ≪

min{n1−2δBN−2ν , Bn1/2−δN−ν}, log p1 + logB ≪ n1/2, log p1 + logN ≪ n2δ,

where ν ∈ [0, 1/2).

(b) (Qualitative Covariates) There exists δ ∈ (0, 1/2) such that log p2+maxj log lj ≪

min{n1−2δBN−2νl−2
j , n1/2−δBN−νl−1

j }, log p2+maxj log lj+logN ≪ n2δ, log p2+

maxj log lj + logB ≪ n1/2π
1/2
min, where ν ∈ [0, 1/2).

We establish the theoretical properties in the following theorem.

Theorem B.4. Assume Conditions 1 and B.3, then the following conclusions hold.

(a) It holds maxj |R2
Xj ,AVS −R2

Xj
−∆xb| = Op(N

−ν), where ∆xb = O(n−1).

(b) It holds maxj |R2
Zj ,AVS −R2

Zj
−∆zb| = Op(N

−ν), where ∆zb = O(n−1lj).

The proof of Theorem B.4 is given in Appendix C.7 and the result is consistent

with Theorem B.2 and 2 under the RAS setting.

C Proof of the Main Theorems

Define E∗(·) and var∗(·) as the conditional expectation and variance given X and Y.
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C.1 Proof of Theorem 1

1. Proof of (a).

We first consider the case that E(Xij) = 0. Define var(Xij) = σ2
xj, σ2

y = var(Yi),

and σxyj = cov(Xij, Yi). We first consider the case for the kth subsampling. In this

case, we have

R2(X(k)j)
def
=

1

n−1∥Y(k) − Y(k)∥2
1

n−1∥X(k)j∥2
×
(
n−1Y⊤

(k)X(k)j

)2
= σ2

xyj

{ 1

n−1∥Y(k) − Y(k)∥2
1

n−1∥X(k)j∥2
− 1

σ2
yσ

2
xj

}
+

1

n−1∥Y(k) − Y(k)∥2
1

n−1∥X(k)j∥2
×
{(

n−1Y⊤
(k)X(k)j

)2 − σ2
xyj

}
+

σ2
xyj

σ2
xjσ

2
y

def
= ∆1 +∆2 +

σ2
xyj

σ2
xjσ

2
y

As a result, we have P (|R2(X(k)j) − σ2
xyj/(σ

2
xjσ

2
y)| > t) ≤ P (|∆1| > t) + P (|∆2| > t).

Define ∆E(t, n,N) as given in Lemma E.2. In the following, we prove that P (|∆1| >

t) ≤ c∆E(t, n,N) and P (|∆2| > t) ≤ c∆E(t, n,N) respectively in two steps. Given

the results, note that R2
Xj

can be treated as independently subsampling for nB times,

hence it yields,

P
{∣∣R2

Xj
−R2

Xj

∣∣ > t
}
≤ c∆∗

E(t, nB,N, n1/2), (C.1)

where c is a constant. By using maximum inequality we have P{max1≤j≤p1 |R2
Xj

−

R2
Xj
| > t} ≤ cp1∆

∗
E(t, nB,N, n1/2) = o(1) by Assumption 2 with t = N−ν .
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Step 1. Without loss of generality we let σ2
xyj = 1 in the following. Note that

∆1 =
1

n−1∥Y(k) − Y(k)∥2
1

n−1∥X(k)j∥2
− 1

σ2
yσ

2
xj

= −
{(n−1∥Y(k) − Y(k)∥2)− σ2

y}(n−1∥X(k)j∥2) + {(n−1∥X(k)j∥2)− σ2
xj}σ2

y

(n−1∥Y(k) − Y(k)∥2)(n−1∥X(k)j∥2)(σ2
yσ

2
xj)

In the following we show (1) P{|n−1∥Y(k) − Y(k)∥2 − σ2
y| > t} ≤ ∆E(t, n,N), (2)

P{|n−1∥X(k)j∥2 − σ2
xj| > t} ≤ ∆E(t, n,N), and (3) P{n−1∥Y(k) − Y(k)∥2 > σ2

y/2} ≤

∆E(σ
2
y/2, n,N), P{n−1∥X(k)j∥2 > σ2

xj/2} ≤ ∆E(σ
2
xj/2, n,N). One could immediately

conclude that (3) can be obtained from (1) and (2) by setting t = σ2
y/2 and t = σ2

xj/2

respectively. As a result, we could derive that P (|∆1| > t) ≤ c∆E(t, n,N) by using

(1), (2), (3), where c is a finite constant. In the following we prove conclusion (1) and

(2).

Note that ∥Y(k) − Y(k)∥2 = n−1
∑

i(Ỹ(k)i − µy)
2 − (Y(k) − µy)

2. First note that

(Yi − µy)
2 follows sub-Exponential distribution. Then by using Lemma E.2, we have

P (|n−1
∑
i

(Ỹ(k)i − µy)
2 − σ2

y| > t) ≤ ∆E(t, n,N). (C.2)

In addition, by Lemma E.10, we have P (|Y(k) − µy|2 > t) ≤ ∆G(t, n,N). Combining

the result with (C.2), we have

P
{∣∣ 1

n
∥Y(k) − Y(k)∥2 − σ2

y

∣∣ > t
}
≤ ∆G(t, n,N). (C.3)

Subsequently, by using the same technique, we could show that P{|n−1∥X(k)j∥2−σ2
xj| >

t} ≤ ∆E(t, n,N).

Step 2. Given the results proved in Step 1, we only need to show P |{(n−1Y⊤
(k)X(k)j)

2−

σ2
xyj| > t} < c∆E(t, n,N). Recall that Xij and Yi follow sub-Gaussian distribution.
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Consequently, Ui
def
= XijYi follows sub-Exponential distribution. Let Ũi = X̃(k)ijỸ(k)i.

By Lemma E.2, P (|n−1
∑n

i=1 Ũi − σxyj| > t) ≤ ∆E(t, n,N). Assuming t = o(1), we

could further obtain P (|(n−1
∑n

i=1 Ũi)
2 − σ2

xyj| > t) ≤ c∆E(t, n,N), where c is a finite

constant.

2. Proof of (b).

Define Σ̂Zj
= (nB)−1

∑B
k=1 Z⊤

(k)jZ(k)j ∈ R(lj−1)×(lj−1). Since Zj is generated from

Zj, which is a qualitative variable. Therefore, Σ̂Zj
is diagonal and thus we denote

Σ̂Zj
= diag{π̂j1, · · · , π̂j(lj−1)} ∈ R(lj−1)×(lj−1), where π̂jl = (nB)−1

∑B
k=1 Z⊤

(k)j,lZ(k)j,l.

Accordingly, define ΣZj
= E(Σ̂Zj

) = diag{πj1, · · · , πj(lj−1)} ∈ R(lj−1)×(lj−1). Next,

define Σ̂ZjY = (nB)−1
∑B

k=1 Z⊤
(k)jY(k) ∈ R(lj−1), σ̂2

Y = (nB)−1
∑B

k=1 ∥Y(k) − Y(k)∥2, and

ΣZjY = (σzy,jl : 1 ≤ l ≤ lj − 1)⊤ ∈ Rlj−1 with σzy,jl = E(ZijlYi), σ2
y = var(Yi).

Note that

R2
Zj

−R2
Zj

=
1

σ̂2
Y

{
(Σ̂ZjY)

⊤(Σ̂Zj
)−1(Σ̂ZjY)− Σ⊤

ZjYΣ̂
−1
Zj
ΣZjY

}
+
{ 1

σ̂2
Y
Σ⊤

ZjYΣ̂
−1
Zj
ΣZjY −

Σ⊤
ZjYΣ

−1
Zj
ΣZjY

σ2
Y

}
def
= ∆1 +∆2

Then we have P (|R2
Zj

− R2
Zj
| > δ) ≤ P (|∆1| > δ/2) + P (|∆2| > δ/2). Since we have

dealt with σ̂2
Y and σ2

Y in the proof of (a), we treat σ̂2
Y = σ2

y = 1 to save space here. We

deal with ∆1 and ∆2 respectively as follows.

Step 1. Upper bound for P (|∆1| > δ/2).
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First by using the diagonal structure of Σ̂Zj
we could write

∆1 = Σ̂⊤
ZjYΣ̂

−1
Zj
Σ̂ZjY − Σ⊤

ZjYΣ̂
−1
Zj
ΣZjY =

lj−1∑
l=1

π̂−1
jl

{(
(nB)−1

B∑
k=1

Z⊤
(k)j,lY(k)

)2 − σ2
zy,jl

}
=

lj−1∑
l=1

(
π̂−1
jl πjl

)
π−1
jl

{(
(nB)−1

B∑
k=1

Z⊤
(k)j,lY(k)

)2 − σ2
zy,jl

}
def
=

lj−1∑
l=1

Rπ,jl∆1l,

where Rπ,jl = π̂−1
jl πjl and ∆1l = π−1

jl {((nB)−1
∑B

k=1 Z⊤
(k)j,lY(k))

2 − σ2
zy,jl}. Define the

event Eπ,jl = {1/2 < Rπ,jl < 3/2}. Then we have

P (|∆1| > δ/2) ≤
lj−1∑
l=1

{
P
(
|∆1l| >

δ

3lj

∣∣∣Eπ,jl)+ P (Ec
π,jl)

}
def
= P1 + P2

We give upper bounds for P1 and P2 respectively as follows.

Step 1.1. Upper bound for P1.

Define D1l = π
−1/2
jl

{
(nB)−1

∑B
k=1 Z⊤

(k)j,lY(k)−σzy,jl

}
. Then ∆1l = 2D1lπ

−1/2
jl σzy,jl +

D2
1l. We have σzy,jl = O(πjl). We first derive the bound for P (|D1l| > t) for any

t. First, note that Zijl ∈ {0, 1} and Yi follows sub-Gaussian distribution. As a

result, the variable Ui
def
= π

−1/2
jl (ZijlYi − σzy,jl) follows sub-Exponential distribution.

In addition, E(U2
i ) = π−1

jl {E(Zi)} = O(1). By Lemma E.2, we have P (|D1l| >

t) ≤ ∆∗
E(t, nB,N, n1/2). Letting t = δ/lj we could obtain P1 ≲ P (|D1l| > δ/lj) ≤

lj∆
∗
E(δ/lj, nB,N, n1/2). Then we have p2maxj lj∆

∗
E(N

−ν/lj, nB,N, n1/2) → 0 due to

the condition that log p2 +maxj lj ≪ min{nBN−2νl−2
j , n1/2BN−νl−1

j , n1/2}.

Step 1.2. Upper bound for P2.

Next, we have by Lemma E.9, P (|π̂jl − πjl| > πjl/2) ≤ ∆B(πjl/2, nB,N, πjl).

As a result, P (π̂−1
jl πjl > 3/2) + P (π̂−1

jl πjl < 1/2) ≤ ∆B(πjl/2, nB,N, πjl). It leads

to P2 ≤ lj maxl ∆B(πjl/2, nB,N, πjl). By the condition that log p2 + max log lj ≪
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min{minjl nBπjl, N}, we have p2maxj,l lj∆B(πjl/2, nB,N, πjl) → 0.

Step 2. Upper bound for P (|∆2| > δ/2).

It can be derived that ∆2 =
∑lj−1

l=1 (π̂−1
jl − π−1

jl )σ
2
zy,jl. Hence we have P (|∆2| >

δ/2) ≤
∑lj−1

l=1 P (|π̂−1
jl − π−1

jl | > δ/(2ljσ
2
zy,jl)). By Lemma E.9, P (|π̂jl − πjl| > t) ≤

∆B(t, nB,N, πjl). By the proof in Step 1.2, it leads to P (|π̂jl − πjl| > πjl/2) ≤

∆B(πjl/2, nB,N, πjl). Without loss of generality, we assume σ2
zy,jl = O(πjl). As a

result, we have P (π̂jl/σ
2
zy,jl > 3/2) ≤ ∆B(πjl/2, nB,N, πjl). It further yields P (|π̂−1

jl −

π−1
jl | > δ/(2ljσ

2
zy,jl)) ≤ P (|π̂jl−πjl| > 3δ/(4lj))+P (π̂jl/σ

2
zy,jl > 3/2) ≤ ∆∗

E(3δ/(4ljπ
1/2
jl ),

nB,N, n1/2)+∆B(πjl/2, nB,N, πjl). One can verify that p2maxj lj{∆E(3δ/(4ljπ
1/2
jl ), nB,

N, πjl, n
1/2)+∆B(πjl/2, nB,N, πjl)} → 0 if the condition log p2+maxj lj ≪ nBmin{N−2νl−2

j ,

N−νn−1/2Bl−1
j } and log p1 + logB ≪ n1/2 hold.

Lastly, letting δ = N−ν and under Assumption 2 that we have maxj |R2
Zj

−R2
Zj
| =

op(N
−ν).

C.2 Proof of Lemma 1

Without loss of generality we assume E(Xij) = 0. Define D̃i = (X̃2
(k)ij, Ỹ

2
(k)i, X̃(k)ijỸ(k)i)

⊤,

D = n−1
∑n

i=1 Di ∈ R3 and D = (σ2
x, σ

2
y, σxy)

⊤ ∈ R3. In addition, define Di =

(X2
ij, Y

2
i , XijYi)

⊤. For the simplicity of the proof here we omit the subindex j and k

here. Define g(x) = x2
3/(x1x2) for x = (x1, x2, x3)

⊤. As a result, we have R2
Xj(k)

= g(D)

and R2
Xj

= g(D). We prove the results for bias and variance terms respectively.

1. Proof the bias order.
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By using the Taylor’s expansion, we have

g(D)− g(D) = ġ(D)⊤(D −D) +
1

2
(D −D)⊤g̈(D)(D −D)

+
1

6

∑
j1,j2,j3

...
g j1j2j3(D)(D

(j1) −D(j1))(D
(j2) −D(j2))(D

(j3) −D(j3))

+
1

24

∑
j1,j2,j3,j4

....
g j1j2j3j4(ξ)(D

(j1) −D(j1))(D
(j2) −D(j2))(D

(j3) −D(j3))(D
(j4) −D(j4))

def
= ∆1 +∆2 +∆3 +∆4

where D
(j) and D(j) is the jth element of the vector, and ξ is on the line joining D and

D. Note that E(∆1) = 0. We deal with ∆2–∆4 respectively as follows.

Step 1. Note that

∆2 =
1

2n2

n∑
i=1

(D̃i −D)⊤g̈(D)(D̃i −D) +
1

2n2

n∑
i ̸=j

(D̃i −D)⊤g̈(D)(D̃j −D)
def
= ∆21 +∆22

Define cd = (2n)−1tr{g̈(D)ΣD}. Then we have

E
(
∆21

)
= E

{
E∗(∆21)

}
=

1

2n
E
{
(Di −D)⊤g̈(D)(Di −D)

}
= cd = O(n−1)

E
(
∆22

)
= E

{
E∗(∆22)

}
=

n− 1

2n
E
{
(DN −D)⊤g̈(D)(DN −D)

}
,

where DN = N−1
∑

i Di. Similarly one can show that E
{
(DN−D)⊤g̈(D)(DN−D)

}
=

O(N−1). As a result, E(∆2) = O(n−1 +N−1).

Step 2. Next, we look at ∆3. Since the dimension of D is finite, we could focus

14



on a single j. It holds

(D
(j) −D(j))3 =

1

n3

n∑
i=1

(D̃
(j)
i −D

(j)
i )3 +

1

n3

∑
i1 ̸=i2

(D̃
(j)
i1

−D
(j)
i1
)2(D̃

(j)
i2

−D
(j)
i2
)

+
1

n3

∑
i1 ̸=i2,i2 ̸=i3,i1 ̸=i3

(D̃
(j)
i1

−D
(j)
i1
)(D̃

(j)
i2

−D
(j)
i2
)(D̃

(j)
i3

−D
(j)
i3
)

def
= ∆D1 +∆D2 +∆D3.

It can be derived that E(∆D1) = O(n−2), E(∆D2) = O((nN)−1), and E(∆D3) =

O(N−2). As a result, E(∆3) = O(n−2).

Step 3. Lastly, we look at the ∆4. First we write ∆4 = ∆41 +∆42 in two parts as

∆41 =
1

24

∑
j1,j2,j3,j4

....
g j1j2j3j4(D)(D

(j1) −D(j1))(D
(j2) −D(j2))(D

(j3) −D(j3))(D
(j4) −D(j4))

∆42 =
1

24

∑
j1,j2,j3,j4

{
....
g j1j2j3j4(ξ)−

....
g j1j2j3j4(D)}

4∏
m=1

(D
(jm) −D(jm))

It can be verified that E(∆41) = O(n−3) = o(n−2). As a result, we only need to show

that ∆42 = op(n
−2) to imply that ∆42 will not produce a bias term which is larger than

the order of O(n−2).

Since ∥ξ−D∥max ≤ ∥D−D∥max = op(1), we could verify that ∥
....
g (ξ)−

....
g (D)∥max ≤

c∥ξ − D∥max with probability tending to 1, where c is a finite constant. By Lemma

E.2, we have ∥ξ−D∥max = Op(n
−1/2). As a result, ∆42 ≤ c∥D−D∥5max = Op(n

−5/2) =

op(n
−2).

Consequently, we have ∆xb = cn−1 +max{n−2, N−1}{1 + o(1)}.

2. Proof of the variance part.

15



To analyze the variance part, we only need to expand g(D) to the second order as

g(D)− g(D) = ġ(D)⊤(D −D) +
1

2
(D −D)⊤g̈(ξ)(D −D)

def
= ∆1 +∆2.

We further write ∆2 as

∆2 =
1

2n2

n∑
i=1

(D̃i −D)⊤g̈(D)(D̃i −D) +
1

2n2

n∑
i ̸=j

(D̃i −D)⊤g̈(D)(D̃j −D)

+
1

2
(D −D)⊤{g̈(ξ)− g̈(D)}(D −D)

def
= ∆21 +∆22 +∆23.

By Lemma E.2, we have ∆1 = Op(n
−1/2). Next, by Lemma E.3, we have ∆21 −

E(∆21) = Op(n
−1). By Lemma E.5, ∆22 − E(∆22) = Op((log n)

2/n). Furthermore,

since ∥ξ − D∥max ≤ ∥D − D∥max = op(1), we could verify that ∥g̈(ξ) − g̈(D)∥max ≤

c∥ξ−D∥max ≤ c∥D−D∥max with probability tending to 1, where c is a finite constant.

This implies ∆23 = op(∆21 +∆22). This yields the final result.

C.3 Proof of Theorem B.2

1. Proof of (a).

Define D(k)i = (X̃2
(k)ij, Ỹ

2
(k)i, X̃(k)ijỸ(k)i)

⊤, D(k) = n−1
∑n

i=1 D(k)i ∈ R3, D = B−1
∑B

k=1D(k) ∈

R3, and D = (σ2
x, σ

2
y, σxy)

⊤ ∈ R3. Define g(x) = x2
3/(x1x2) for x = (x1, x2, x3)

⊤. As a

result, we have R2
Xj ,AVS = B−1

∑
k g(D(k)) and R2

Xj
= g(D).

By using the Taylor’s expansion, we have

B−1
∑
k

g(D(k))− g(D) =
1

B

∑
k

ġ(D)⊤(D(k) −D) +
1

B

∑
k

(D(k) −D)⊤g̈(ξ(k))(D(k) −D)
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def
= ∆1 +∆2, where ξ(k) is on the line joining D and D(k). In the following we use two

steps to deal with ∆1 and ∆2 respectively.

Step 1. First, by Lemma E.2, we immediately have P{|∆1| > t} ≤ ∆∗
E(t, nB,N, n1/2).

Step 2. First we write ∆2 as

∆2 =
1

B

∑
k

(D(k) −D)⊤g̈(D)(D(k) −D) +
1

B

∑
k

(D(k) −D)⊤{g̈(ξ(k))− g̈(D)}(D(k) −D)

=
1

Bn2

∑
k

∑
i

(D(k)i −D)⊤g̈(D)(D(k)i −D) +
1

Bn2

∑
k

∑
i ̸=j

(D(k)i −D)⊤g̈(D)(D(k)j −D)

+
1

B

∑
k

(D(k) −D)⊤{g̈(ξ(k))− g̈(D)}(D(k) −D)
def
= ∆21 +∆22 +∆23.

First, we obtain P (|∆21 − ∆xb|) ≤ ∆E2(nt, nB,M) by Lemma E.3. Next, we obtain

P (|∆22| > t) ≤ ∆sas
E4 (nt, n,B, ϵ) by Lemma E.15. Setting M = n1/2 and ϵ = n1/4 we

have p1∆E2(nt, nB,M) → 0 and p1∆
sas
E4 (nt, n,B, ϵ) → 0.

Next, for each k if it holds ∥ξ(k) − D∥max < ∥D∥min/2, then we have |g̈j1j2(ξ(k)) −

g̈j1j2(D)| ≤ c∥ξ(k) −D∥max ≤ c∥D(k) −D∥max, where c is a positive constant. As a re-

sult, we have P (maxk,j1,j2 |g̈j1j2(ξ(k)) − g̈j1j2(D)| > t) ≲ B∆E(∥g̈(D)∥min/2, n,N) +

B∆E(t, n,N) ≲ B∆E(t, n,N) for small t. By letting t = o(1) and under event

{maxk,j1,j2 |g̈j1j2(ξ(k)) − g̈j1j2(D)| < t}, we have |∆23| ≪ |∆21 + ∆22|. As a result

P (|∆2 − ∆b| > t) ≤ B∆E(t1, n,N) + ∆sas
E4 (nt, n,B, ϵ) for t1 = o(1). Setting ϵ = n1/4

we could obtain that p1∆
sas
E4 (nt, n,B, ϵ) → 0 and p1B∆E(t, n,N) → 0. Hence the final

conclusion holds.

2. Proof of (b).

Define D(k)i = (Z̃(k)ij1, · · · , Z̃(k)ij(lj−1), Z̃(k)ij1Ỹ(k)i, · · · , Z̃(k)ij(lj−1)Ỹ(k)i, (Ỹ(k)i−Y(k))
2)⊤ ∈

R2(lj−1)+1, D(k) = n−1
∑n

i=1 D(k)i ∈ R2(lj−1)+1, D = B−1
∑B

k=1 D(k) ∈ R2(lj−1)+1, and
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D = (πj1, · · · , πj(lj−1), σzy,j1, · · · , σzy,j(lj−1), σ
2
y)

⊤ ∈ R2(lj−1)+1. In addition, define

g(D) = D−1
2lj−1

lj−1∑
l=1

D−1
l D2

lj+l−1

As a result, we have R2
Zj ,AVS = B−1

∑
k g(D(k)) and R2

Zj
= g(D).

By using the Taylor’s expansion, we have

B−1
∑
k

g(D(k))− g(D) =
1

B

∑
k

ġ(D)⊤(D(k) −D) +
1

B

∑
k

(D(k) −D)⊤g̈(ξ(k))(D(k) −D)

def
= ∆1 +∆2, where ξ(k) is on the line joining D and D(k).

Step 1. (P (|∆1| > ϵ))

Note that ġ(D) = (−D−2
1 D2

lj
D−1

2lj−1, · · · ,−D−2
lj−1D

2
lj
D−1

2lj−1, 2D
−1
1 D−1

2lj−1Dlj , · · · , D−1
lj−1

D−1
2lj−1D2lj−2,−D−2

2lj−1

∑lj−1
l=1 D−1

l D2
lj+l−1)

⊤. Since Dl = O(πjl) and Dl+lj−1 = O(πjl) for

1 ≤ l ≤ lj − 1, we have ∥g(D)∥max = O(1). Write ∆1 = ∆11 +∆12 +∆13, where

∆11 = − 1

B

∑
k

lj−1∑
l=1

ġl(D)
(
D(k)l −D

)
∆12 =

1

B

∑
k

2lj−2∑
l=lj

ġl(D)
(
D(k)l −D

)
∆13 =

1

B
ġ2lj−1(D)

(
D(k)2lj−1 −D

)
,

where ġl(D) and D(k)l is the lth element of vector ġ(D) and D(k). By Lemma E.2 and

E.9 we have P (|∆11| > ϵ/3) ≲ lj∆B(ϵ/lj, nB,N, πmin), P (|∆12| > ϵ/3) ≲ lj∆E(ϵ/lj, nB,N),

and P (|∆13| > ϵ/3) ≲ ∆E(ϵ, nB,N). As a result, p2P (|∆1| > ϵ) ≤ p2maxj lj∆E(ϵ/lj,

nB,N) → 0 with ϵ = O(N−ν) by Assumption 2 (b) and B.1 (b).

Step 2. (P (|∆2 −∆zb| > ϵ))
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Next, we have ∆2 = ∆21+∆22, where ∆21 = B−1
∑

k(D(k)−D)⊤g̈(D)(D(k)−D)+

B−1
∑

k(D(k) −D)⊤{g̈(ξ(k))− g̈(D)}(D(k) −D).

Step 2.1. (P (|∆21 −∆zb| > ϵ))

It can be verified that g̈(D) = (G1, G2;G3, G4), where G1 = (121
⊤
2 )×diag{π−1

j1 , · · · , π−1
j(lj−1)},

G2 = 12lj−2, G3 = G⊤
2 , G4 = 1. Then it can be derived that ∆21 = ∆

(1)
21 +∆

(2)
21 +∆

(3)
21 +

∆
(4)
21 ,

∆
(1)
21 = c

lj−1∑
l=1

π−1
jl (D(k)l −Dl)

2, (C.4)

∆
(2)
21 = c

2lj−2∑
l=lj

π−1
jl (D(k)l −Dl)

2, (C.5)

∆
(3)
21 = c

lj−1∑
l=1

π−1
jl (D(k)l −Dl)(D(k)(l+lj) −Dl+lj) (C.6)

∆
(4)
21 = c

2lj−2∑
l=1

π−1
jl (D(k)l −Dl)(D(k)2lj−1 −D2lj−1). (C.7)

where c is a constant.

One could verify that ∆zb = E(∆21) = O(n−1lj) as in the proof of Lemma 1.

Next we focus on the tail bound of the four parts. Since the proof procedures are

similar, we prove the case for ∆
(1)
21 . First, for we could write π−1

l (D(k)l − Dl)
2 =

n−2
∑

i π
−1
l (D(k)l,i −Dl,i)

2 + n−2
∑

i ̸=j π
−1
l (D(k)l,i −Dl,i)(D(k)l,j −Dl,j)

def
= ∆D1 +∆D2.

By Lemma E.3 and E.7, we have P (|∆D1 − E(∆D1)| > ϵ) ≤ ∆E2(nϵ/lj, nB,M) and

P (|∆D2)| > ϵ) ≤ ∆sas
E4 (nϵ/lj, n, nB, ϵ). Setting M = n1/2 and ϵ = n1/4 we have

p2maxj lj∆E2(nϵ/lj, nB,M) → 0 and p2maxj lj∆
sas
E4 (nϵ/lj, n, nB, ϵ) → 0 by the condi-

tion that log p2 + maxj lj ≪ min{nBN−2νl−2
j , n1/2BN−νl−1

j } → 0 with ϵ = N−ν and

log p2 +maxj log lj + logB ≪ n1/2.

Step 2.2. (P (|∆22| > ϵ))
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Next, we focus on ∆22. As we have shown in (C.4)–(C.7), we could also decompose

∆22 into four parts as ∆(1)
22 to ∆

(4)
22 . We prove the case for the first part for illustration.

Note that g̈ll(D) = 2D−3
l D2

lj+lD
−1
2lj−1 for 1 ≤ l ≤ lj − 1 and g̈l1l2(D) = 0 for l1 ̸= l2.

Under the event that {maxk ∥ξ(k) −D∥max < ϵ} with ϵ small enough, it can be derived

that |g̈ll(ξ(k))− g̈ll(D)| ≤ cπ−2
jl

{
|π̂jl(k)−πjl|+ |σ̂zy,(k)jl−σzy,jl|

}
+π−1

jl |σ̂2
y(k)−σ2

y|, where

π̂(k)l = n−1
∑

i Z̃(k)ijl, σ̂zy,(k)jl = n−1
∑

i Ỹ(k)iZ̃(k)ijl, and σ̂2
y(k) = n−1∥Y(k) − Y(k)∥2.

As a result, P (maxk{|g̈ll(ξ(k)) − g̈ll(D)| > t/πjl}) ≤ P (π−1
jl maxk |π̂(k)jl − πjl| > t) +

P (π−1
jl maxk |σ̂zy,(k)jl − σzy,jl| > t) + P (maxk |σ̂2

y(k) − σ2
y| > t) ≲ B∆E(tπ

1/2
min, n,N) → 0

by the condition that log p2 + maxj log lj + logB ≪ n1/2π
1/2
min, where πmin = minj,l πjl.

Consequently, we have maxk{|g̈ll(ξ(k))− g̈ll(D)| = op(π
−1
jl ). Consequently, ∆22 is dom-

inated by ∆21, which implies P (|∆22| > ϵ) ≲ P (|∆21| > ϵ). This yields the final

result.

C.4 Proof of Lemma 2

Without loss of generality we assume E(Xij) = 0. Define Di = (X̃2
(k)ij, Ỹ

2
(k)i, X̃(k)ijỸ(k)i)

⊤,

D = n−1
∑n

i=1 Di ∈ R3 and D = (σ2
x, σ

2
y, σxy)

⊤ ∈ R3. In addition, let D−i =

(n− 1)−1
∑

m̸=iDm ∈ R3. For convenience we omit the sub-index k and j here. Define

g(x) = x2
3/(x1x2) for x = (x1, x2, x3)

⊤. As a result, we have R2
Xj(k),DAS = g(D) and

R2
Xj

= g(D). Without of loss of generality we assume n2 ≤ N . Since all variance terms

are proved in Lemma 1, we only need to focus on the bias estimator ∆(k).

By using the Taylor’s expansion, we have

g(D−i)− g(D) = ġ(D)⊤(D−i −D) + 2−1(D−i −D)⊤g̈(ξi)(D−i −D)

def
= ġ(D)⊤(D−i −D) + ∆i,
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where ξi lies on the line joining D and D−i. Note that for the first term we have∑
i(D−i − D) = (n − 1)−1

∑
i(D − Di) = 0. Write ∆i = 2−1(D−i − D)⊤g̈(D)(D−i −

D) + 2−1(D−i −D)⊤{g̈(ξi)− g̈(D)}(D−i −D)
def
= ∆a

i +∆b
i . Then we have

∆(k) =
n− 1

n

∑
i

∆a
i +

n− 1

n

∑
i

∆b
i
def
= ∆a

(k) +∆b
(k).

Define V = tr{g̈(D)cov(Di)}
def
= tr{g̈(D)ΣD}. Then ∆xb = (2n)−1V . In the following

we deal with the two parts respectively.

Step 1. (Bias and Variance of ∆a
(k) −∆xb)

First note that D−i −D = (n− 1)−1(D −Di). Then it yields

n− 1

n

∑
i

∆a
i =

1

n(n− 1)

∑
i

(Di −D)⊤g̈(D)(Di −D)
def
=

1

n
tr
{
g̈(D)Σ̂D

}
.

Note that n−1tr{g̈(D)Σ̂D}−n−1tr{g̈(D)ΣD} = n−1tr{g̈(D)(Σ̂D−ΣD)}+n−1tr{(g̈(D)−

g̈(D))ΣD). One could verify that the leading bias terms of the above two parts are of

O(n−2). Then we derive the variance order. It suffices to derive the upper bound for

n−1∥Σ̂D − ΣD∥max and ∥g̈(D)− g̈(D)∥max.

Note that each element of Di follows sub-Exponential distribution, then by Lemma

E.3 we could obtain that n−1∥Σ̂D−ΣD∥max = op(n
−1). Second, we have ∥D−D∥max =

op(1) by Lemma E.2. It implies D
(j) ≥ D(j)/2 for 1 ≤ j ≤ 3 with probability tending

to 1. Within the region {D(j) ≥ D(j)/2 : 1 ≤ j ≤ 3}, we could verify that
...
g (D) ≤ cD

with cD being a finite constant. Then we have ∥g̈(D) − g̈(D)∥max ≤ cD∥D − D∥max.

By Lemma E.2 we have n−1∥D−D∥max = op(n
−1). Consequently we have the leading

bias of ∆a
(k) −∆xb is O(n−2) and leading variance term is of op(n−1).

Step 2. (Bias and Variance of ∆b
(k))
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One could also verify by using Taylor’s expansion technique that the leading bias

of ∆b
i is O(n−2). Next, it can be derived that ∥g̈(ξi) − g̈(D)∥max ≤ c∥ξi − D∥max ≤

c∥D−i −D∥max = c(n− 1)−1∥Di −D∥max. As a result, we have by Lemma E.3

P (max
i

∥g̈(ξi)−g̈(D)∥max > t) ≤ P ((n− 1)−2max
i

∥Di −D∥2max > ct2)

≤ P ((n− 1)−2
∑
i

∥Di −D∥2 > ct2) ≤ ∆E2(nt
2, n,M). (C.8)

Letting t = n−3/4 and M be small enough, we have maxi ∥g̈(ξi)−g̈(D)∥max = Op(n
−3/4).

Consequently, |n−1(n−1)
∑

i ∆
b
i | ≤ maxi σ1(g̈(ξi)−g̈(D)) ≤ maxi ∥g̈(ξi)−g̈(D)∥Fn−1tr(Σ̂D) =

Op(n
−7/4) = op(n

−1) due to that tr(Σ̂D) = Op(1).

As a result, the leading bias of ∆b
(k) is O(n−2) and leading variance term is of

op(n
−1).

C.5 Proof of Theorem 2

Based on the result of Theorem B.2 and Lemma 2, it suffices to derive the tail bound

for the bias estimator.

1. Proof of (a).

Define D(k)i = (X̃2
(k)ij, Ỹ

2
(k)i, X̃(k)ijỸ(k)i)

⊤, D(k) = n−1
∑n

i=1D(k)i ∈ R3 and D =

(σ2
x, σ

2
y , σxy)

⊤ ∈ R3. In addition, let D(k)−i = (n − 1)−1
∑

m ̸=i D(k)m ∈ R3. For

convenience we omit the sub-index k and j here. Define g(x) = x2
3/(x1x2) for x =

(x1, x2, x3)
⊤. Then the bias estimator is B−1

∑
k ∆̂(k)

def
= B−1

∑
k{n−1(n−1)

∑
i g(D(k)−i)}

and R2
Xj

= g(D). Without of loss of generality we assume n2 ≤ N .
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By using the Taylor’s expansion, we have

g(D(k)−i)− g(D(k)) = ġ(D(k))
⊤(D(k)−i −D(k)) + 2−1(D(k)−i −D(k))

⊤g̈(ξ(k)i)(D(k)−i −D(k))

def
= ġ(D)⊤(D(k)−i −D(k)) + ∆(k)i,

where ξ(k)i lies on the line joining D(k) and D(k)−i. Note that for the first term we

have
∑

i(D(k)−i −D(k)) = (n− 1)−1
∑

i(D(k) −D(k)i) = 0. Write ∆(k)i = 2−1(D(k)−i −

D(k))
⊤g̈(D(k))(D(k)−i−D(k))+2−1(D(k)−i−D(k))

⊤{g̈(ξ(k)i)− g̈(D(k))}(D(k)−i−D(k))
def
=

∆a
(k)i +∆b

(k)i. Then we have

1

B

∑
k

∆̂(k) =
n− 1

nB

∑
k,i

∆a
(k)i +

n− 1

nB

∑
k,i

∆b
(k)i

def
=

1

B

∑
k

∆a
(k) +

1

B

∑
k

∆b
(k)

def
= ∆a +∆b.

Define V = tr{g̈(D)cov(Di)}
def
= tr{g̈(D)ΣD}. Then ∆xb = (2n)−1V . In the following

we deal with the two parts respectively.

Step 1. (Proof of P (|∆a −∆xb| > ϵ))

It can be derived that

∆a =
1

2B

∑
k

1

n(n− 1)

∑
i

(D(k)i −D(k))
⊤g̈(D(k))(D(k)i −D(k))

def
=

1

2nB

∑
k

tr
{
g̈(D(k))Σ̂D(k)

}
.

Further write ∆a = (2nB)−1
∑

k tr
{
g̈(D)Σ̂D(k)

}
+(2nB)−1

∑
k tr

{
(g̈(D(k))−g̈(D))Σ̂D(k)

} def
=

∆a1 +∆a2. First, by Lemma E.3, P (|∆a1 −∆xb| > t) ≲ ∆E2(nt, nB,M). Letting M =

n1/2 we obtain p1∆E2(nN
−ν , nB,M) → 0 by the condition that log p1 ≪ min{nBN−2ν ,

n1/2BN−ν , n1/2}.

23



By Taylor’s expansion, we have

g̈j1j2(D(k))− g̈j1j2(D) =
∑
j3

...
g j1j2j3(D)(D

(j3)

(k) −D(j3))

+
∑
j3,j4

....
g j1j2j3j4(ξ(k))(D

(j3)

(k) −D(j3))(D
(j4)

(k) −D(j4))
def
= ∆g1j1j2(k) +∆g2j1j2(k),

where ξ(k) lies on the line joining D(k) and D. We deal with the above two parts

respectively as follows.

Step 1.1. (P (|(nB)−1
∑

k

∑
j1,j2

∆g1j1j2(k)Σ̂D,j2j1(k) −O(n−2)| > ϵ))

First note the bias of the first term ∆g1j1j2(k)Σ̂D,j1j2(k) is in the order of O(n−2). Next

by Lemma E.14, we could obtain P (|(nB)−1
∑

k

∑
j1,j2

∆g1j1j2(k)Σ̂D,j1j2(k)ΣD,j2j1(k) −

O(n−2)| > ϵ) ≲ ∆sas∗
E4 (nt, n,B, ϵ). Let ϵ = n1/4. Then we have p1∆

sas∗
E4 (t, n, B, ϵ) → 0

as long as log p1 ≪ min{nBN−2ν , n1/2BN−ν , n1/2}.

Step 1.2. (P (|(nB)−1
∑

k

∑
j1,j2

∆g2j1j2(k)Σ̂D,j2j1(k) −O(n−2)| > ϵ))

Next, we have P (maxk ∥Σ̂D(k) −ΣD∥max > ϵ) ≲ B∆∗
E2(ϵ, n,N, 2/3) by Lemma E.4.

Note we have p1B∆∗
E2(ϵ, n,N, 2/3) → 0 as long as log p1 + logB ≪ min{n1/3, N1/4}.

As a result, we have maxk ∥Σ̂D(k)∥max ≤ c with probability tending to 1.

In the meanwhile P{maxk ∥D(k) − D∥ > ϵ} ≲ B∆E(ϵ, n,N) by Lemma E.2 and

p1B∆E(ϵ, n,N) → 0 as long as log p1 + logB ≪ min{n1/2, N1/4}. Hence under

the event {maxk ∥D(k) − D∥ > ϵ} with small enough ϵ (which holds with proba-

bility tending to 1), we have maxk ∥
....
g (ξ(k))∥max ≤ c. This leads to |∆g2j1j2(k)| ≤

c∥D(k) − D∥2. The bias of ∥D(k) − D∥2 is O(n−1). Next using Lemma E.7, we have

P (|(nB)−1
∑

k

∑
j1,j2

∆g2j1j2(k)Σ̂D,j2j1(k)−O(n−2)| > ϵ) ≲ ∆E4(n
3Bt,M). Then we have

p1∆E4(n
3Bt,M) → 0 by setting M = n3/4 as long as log p1 ≪ min{nBN−2ν , n1/2BN−ν , n3/4}

Step 2. (Proof of P (|∆b −O(n−2)| > ϵ))
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Under the event that {maxk ∥D(k) −D∥max ≤ ϵ} and {maxk,i ∥ξ(k)i −D∥max ≤ ϵ},

we have ∥g̈(ξ(k)i) − g̈(D(k))∥max ≤ c∥ξ(k)i − D(k)∥max ≤ c∥D(k)−i − D(k)∥max = c(n −

1)−1∥D(k)i − D(k)∥max. In the meanwhile, it holds, P{maxk ∥D(k) − D∥max > ϵ} ≤

B∆E(t, n,N) by Lemma E.2 and P{maxk,i ∥ξ(k)i −D∥max > ϵ} ≤ nB∆E(t, n − 1, N).

Hence we have |∆b| ≤ cB−1(n − 1)−3
∑

k,i ∥D(k)i − D(k)∥3max. As a result, the bias

term of |∆b| is at most O(n−2). By Lemma E.8, we have P (|∆b − O(n−2)| > t) ≲

∆E5(n
2t, nB,M1) + bB∆E(t1, n,N). Setting M1 = n2/3, t = N−ν and t1 = o(1), we

could achieve the result.

2. Proof of (b).

We decompose the R2
Zj ,DAS as in (b) of Theorem B.2. For simplicity, we treat σ2

y as

known and focus on others. For convenience, we define D(k)i = (Z̃(k)ij1, · · · , Z̃(k)ij(lj−1),

Z̃(k)ij1Ỹ(k)i, · · · , Z̃(k)ij(lj−1)Ỹ(k)i)
⊤ ∈ R2(lj−1), D(k) = n−1

∑n
i=1D(k)i ∈ R2(lj−1), D =

B−1
∑B

k=1D(k) ∈ R2(lj−1) and D = (π1, · · · , πlj−1, σzy,j1, · · · , σzy,j(lj−1))
⊤ ∈ R2(lj−1). In

addition, define

g(D) = σ−2
y

lj−1∑
l=1

D−1
l D2

lj+l

Then the bias estimator is B−1
∑

k ∆̂(k)
def
= B−1

∑
k{n−1(n − 1)

∑
i g(D(k)−i)} and

R2
Zj

= g(D).

By Taylor’s expansion, we have

g(D(k)−i)− g(D(k)) = ġ(D(k))
⊤(D(k)−i −D(k)) + 2−1(D(k)−i −D(k))

⊤g̈(ξ(k)i)(D(k)−i −D(k))

def
= ġ(D)⊤(D(k)−i −D(k)) + ∆(k)i.

Similarly as in the proof of (a), we have
∑

i ġ(D)⊤(D(k)−i−D(k)) = 0. It leaves to deal
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with the second part. Define ∆(k), ∆a, ∆b as in the previous proof of (a).

Step 1. (Proof of P (|∆a −∆zb| > ϵ))

In Step 1, we have ∆a = (2nB)−1
∑

k tr
{
g̈(D)Σ̂D(k)

}
+ (2nB)−1

∑
k tr

{
(g̈(D(k))−

g̈(D))Σ̂D(k)

} def
= ∆a1 + ∆a2. For ∆a1, it can be decomposed into four parts as in

(C.4)–(C.7). The bias can be verified in the order of O(n−2lj). Then by Lemma

E.3, P (|∆a1 − O(n−2lj)| > ϵ) ≲ ∆E2(nt/lj, nB,M). Setting M = n1/2 then we

have p2maxj lj∆E2(nt/lj, nB,M) → 0 using the condition that log p2 +maxj log lj ≪

min{nBN−2νl−2
j , n1/2BN−νl−1

j , n1/2}.

By Taylor’s expansion, we have

g̈j1j2(D(k))− g̈j1j2(D) =
∑
j3

...
g j1j2j3(D)(D

(j3)

(k) −D(j3))

+
∑
j3,j4

....
g j1j2j3j4(ξ(k))(D

(j3)

(k) −D(j3))(D
(j4)

(k) −D(j4))
def
= ∆g1j1j2(k) +∆g2j1j2(k),

where ξ(k) lies on the line joining D(k) and D. We deal with the above two parts

respectively.

Step 1.1. P (|(nB)−1
∑

k

∑
j1,j2

∆g1j1j2(k)Σ̂Dj2j1(k) −O(n−2
∑

l π
−1
jl )| > ϵ)

First note that when j1 = j2 or |j1 − j2| = lj − 1, we have g̈j1j2(D) ̸= 0, otherwise

we have g̈j1j2(D) = 0. The nonzero positions are the same for
...
g j1j2j3(D) for any j3. In

addition, we have ΣD,ll = O(πjl) and ΣD,lm = O(πjl) when |l−m| = lj − 1. Moreover,
...
g llj3(D) = O(π−2

jl ) and
...
g lmj3(D) = O(π−2

jl ) for |m − l| = lj − 1. Hence for the first

part we note that the bias of
∑

j1,j2
∆g1j1j2(k)Σ̂Dj2j1(k) is in the order of O(n−2

∑
l π

−1
jl ).

Next, by Lemma E.6, P (|(nB)−1
∑

k

∑
j1,j2

∆g1j1j2(k)Σ̂Dj2j1(k) −O(n−2
∑

l π
−1
jl )| > ϵ) ≲

∆sas∗
E4 (nϵπ

1/2
min/lj, n, B, t). Let t = n1/4. Then we have p2maxj ∆

sas∗
E4 (nϵπ

1/2
min/lj, n, B, t) →

0 as long as log p2 +maxj log lj ≪ min{nBN−2νπminl
−2
j , n1/2BN−νπ

1/2
minl

−1
j , n1/2}.
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Step 1.2. P (|(nB)−1
∑

k

∑
j1,j2

∆g2j1j2(k)Σ̂Dj2j1(k) −O(n−2
∑

l π
−1
jl )| > ϵ)

Next, we find that |
....
g j1j2j3j4(D)| is nonzero only if for all 1 ≤ m1,m2 ≤ 4, |jm1 −

jm2 | = 0 or lj − 1. Hence the total number of nonzero elements in |
....
g j1j2j3j4(D)|

is O(lj). Hence under the event that {maxk ∥ξ(k) − D∥max ≤ cπmin/2} with c small

enough, we have |
....
g j1j2j3j4(ξ(k))| = O(π−3

jl ) for any jm = l (jm ∈ {j1, j2, j3, j4}). This

can be guaranteed by P{maxk ∥ξ(k) − D∥max > cπmin/2} ≲ Blj∆E(π
1/2
min, n,N) and

log p2 + logB +maxj log lj ≪ min{n1/2π
1/2
min, N

1/2}.

Next, we have P (maxk,i,j ∥Σ̂D,ij(k) − ΣD,ij∥max > ϵ|ΣD,ij|) ≲ Bl2j∆
∗
E2(ϵ, n,N, 2/3).

In addition, under the condition that log p2+logB+maxj log lj ≪ min{n1/3, N1/4}, we

have p2Bmaxj l
2
j∆

∗
E2(ϵ, n,N, 2/3) → 0. Hence with probability tending to 1 we have

maxk,i,j |Σ̂D,ij(k)| ≤ c|ΣD,ij|, where c is a finite constant.

In addition we have |(D(j3)

(k) −D(j3))(D
(j4)

(k) −D(j4))| ≤ 2−1{(D(j3)

(k) −D(j3))2+(D
(j4)

(k) −

D(j4))2} for j3 ̸= j4 and |j3−j4| = lj−1. Hence the bias term of (nB)−1
∑

k

∑
j1,j2

∑
j3,j4

|
....
g j1j2j3j4(ξ(k))||(D

(j3)

(k) −D(j3))(D
(j4)

(k) −D(j4))||Σ̂Dj2j1(k)| is O(n−2
∑

l π
−1
jl ) by omitting the

zero elements in
....
g j1j2j3j4(ξ(k)).

As a result, we obtain P (|
∑

j1,j2
|(nB)−1

∑
k ∆g2j1j2(k)||ΣD,j2j1| −O(n−2

∑
l π

−1
jl )| >

ϵ) ≲ ∆E4(n
3Bπminϵ/lj,M) by Lemma E.7. Letting M = n1/3 then we obtain the result

as long as log p2 +maxj log lj ≪ min{nBN−2νπminl
−2
j , n1/2 BN−νπ

1/2
minl

−1
j , n1/3}.

Step 2. (Proof of P (|∆b −O(n−2
∑

l π
−1
jl )| > ϵ))

In Step 2, we still have P{maxk ∥D(k)−D∥max > t} ≤ B∆E(t, n,N) and P{maxk,i

∥ξ(k)i−D∥max > t} ≤ nB∆E(t, n−1, N) by Lemma E.2. Setting t = πmin then we have

p2maxj ljnB∆E(t, n−1, N) → 0 as long as log p2+maxj log lj ≪ min{(nπmin)
1/2, N1/2}.

Recall that
...
g llj3(D) = O(π−2

jl ) and
...
g lmj3(D) = O(π−2

jl ) for |m−l| = lj−1. Define Dπ =

diag{π−2
j1 , · · · , π−2

j(lj−1)}. This leads to |∆b| ≤ cB−1(n−1)−3
∑

k,i ∥Dπ(D(k)i−D(k))∥3max.
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Hence by Lemma E.8 we have P (|∆b − O(n−2)| > t) ≤ ∆E5(n
2tπ

1/2
min/lj, nB,M). Let

M = n2/3. Then we could obtain that p2maxj lj∆E5(n
2tπ

1/2
min/lj, nB,M) → 0 as long

as log p2 + maxj log lj ≪ min{nBN−2νπminl
−2
j , n1/2BN−νπ

1/2
minl

−1
j , n2/3}. This leads to

the final conclusion.

C.6 Proof of Theorem 3

1. Proof of (a).

The proof follows the proof of (a) of Theorem 1. Specifically, it can be derived that

P (maxj |R2
Xj ,AMS −R2

Xj
| > N−ν) ≤ p1∆

sas
E (N−ν , n, B,N) by Lemma E.11. As a result,

as long as Assumption 4 (a) holds, we have P (maxj |R2
Xj ,AMS −R2

Xj
| > N−ν) → 0.

2. Proof of (b).

The proof follows the proof of (b) of Theorem 1. It can be derived that P (maxj |R2
Xj ,AMS−

R2
Xj
| > N−ν) ≲ p2maxj lj∆

sas
E (N−ν/lj, n, B,N) + p2maxj lj maxl ∆

sas
B (πjl, n, B,N, πjl)

by Lemma E.17. Then under Assumption 4 (b) we have P (maxj |R2
Zj ,AMS − R2

Zj
| >

N−ν) → 0.

C.7 Proof of Theorem B.4

Under the SAS setting, the bias order of AVS measure is the same as in the RAS

setting, so omit the proof of the bias here. Next, we prove the uniform convergence for

AVS under SAS as follows.

1. Proof of maxj |R2
Xj ,AVS −∆xb −R2

Xj
| = Op(N

−ν) with ∆xb = O(n−1).

The guideline of the proof follows the proof of Theorem B.2, hence we only state

the difference here.
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Define D(k)i, D(k), and D as in the proof of Theorem B.2. By using the Taylor’s

expansion, it leads to

B−1
∑
k

g(D(k))− g(D) =
1

B

∑
k

ġ(D)⊤(D(k) −D) +
1

B

∑
k

(D(k) −D)⊤g̈(ξ(k))(D(k) −D)

def
= ∆1 +∆2, where ξ(k) is on the line joining D and D(k). In the following we use two

steps to deal with ∆1 and ∆2 respectively.

Step 1. First, by Lemma E.11, we have P (|∆1| > t) ≤ ∆sas
E (t, n, B,N).

Step 2. First we write ∆2 as

∆2 =
1

B

∑
k

(D(k) −D)⊤g̈(D)(D(k) −D) +
1

B

∑
k

(D(k) −D)⊤{g̈(ξ(k))− g̈(D)}(D(k) −D)

def
= ∆21 +∆22.

By Lemma E.12, we have P (|∆21| > t) ≤ ∆sas
E2 (t, n, B,N). Next, as shown in the proof

of Theorem B.2, as long as ∥ξ(k)−D∥max ≤ ϵ and ϵ small enough, we have |∆22| ≪ |∆21|.

In summary, it holds P (|∆2| > t) ≤ ∆sas
E2 (t, n, B,N) +B∆E(t1, n,N), where t1 = o(1).

Under the condition that log p1 + logB ≪ n1/2, log p1 + logN ≪ n2δ, and log p1 ≪

min{n1−2δBN−2ν , n1/2−δBN−ν}, we have p1∆sas
E2 (N

−ν , n, B,N)+p1B∆E(t1, n,N) → 0.

2. Proof of maxj |R2
Zj ,AVS −∆zb −R2

Zj
| = Op(N

−ν) with ∆zb = O(n−1lj)

The proof follows the conclusion (b) of the Theorem B.2. Define all the nota-

tions in the same way except under the SAS sampling scheme. In Step 1, we ob-

tain P (|∆1| > ϵ) ≤ lj∆
sas
E (ϵ/lj, n, B,N). Hence p2maxj lj∆

sas
E (N−ν/lj, n, B,N) → 0

as long as log p2 + maxj log lj ≪ min{n1−2δBN−2νl−2
j , n1/2−δBN−νl−1

j } and log p2 +

maxj log lj + logN ≪ n2δ. In Step 2.1, we obtain P (|∆D1 + ∆D2 − E(∆D1)| > ϵ) ≲

∆sas
E2 (ϵ/lj, n, B,N). Hence as long as log p2 + maxj log lj + logN ≪ n2δ and log p2 +
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maxj log lj ≪ min{n1−2δBN−2νl−2
j , n1/2−δBN−νl−1

j }, it holds p2maxj lj∆
sas
E2 (N

−ν/lj, n,

B,N) → 0. Next, in Step 2.2, we further have P (π−1
jl maxk |π̂(k),jl − πjl| > t) +

P (π−1
jl maxk |σ̂zy,(k)jl − σzy,jl| > t) + P (maxk |σ̂2

y(k) − σ2
y| > t) ≲ B∆E(tπ

1/2
min, n,N) with

t = O(1). Then we have p2maxj ljB∆sas
E (π

1/2
min, n,N) → 0 as long as log p2+maxj log lj+

logB ≪ n1/2π
1/2
min.

C.8 Proof of Theorem 4

Under the SAS setting, the bias order of DAS measure is the same as in the RAS

setting, so omit the proof of the bias here. Next, we prove the uniform convergence for

DAS under SAS as follows.

1. Proof of maxj |R2
Xj ,DAS −∆xb −R2

Xj
| = Op(N

−ν) with ∆xb = O(n−2)

The idea of the proof is the same as in the proof of Theorem 2. The notations are

defined in the same way as in Theorem 2 but under the SAS sampling scheme. The

main proof differences are in Step 1 and Step 2.

In Step 1, we first obtain P (|∆a1 −∆xb| > ϵ) ≲ ∆sas
E3 (nt, n,B,N,M, ϵ) by Lemma

E.13. Let M = n2δ, ϵ = n1/2+δ. Then we have p1∆
sas
E3 (nt, n,B,N,M, ϵ) → 0 as long as

log p1+logN ≪ min{n2δ, n3/2−3δ, n2−6δ} for δ ∈ (0, 1/3) and log p1 ≪ min{n1−2δBN−2ν , n1/2−δBN−ν}.

In Step 1.1, we obtain P (|(nB)−1
∑

k

∑
j1,j2

∆g1j1j2(k)Σ̂D,j1j2(k)ΣD,j2j1(k)−O(n−2)| >

t) ≲ ∆sas∗
E4 (nt, n,B, ϵ) by Lemma E.14. Let ϵ = n1/4+δ/2. Then we have p1∆sas∗

E4 (nt, n,B, ϵ) →

0 as long as log p1 ≪ min{n1−2δBN−2ν , n1−δBN−ν} and log p1+logN ≪ min{n3/2+δ, n5/8+δ/4}

under the condition that δ ∈ (0, 1/3).

In Step 1.2, we also have maxk ∥Σ̂D(k)∥max ≤ c with probability tending to 1 as long

as log p1+logB ≪ min{n1/3, N1/4}. Similarly we can show that max ∥
....
g (ξ(k))∥max ≤ c

with probability tending to 1 as long as log p1+logB ≪ min{n1/2, N1/4}. This leads to
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|∆g2j1j2(k)| ≤ c∥D(k)−D∥2. Next, by using Lemma P (|(nB)−1
∑

k

∑
j1,j2

∆g2j1j2(k)Σ̂D,j2j1(k)−

O(n−2)| > t) ≲ ∆sas
E2 (nt, n,B,N). We have p1∆

sas
E2 (nN

−ν , n, B,N) → 0 as long as

log p1 ≪ min{n1−2δBN−2ν , n1−δBN−ν , n2δ}.

In Step 2, we still have P{maxk ∥D(k)−D∥max > ϵ} ≤ B∆E(t, n,N) and P{maxk,i

∥ξ(k)i − D∥max > ϵ} ≤ nB∆E(t, n − 1, N) by Lemma E.2. This leads to |∆b| ≤

cB−1(n−1)−3
∑

k,i ∥D(k)i−D(k)∥3max. Hence by Lemma E.16 we have P (|∆b−O(n−2)| >

t) ≤ ∆sas
E5 (n

2t, n, B,N,M, ϵ). Let M = n2δ and ϵ = n3/2+δ. Then we could obtain that

p1∆
sas
E5 (n

2t, n, B,N,M, ϵ) → 0 as long as log p1 ≪ min{n1−2δBN−2ν , n1−δBN−ν , n2δ}.

This leads to the final conclusion.

2. Proof of maxj |R2
Zj ,DAS −∆zb −R2

Zj
| = Op(N

−ν) with ∆zb = O(n−2
∑

l π
−1
jl )

The proof follows the conclusion (b) of the Theorem 2. All the notations are defined

in the same way.

Step 1. (Proof of P (|∆a −∆zb| > ϵ))

In Step 1, we first obtain that P (|∆a1−O(n−2lj)| > ϵ) ≲ ∆sas
E3 (t/lj, n, B,N,M, ϵ).

Let M = n2δ, ϵ = n1/2+δ. Then we have p2maxj lj∆
sas
E3 (t/lj, n, B,N,M, ϵ) → 0 as

long as log p2 + maxj log lj + logN ≪ min{n2δ, n3/2−3δ, n2−6δ} for δ ∈ (0, 1/3) and

log p2 +maxj log lj ≪ min{n1−2δBN−2νl−2
j , n1/2−δBN−νl−1

j }.

Step 1.1. P (|(nB)−1
∑

k

∑
j1,j2

∆g1j1j2(k)Σ̂Dj2j1(k) −O(n−2
∑

l π
−1
jl )| > ϵ)

Next, In Step 1.1, we have P (|(nB)−1
∑

k

∑
j1,j2

∆g1j1j2(k)Σ̂Dj2j1(k)−O(n−2
∑

l π
−1
jl )| >

ϵ) ≲ ∆sas∗
E4 (ntπ

1/2
min/lj, n, B, ϵ) by Lemma E.14. Let ϵ = n1/4+δ/2. Then we have

p2maxj lj∆
sas∗
E4 (tπ

1/2
min/lj, n, B, ϵ) → 0 as long as log p2+maxj log lj ≪ min{n1−2δBN−2νl−2

j πmin,

n1−δBN−νl−1
j π

1/2
min} and log p2+maxj log lj +logN ≪ min{n3/2+δ, n5/8+δ/4}. Note that

n2δ ≤ n5/8+δ/4 ≤ n3/2+δ. Hence the results hold.
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Step 1.2. P (|(nB)−1
∑

k

∑
j1,j2

∆g2j1j2(k)Σ̂Dj2j1(k) −O(n−2
∑

l π
−1
jl )| > ϵ)

In Step 1.2, first under the event that {maxk ∥ξ(k)−D∥max ≤ cπmin/2} with c small

enough, we have |
....
g j1j2j3j4(ξ(k))| = O(π−3

jl ) for any jm = l (jm ∈ {j1, j2, j3, j4}). Under

SAS scheme, we still have P{maxk ∥ξ(k) −D∥max > cπmin/2} ≲ Blj∆E(π
1/2
min, n,N) and

log p2 + logB +maxj log lj ≪ min{n1/2π
1/2
min, N

1/2}.

Next, we have P (maxk,i,j ∥Σ̂D,ij(k) − ΣD,ij∥max > ϵ|ΣD,ij|) ≲ Bl2j∆
∗
E2(ϵ, n,N, 2/3).

In addition, under the condition that log p2+logB+maxj log lj ≪ min{n1/3, N1/4}, we

have p2Bmaxj l
2
j∆

∗
E2(ϵ, n,N, 2/3) → 0. Hence with probability tending to 1 we have

maxk,i,j |Σ̂D,ij(k)| ≤ c|ΣD,ij|, where c is a finite constant.

In addition we have |(D(j3)

(k) −D(j3))(D
(j4)

(k) −D(j4))| ≤ 2−1{(D(j3)

(k) −D(j3))2+(D
(j4)

(k) −

D(j4))2} for j3 ̸= j4 and |j3−j4| = lj−1. Hence the bias term of (nB)−1
∑

k

∑
j1,j2

∑
j3,j4

|
....
g j1j2j3j4(ξ(k))||(D

(j3)

(k) −D(j3))(D
(j4)

(k) −D(j4))||Σ̂Dj2j1(k)| is O(n−2
∑

l π
−1
jl ) by omitting the

zero elements in
....
g j1j2j3j4(ξ(k)).

As a result, we obtain P (|
∑

j1,j2
|(nB)−1

∑
k ∆g2j1j2(k)||ΣD,j2j1| −O(n−2

∑
l π

−1
jl )| >

ϵ) ≲ ∆sas
E2 (ntπmin/lj, n, B,N) by Lemma E.12. Then we have p2maxj lj∆

sas
E2 (ntπmin/lj, n,

B,N) → 0 by the condition log p2+maxj log lj ≪ min{n1−2δBN−2νl−2
j , n1−δBN−νl−1

j , n2δ}

and nπmin → ∞.

Step 2. (Proof of P (|∆b −O(n−2
∑

l π
−1
jl )| > ϵ))

In Step 2, we still have P{maxk ∥D(k)−D∥max > t} ≤ B∆E(t, n,N) and P{maxk,i

∥ξ(k)i−D∥max > t} ≤ nB∆E(t, n−1, N) by Lemma E.2. Setting t = πmin then we have

p2maxj ljnB∆E(t, n−1, N) → 0 as long as log p2+maxj log lj ≪ min{(nπmin)
1/2, N1/2}.

Recall that
...
g llj3(D) = O(π−2

jl ) and
...
g lmj3(D) = O(π−2

jl ) for |m−l| = lj−1. Define Dπ =

diag{π−2
j1 , · · · , π−2

j(lj−1)}. This leads to |∆b| ≤ cB−1(n−1)−3
∑

k,i ∥Dπ(D(k)i−D(k))∥3max.

Hence by Lemma E.16 we have P (|∆b−O(n−2)| > t) ≤ ∆sas
E5 (n

2tπ
1/2
minl

−1
j , n, B,N,M, ϵ).
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Let M = n2δ and ϵ = n2+δ. Then we could obtain that p1∆E5(n
2tπ

1/2
min/lj, nB, M) →

0 as long as log p2 + maxj log lj ≪ min{n1−2δBN−2νπminl
−2
j , n1−δBN−νπ

1/2
minl

−1
j } and

log p2+maxj log lj+logN ≪ min{n2δ, n5(1−2δ), n3−5δ}. Further note min{n2δ, n3/2−3δ} ≤

min{n2δ, n5(1−2δ), n3−5δ}. Then we have the final conclusion.

C.9 Proof of Theorem 5

The proof of (a) for the RAS is given in Theorem 2 of Wu et al. (2020). In the following

we prove (c) for RAS and (b) and (c) for the DC method.

1. Proof of (c) for RAS setting.

Define ḡB = B−1
∑B

k=1 g(θ̂(k)), θ̂ be the global moment estimator of θ, and θ̄B =

B−1
∑B

k=1 θ̂(k). Then it could be verified that

ŜE
2
=

n

B

( 1

nB
+

1

N

) B∑
k=1

{
g(θ̂(k))−R2

AVS(Xj)
}2

= c
B∑

k=1

{
g(θ̂(k))− ḡB

}2

= c
B∑

k=1

{
ġ(θ)⊤(θ̂(k) − θ̄B) + ∆(k)

}2

,

where c
def
= nB−1

{
1/(nB) + 1/N

}
, and ∆(k) is the remaining term of Taylor’s ex-

pansion, which can be ignored compared to the leading term by Lemma 1. Sub-

sequently, we study the expectation and variance respectively for the leading term

SB
def
= c

∑B
k=1{ġ(θ)⊤(θ̂(k) − θ̄B)}2 respectively.

1.1. Expectation of the leading term.
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It could be computed that

E
[ B∑

k=1

{
ġ(θ)⊤(θ̂(k) − θ̄B)

}2
]
= E

[ B∑
k=1

{
ġ(θ)⊤(θ̂(k) − θ̂)

}2 −B
{
ġ(θ)⊤(θ̄B − θ̂)

}2
]

def
= E(Q1 −Q2).

We have E(Q1) = E
[
E∗∑B

k=1

{
ġ(θ)⊤(θ̂(k) − θ̂)

}2]
= BE

[
E∗{ġ(θ)⊤(θ̂(k) − θ̂)

}2]
=

E(Bn−1τ̂) = Bn−1τ{1 + o(1)}, where τ̂ = ġ(θ)⊤Σ̂θġ(θ) and Σ̂θ is the global estimator

of Σθ. Therefore B−2E(Q1) = (nB)−1τ{1 + o(1)} = SE2. Next, it could be verified

that B−2E(Q2) = B−1(nB)−1τ{1 + o(1)} = O(B−1E(Q1)). As a result, E(SB) =

SE2{1 +O(B−1)}.

1.2. Variance of the leading term.

By Taylor’s expansion, it suffices to derive the variance of SB. Note that since

var(SB) = E{var∗(SB)} + var{E∗(SB)}, where E∗(·) and var∗(·) are the conditional

expectation and variance, we then study the two terms E{var∗(SB)} and var{E∗(SB)}

separately in Step 1 and Step 2.

Step 1. Expectation of conditional variance.

It could be proved that

var∗
[
c

B∑
k=1

{η⊤(θ̂(k) − θ̄B)}2
]
= c2var∗

[ B∑
k=1

{
η⊤(θ̂(k) − θ̂)

}2

−B
{
η⊤(θ̄B − θ̂)

}2]
def
= c2var∗(E11 − E12) = c2

{
var∗(E11) + var∗(E12)− 2 cov∗(E11, E12)

}
,

where η = ġ(θ). It suffices to study var∗(E11) and var∗(E12) respectively. First we

have var∗(E11) = Bvar∗[{η⊤(θ̂(k) − θ̂)}2]. Furthermore it holds var∗[{η⊤(θ̂(k) − θ̂)}2] ≤

E∗[{η⊤(θ̂(k)− θ̂)}4] = n−4{nE∗(η⊤Di−η⊤θ̂)4+3n(n−1)E∗2(η⊤Di−η⊤θ̂)2} = n−3(σ̂4+
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3(n − 1)τ̂ 2), where σ̂4
def
= E∗(η⊤Di − η⊤θ̂)4. As a result, var(E1) = E

{
var∗(E11)} =

O(Bn−2).

Similarly, we have var∗(E12) = B2var∗[{η⊤(θ̄B − θ̂)}2] ≤ B2E∗[{η⊤(θ̄B − θ̂)}4]. As

a result, var(E12) = E
{

var∗(E12)
}
= O(B2(nB)−2) = O(n−2) = o(var(E11)). Conse-

quently, we have that E{var∗(SB)} = O(1/B){1/(nB) + 1/N}2.

Step 2. Variance of conditional expectation.

In this step, we are going to compute var
{
E∗(SB)

}
. It could be proved that

E∗(SB) = cE∗
[ B∑

k=1

{
η⊤(θ̂(k) − θ̂)

}2

−B
{
η⊤(θ̄B − θ̂)

}2]
def
= cE∗(E21 − E22) = c

{
E∗(E21)− E∗(E22)

}
.

Then it suffices to study E∗(E21) and E∗(E22) respectively. First we have

E∗
[ B∑

k=1

{
η⊤(θ̂(k) − θ̂)

}2]
= BE∗

{
η⊤(θ̂(k) − θ̂)

}2

= Bn−1τ̂ ,

similarly, we have E∗
[
B
{
η⊤(θ̄B−θ̂)

}2]
= n−1τ̂ . Subsequently, we have var

{
cE∗(E21)

}
=

{1/(nB)+1/N}2var(τ̂) = {1/(nB)+1/N}2O(N−1), and var
{
cE∗(E22)

}
= o(var

{
cE∗(E21)

}
).

As a result, we have var
{
E∗(SB)

}
= O(N−1){1/(nB) + 1/N}2.

Combining the results of Step 1 and Step 2, and recall that SE2 = τ(1/(nB) +

1/N){1 + o(1)}, which leads to (SE2)−2var(SB) = O(B−1 + N−1). We finally have

ŜE
2
= SE2{1 +Op(B

−1/2 +N−1/2)}. This accomplishes the proof.

2. Proof of (b) for DC setting.

Under the DC setting, θ̂(k) is calculated based on non-overlapped and independent
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segments. As a consequence, we have

var
{ 1

B

∑
k

g(θ̂(k))
}
=

1

B
var

{
g(θ̂(k))

}
.

Without loss of generality we let E(Xij) = 0 and E(Yi) = 0. Define D(k)i = (X(k)ijY(k)i, X
2
(k)ij, Y

2
(k)i)

⊤.

Therefore θ̂(k) = n−1
∑n

i=1 D(k)i. By using the Taylor’s expansion, we have

g(θ̂(k)) = g(θ) + ġ(θ)⊤(θ̂(k) − θ) + (θ̂(k) − θ)⊤g̈(ξ(k))(θ̂(k) − θ)

= g(θ) + E1 + E2

where ξ(k) is on the line joining θ̂(k) and θ. The variance of the leading term ġ(θ)⊤(θ̂(k)−

θ) is given by τ(nB)−1{1 + o(1)}. Further note that E2 is dominated by E1 by the

proof of Lemma 2. That yields the conclusion (b).

3. Proof of (c) for DC setting.

Recall the definition of ḡB and θ̄B. First we have

ŜE
2
=

1

B2

B∑
k=1

{
g(θ̂(k))− ḡB

}2

=
1

B2

B∑
k=1

{
g(θ̂(k))− ḡB

}2

=
1

B2

B∑
k=1

{
ġ(θ)⊤(θ̂(k) − θ̄B) + ∆(k)

}2

,

where ∆(k) is the remaining term of Taylor’s expansion and can be ignored compared to

the leading term by Lemma 1. In the following we discuss the expectation and variance

respectively for the leading term SDC
B

def
= B−2

∑B
k=1{ġ(θ)⊤(θ̂(k) − θ̄B)}2 respectively.

3.1. Expectation of the leading term.
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Note that

E
[ B∑

k=1

{
ġ(θ)⊤(θ̂(k) − θ̄B)

}2
]
= E

[ B∑
k=1

{
ġ(θ)⊤(θ̂(k) − θ)

}2 −B
{
ġ(θ)⊤(θ̄B − θ)

}2
]

def
= E(Q3 −Q4).

We have E(Q3) = Bn−1ġ(θ)⊤E{(Di−θ)(Di−θ)⊤}ġ(θ) = Bn−1τ . Therefore B−2E(Q3) =

(nB)−1τ = SE2. Next, E(Q4) = B(nB)−1τ = o(E(Q3)). As a result, E(SDC
B ) =

SE2{1 +O(B−1)}.

3.2. Variance of the leading term.

By using the Taylor’s expansion result, it suffices to derive the variance of
∑B

k=1{η⊤(θ̂(k)−

θ̄B)}2. Note that we have

var
[ B∑

k=1

{η⊤(θ̂(k) − θ̄B)}2
]
= var

[ B∑
k=1

{
η⊤(θ̂(k) − θ)

}2

−B
{
η⊤(θ̄B − θ)

}2]
def
= var(E3 − E4).

It suffices to study var(E3) and var(E4) respectively. First we have var(E3) = Bvar[{η⊤(θ̂(k)−

θ)}2]. Furthermore it holds var[{η⊤(θ̂(k)−θ)}2] ≤ E[{η⊤(θ̂(k)−θ)}4] = n−4{nE(η⊤Di−

η⊤θ)4+3n(n−1)E2(η⊤Di−η⊤θ)2} = O(n−2). As a result, var(E3) = O(Bn−2). Next we

have var(E4) = B2var[{η⊤(θ̄B−θ)}2] ≤ B2E[{η⊤(θ̄B−θ)}4] = O(B2(nB)−2) = O(n−2).

Consequently, we have for the leading term that (SE2)−2var(SDC
B ) = O(B−1).

In summary, we have ŜE
2
= SE2{1+Op(B

−1/2)}. In the DC setting we have N > B

and N ≥ nB, hence the final conclusion holds since B−1/2 is the leading order.
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D Screening Consistency

D.1 Proof of Theorem 6

To prove the screening consistency, we follow the following 4 steps. Let θ = (β⊤, γ∗⊤
1 , · · · , γ∗⊤

p2
)⊤,

where γ∗
j = (π

1/2
j1 γj1, · · · , π1/2

j(lj−1)γj(lj−1)). We prove the case for the AMS measure. For

the AVS and DAS measure, the following Step 3 could be slightly revised by using

the results from Theorem B.2 and 2.

Step 1. (
∑

j R2
Xj

≤ cx and
∑

j R2
Zj

≤ cz)

For convenience, we assume var(Xij) = 1. First, for the quantitative covariates, we

have
∑

j σ
2
xyj =

∑p
j=1(θ

⊤Σ·j)
2 = θ⊤Σ2θ ≤ λmax(Σ)(θ

⊤Σθ) ≤ σ2
yλmax(Σ)

def
= cx < ∞ by

Assumption 6, where we have θ⊤Σθ = var{X⊤
i β +Z⊤

i γ} ≤ σ2
y. Next, note that R2

Zj
=

σ−2
y

∑lj−1
l=1 π−1

jl σ
2
zy,jl = σ−2

y

∑lj−1
l=1 σ∗2

zy,jl, where σ∗
zy,jl = E(Zijl, Yi)/

√
πjl. Following the

same procedure we can show that
∑

j,l σ
∗2
zy,jl ≤ λmax(Σ)σ

2
y.

Step 2. (maxj |R2
Xj

−R2
Xj
| = op(N

−ν) and maxj |R2
Zj

−R2
Zj
| = op(N

−ν)) This can

be directly obtained from Theorem 1.

Step 3. (P (Mβ
T ̸⊂ M̂β

T ) → 0 and P (Mγ
T ̸⊂ M̂γ

T ) → 0)

Recall that Rmin = min{minj∈Mβ
T
R2

Xj
,minj∈Mγ

T
R2

Zj
}. Define Mβ∗

T = {j : R2
Xj

>

Rmin} and Mγ∗
T = {j : R2

Zj
> Rmin}. Immediately we have Mβ

T ⊂ Mβ∗
T and Mγ

T ⊂

Mγ∗
T . By Assumption 7, we have Rmin ≥ 2cθ > 0. In addition, recall that M̂β

T = {j :

R2
Xj

> cθ}. In this step we show that Mβ∗
T ⊂ M̂β

T and Mγ∗
T ⊂ M̂γ

T with probability

tending to 1.

We first prove P (Mβ∗
T ̸⊂ M̂β

T ) → 0. If Mβ∗
T ̸⊂ M̂β

T , then there exists at least one j

which is not covered by M̂β
T . As a result, it indicates R2

Xj
≤ 2−1Rmin. However, due to
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the definition of Mβ∗
T , we should have R2

Xj
> Rmin. This implies |R2

Xj
−R2

Xj
| > Rmin/2.

Hence P (Mβ∗
T ̸⊂ M̂β

T ) ≤ P (maxj |R2
Xj

− R2
Xj
| > Rmin/2). By Theorem 1, we have

P (maxj |R2
Xj

−R2
Xj
| > Rmin/2) → 0 for Rmin = N−ν . Therefore P (Mβ∗

T ̸⊂ M̂β
T ) → 0.

Similarly, using the same technique, we can show that P (Mγ∗
T ̸⊂ M̂γ

T ) → 0. Hence,

(3.2) holds.

Step 4. (P (max{|M̂β
T |, |M̂

γ
T |} < mmax) → 1)

Define Mβ∗∗
T = {j : R2

Xj
> Rmin/4}. Then immediately we have |Mβ∗∗

T |Rmin/4 ≤∑
j∈Mβ∗∗

T
R2

j ≤ τmaxσ
2
y. As a result, |Mβ∗∗

T | ≤ 4/Rminτmaxσ
2
y < ∞. by Assumption

3. If |M̂β
T | > |Mβ∗∗

T |, we must have at least one j ∈ M̂β
T with R2

Xj
> Rmin/2 but

R2
Xj

< Rmin/4. Hence it implies maxj |R2
Xj

−R2
Xj
| > Rmin/4. Following Theorem 1, we

have P{maxj |R2
Xj

−R2
Xj
| > Rmin/4} → 0 for Rmin = O(N−ν), which leads to the final

result. Similarly, it holds P (|M̂γ
T | < mmax) → 1. Hence, (3.3) holds.

D.2 Proof of Lemma 3

Recall that Z∗
ijl = Zijl/

√
πjl. Then the regression coefficient of Z∗

ijl is √
πjlγjl. Let

θ = (β⊤, γ∗⊤
1 , · · · , γ∗⊤

p2
)⊤, where γ∗

j = (π
1/2
j1 γj1, · · · , π1/2

j(lj−1)γj(lj−1))
⊤. Then we have

min{ min
j∈Mβ

T

R2
Xj
, min
j∈Mγ

T

R2
Zj
} = min

j∈MT

(Σ⊤
·jθ)

2/σ2
y

≥ min
j∈MT

(
∑
i∈MT

σij)
2θ2min/σ

2
y,

where θmin = minj∈MT
|θj| ≥ min{|βmin|, |γmin|} by Assumption 7, MT denotes the

true model. The first inequality is due to that σij ≥ 0 for i, j ∈ MT and the nonzero

model coefficients are positive. This yields the result.
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D.3 Proof of Theorem 7

The proof of Theorem 7 follows the same as Theorem 6. We give basic steps here to

save space. First the uniform convergence result can be obtained as in Theorem 3 and

4. Next, the screening consistency result can be obtained by following the same proof

procedure in Theorem 6.

E Technical Lemmas

E.1 Technical Lemmas for RAS Sampling Scheme

Lemma E.1. Define the ϕα-norm of variable X as

∥X∥ϕα = inf
{
t > 0 : E exp

( |X|α

tα

)
≤ 2

}
.

Let X1, · · · , Xn be independent variables satisfying E(Xi) = 0, E(X2
i ) = σ2

i , and

∥X∥ϕα ≤ M for some α ∈ (0, 1] ∪ {2} and A be a symmetric n × n matrix. For any

t > 0, we have

P
(
|X⊤AX − tr(AΣx)| > t

)
≤ 2 exp

{
− cmin

( t2

M4∥A∥2F
,
( t

M2σ1(A)

)α/2)}
,

where X = (X1, · · · , Xn)
⊤, Σx = diag{σ2

1, · · · , σ2
n}.

Proof. The proof is shown in Proposition 1.1 of Götze et al. (2021).

Lemma E.2. Let Z = {Z1, Z2, · · · , ZN} be independent and identically distributed

random variables following sub-Exponential distribution with mean µ. Subsamples

{Z̃1, · · · , Z̃n} are drawn from Z independently with replacement. Then for any t > 0,
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we have

P
(∣∣∣n−1

n∑
i=1

Z̃i − µ
∣∣∣ > t

)
≤ 2 exp

(
− nt2

3ϕ+ 2Mt/3

)
+ n exp(−c1M) + exp(−c2N

1/2)

def
= ∆∗

E(t, n,N,M), where ϕ = E(Z2
i ), c1 and c2 are finite positive constants. Particu-

larly with M = n1/2 we have

P
(∣∣∣n−1

n∑
i=1

Z̃i − µ
∣∣∣ > t

)
≤ 2 exp

(
− nt2

3ϕ+ 2
√
nt/3

)
+ n exp(−c1

√
n) + exp(−c2N

1/2)

def
= ∆E(t, n,N).

Proof. Consider the event E1 = {maxi |Z̃i−µ| < M}. Note that var(Z̃i|Z) = N−1
∑

i(Zi−

Z)2 ≤ N−1
∑

i Z
2
i

def
= Z2, where Z = N−1

∑N
i=1 Zi. Under event E1, we could use Bern-

stein inequality on n−1
∑

i(Z̃i − µ) to obtain,

P
(∣∣n−1

∑
i

(
Z̃i − µ

)∣∣ > t
∣∣∣Z, E1) ≤ 2 exp

(
− nt2

2Z2 + 2Mt/3

)

Define the event E2 = {Z2−ϕ < ϕ/2}, where ϕ = E(Z2). Then we have P (|n−1
∑n

i=1 Z̃i−

µ| > t) ≤

E
{
P
(∣∣n−1

∑
i

(
Z̃i − µ

)∣∣ > t
∣∣∣Z, E1, E2)P (E1, E2)

}
+ P (Ec

1) + P (Ec
2) (E.1)

We derive upper bounds for each part of (E.1).

Part 1. For the first part under event E1 and E2 immediately we have

E
{
P
(∣∣n−1

∑
i

(
Z̃i − µ

)∣∣ > t
∣∣∣Z, E1, E2)P (E1, E2)

}
≤ 2 exp

(
− nt2

3ϕ+ 2Mt/3

)
.
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Part 2. Next we derive an upper bound on P (Ec
1). Note that Zi follows sub-

Exponential distribution. Define var(Zi) = σ2. This implies P (|Zi − µ| > t) ≤

exp(−c1t). Therefore E{P (|Z̃i − µ| ≥ M |Z)} = E{N−1
∑

i I(|Zi − µ| > M)} =

E{I(|Zi − µ| > M)} ≤ exp(−c1M/σ2) ≤ exp(−c1M/ϕ). By using the maximum

inequality we have P (maxi |Z̃i − µ| ≥ M) ≤ n exp(−c1M/ϕ).

Part 3. By Lemma E.1, we have

P
(∣∣∣N−1

N∑
i=1

Z2
i − ϕ

∣∣∣ > t
)
≤ exp(−c3N

1/2),

by using α = 1/2 and ϕ = E(Z2
i ). By setting t = ϕ/2 and adjusting the constants we

could obtain the result.

Lemma E.3. Let Z = {Z1, Z2, · · · , ZN} be independent and identically distributed

random variables following sub-Exponential distribution with mean 0 and variance σ2
z .

Subsamples {Z̃1, · · · , Z̃n} are drawn from Z independently with replacement. Then for

any t > 0, we have

P
(∣∣∣n−1

n∑
i=1

Z̃2
i − σ2

z

∣∣∣ > t
)
≤2 exp

{
− cmin

(nt2

M4
,
nt

M2

)}
+ n exp(−M)

def
= ∆E2(t, n,M).

Proof. Define the event E1 = {maxi |Z̃i| ≤ M}. Let Z̃ = (Z̃1, · · · , Z̃n)
⊤ and A = In.

Then we could write
∑

i Z̃
2
i = Z̃⊤AZ̃. It could be further verified that ∥A∥2F = O(n)
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and σ1(A) = 1. Given Z, we have

P
(
n−1

∣∣∣ n∑
i=1

Z̃2
i

∣∣∣ > t
∣∣∣Z) ≤ 2 exp

{
− cmin

(nt2

M4
,
nt

M2

)}

with α = 2 and ∥Z̃i∥ϕα ≤ M in Lemma E.1. Next recall that Zi follows sub-Exponential

distribution, then we have P (Ec
1) ≲ n exp(−M).

Lemma E.4. Let Z = {Z1, Z2, · · · , ZN} be independent and identically distributed

random variables following sub-Exponential distribution with mean 0 and variance σ2
z .

Subsamples {Z̃1, · · · , Z̃n} are drawn from Z independently with replacement. Then for

any t > 0, we have

P
(∣∣∣n−1

n∑
i=1

Z̃2
i − σ2

z

∣∣∣ > t
)
≤ 2 exp

(
− nt2

3ϕ+ 2nδt/3

)
+ n exp(−c1n

δ/2) + exp(−c2N
1/4)

def
= ∆∗

E2(t, n,N, δ), where ϕ = E(Z4
i ), c1 and c2 are finite positive constants.

Proof. Consider the event E1 = {maxi |Z̃2
i −σ2

z | < nδ} for δ ≥ 0. Note that var(Z̃2
i |Z) =

N−1
∑

i(Z
2
i −Z2)2 ≤ N−1

∑
i Z

4
i , where Z2 = N−1

∑N
i=1 Z

2
i . Under event E1, we could

use Bernstein inequality on n−1
∑

i(Z̃
2
i − σ2

z) to obtain,

P
(∣∣n−1

∑
i

(
Z̃2

i − σ2
z

)∣∣ > t
∣∣∣Z, E1) ≤ 2 exp

(
− nt2

2Z4 + 2nδt/3

)

Define the event E2 = {Z4−ϕ < ϕ/2}, where ϕ = E(Z4). Then we have P (|n−1
∑n

i=1 Z̃
2
i −

σ2
z | > t) ≤

E
{
P
(∣∣n−1

∑
i

(
Z̃2

i − σ2
z

)∣∣ > t
∣∣∣Z, E1, E2)P (E1, E2)

}
+ P (Ec

1) + P (Ec
2) (E.2)

43



Recall that Zi follows sub-Exponential distribution, hence we have P (Ec
1) ≤ nP (|Zi| ≥

nδ/2) ≤ n log(−c1n
δ/2). Next, by Proposition 1.1 of Götze et al. (2021) we have

P
{
|N−1

∑
i

Z4
i − ϕ| > t

}
≤ 2 exp

(
− cmin(Nt2, (Nt)1/4)

)
.

By letting t = ϕ/2 we could obtain the above result.

Lemma E.5. Let Z = {Z1, Z2, · · · , ZN} be independent and identically distributed

random variables following sub-Exponential distribution with mean 0 and variance σ2
z .

Subsamples {Z̃1, · · · , Z̃n} are drawn from Z independently with replacement. Then for

any t > 0, we have

P
(∣∣∣ n∑

i ̸=j

Z̃iZ̃j

∣∣∣ > t
)
≤ 2 exp

{
− cmin

( t2

M4n2
,

t

M2n

)}
+ n exp(−M).

def
= ∆E3(t, n,M).

Proof. Define the event E1 = {maxi |Z̃i| ≤ M}. Let Z̃ = (Z̃1, · · · , Z̃n)
⊤ and A =

1n1
⊤
n − In. Then we could write

∑
i ̸=j Z̃iZ̃j = Z̃⊤AZ̃. It could be further verified that

∥A∥2F = O(n2) and σ1(A) = n. Given Z, we have

P
(∣∣∣ n∑

i ̸=j

Z̃iZ̃j

∣∣∣ > t
∣∣∣Z) ≤ 2 exp

{
− cmin

( t2

M4n2
,

t

M2n

)}

with α = 2 and ∥Z̃i∥ϕα ≤ M in Lemma E.1. Next recall that Zi follows sub-Exponential

distribution, then we have P (Ec
1) ≤ n exp(−M).

Lemma E.6. Let Z = {Z1, Z2, · · · , ZN} be independent and identically distributed
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random variables following sub-Exponential distribution with mean 0 and variance σ2
z .

In the kth subsampling round, {Z̃(k)1, · · · , Z̃(k)n} is drawn from Z independently with

replacement. Then for any t > 0, we have

P
(∣∣∣ B∑

k=1

n∑
i,j

Z̃(k)iZ̃
2
(k)j

∣∣∣ > t
)
≤ 2 exp

{
− cmin

( t2

M4n2B
,

t

M2n

)}
+ nB exp(−M1/2)

def
= ∆∗

E4(t,M).

Proof. Then proof follows Lemma E.7 and Lemma E.3 but |Z̃j|2 ≤ M .

Lemma E.7. Let Z = {Z1, Z2, · · · , ZN} be independent and identically distributed

random variables following sub-Exponential distribution with mean 0 and variance σ2
z .

In the kth subsampling round, {Z̃(k)1, · · · , Z̃(k)n} is drawn from Z independently with

replacement. Then for any t > 0, we have

P
(∣∣∣ B∑

k=1

n∑
i ̸=j

Z̃(k)iZ̃(k)j

∣∣∣ > t
)
≤ 2 exp

{
− cmin

( t2

M4n2B
,

t

M2n

)}
+ nB exp(−M)

def
= ∆E4(t,M).

Proof. Let Z̃(k) = (Z̃(k)1, · · · , Z̃(k)n)
⊤ ∈ Rn and Z̃ = (Z̃⊤

(1), · · · , Z̃⊤
(B))

⊤ ∈ RnB. Define

A = 1n1
⊤
n − In and A = IB × A. Then we have ∥A∥2F = O(n2B) and σ1(A) = O(n).

Consequently, by using the same technique as in Lemma E.5 we can obtain the result.

Lemma E.8. Let Z = {Z1, Z2, · · · , ZN} be independent and identically distributed

random variables following sub-Exponential distribution. Subsamples {Z̃1, · · · , Z̃n} are
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drawn from Z independently with replacement. Then for any t > 0, we have

P
(∣∣∣n−1

n∑
i=1

Z∗3
i − σz3

∣∣∣ > t
)
≤ 2 exp

{
− cmin

(nt2

M6
,
nt

M3

)}
+ n exp(−M)

def
= ∆E5(t, n,M), where σz3 = E(Z3

i ), c1 and c2 are finite positive constants.

Proof. Define the event E1 = {maxi |Z̃i| ≤ M}. Let Z∗ = (Z̃
3/2
1 , · · · , Z̃3/2

n )⊤ and

A = In. Then we could write
∑

i Z̃
3
i = Z∗⊤AZ∗. It could be further verified that

∥A∥2F = O(n) and σ1(A) = 1. Given Z, we have

P
(
n−1

∣∣∣ n∑
i=1

Z̃3
i

∣∣∣ > t
∣∣∣Z) ≤ 2 exp

{
− cmin

(nt2

M6
,
nt

M3

)}

with α = 2 and ∥Z∗
i ∥ϕα ≤ M3/2 in Lemma E.1. Next recall that Zi follows sub-

Exponential distribution, then we have P (Ec
1) ≲ n exp(−M).

Lemma E.9. Let Z = {Z1, Z2, · · · , ZN} be independent and identically distributed

random variables following Bernoulli distribution with mean π, i.e., P (Zi = 1) = π.

Subsamples {Z̃1, · · · , Z̃n} are drawn from Z independently with replacement. Then for

any t > 0, we have

P
(∣∣∣n−1

n∑
i=1

Z̃i − π
∣∣∣ > t

)
≤ 2 exp

(
− nt2

3π + 2t/3

)
+ exp(−cN)

def
= ∆B(t, n,N, π)

where c is a finite positive constant.

Proof. The proof is the same with the proof of Theorem E.2 but noting that |Zi| ≤ 1

and var(Zi) = O(π).
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Lemma E.10. Let Z = {Z1, Z2, · · · , ZN} be independent and identically distributed

random variables following sub-Gaussian distribution with mean µ. Subsamples {Z̃1, · · · , Z̃n}

are drawn from Z independently with replacement. Then for any t > 0, we have

P
(∣∣∣n−1

n∑
i=1

Z̃i − µ
∣∣∣ > t

)
≤ 2 exp

(
− nt2

3ϕ+ 2
√
nt/3

)
+ n exp

(
− c1n

ϕ

)
+ exp(−c2N)

def
= ∆G(t, n,N), where ϕ = E(Z2

i ), c1 and c2 are finite positive constants.

Proof. Consider the event E1 = {maxi |Z̃i − µ| <
√
n}. Note that var(Z̃i|Z) =

N−1
∑

i(Zi − Z)2 ≤ N−1
∑

i Z
2
i

def
= Z2, where Z = N−1

∑N
i=1 Zi. Under event E1,

we could use Bernstein inequality on n−1
∑

i(Z̃i − µ) to obtain,

P
(∣∣n−1

∑
i

(
Z̃i − µ

)∣∣ > t
∣∣∣Z, E1) ≤ 2 exp

(
− nt2

2Z2 + 2
√
nt/3

)

Define the event E2 = {Z2−ϕ < ϕ/2}, where ϕ = E(Z2). Then we have P (|n−1
∑n

i=1 Z̃i−

µ| > t) ≤

E
{
P
(∣∣n−1

∑
i

(
Z̃i − µ

)∣∣ > t
∣∣∣Z, E1, E2)P (E1, E2)

}
+ P (Ec

1) + P (Ec
2) (E.3)

We derive upper bounds for each part of (E.3). The rest of the proof follows the same

procedure as in Part 1–3 in Lemma E.2. Specifically, in Part 2, we use the definition

of sub-Gaussian definition to obtain P (Ec
1) ≤ n exp(−c1n/σ

2). In Part 3, accordingly

we obtain P (Ec
2) ≤ exp(−c2Nϕ/σ2). Further note that σ2 ≤ ϕ then the results can be

obtained.
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E.2 Technical Lemmas for SAS Sampling Scheme

Lemma E.11. Let Z = {Z1, Z2, · · · , ZN} be independent and identically distributed

random variables following sub-Exponential/sub-Gaussian distribution with mean 0.

Under the SAS sampling scheme, let {Z̃(k)1, · · · , Z̃(k)n} be the subsample drawn from

the kth subsampling round and Z(k) = n−1
∑

i Z̃(k)i. Then for any t > 0, we have

P
(∣∣∣B−1

B∑
k=1

Z(k)

∣∣∣ > t
)
≤ 2 exp

(
− Bn1/2−δt2

2n−1/2+δ + 2t/3

)
+N exp(−cn2δ),

def
= ∆sas

E (t, n, B,N), where c is a positive constant and δ ∈ (0, 1/2).

Proof. Since Zi follows sub-Gaussian distribution, then it also follows sub-Exponential

distribution. Then we prove the result for sub-Exponential distribution. Let Zk =

(Zk, Zk+1, · · · , Zk+n−1)
⊤ as a sequential subsample starting from Zk and Zk = n−1

∑n
i=1 Zk+i−1.

Consider the event E1 = {maxk |Zk| < n−1/2+δ} with δ ∈ (0, 1/2]. Note that var(Z(k)|Z) =

K−1
∑

k Z
2

k− ¯̄Z2 ≤ n−1+2δ under event E1. Under the event E1, we can use the Bernstein

inequality to obtain,

P
(∣∣∣B−1

B∑
k=1

Z(k) − µ
∣∣∣ > t

∣∣∣Z, E1) ≤ 2 exp
(
− Bt2

2n−1+2δ + 2n−1/2+δt/3

)
.

Next, since Zi follows sub-Exponential distribution, then we have P (|Z(k)| > t) ≤

exp(−nt2/σ2) for sufficiently small t. Letting t = n−1/2+δ we have P (|Z(k)| > n−1/2+δ) ≤

exp(−n2δ/(2σ2)), where σ2 = var(Zi). As a result, it leads to P (maxk |Z(k)| > t) ≤

K exp(−n2δ/σ2), where K = N − n+ 1. Then it leads to the final result.

Lemma E.12. Let Z = {Z1, Z2, · · · , ZN} be independent and identically distributed
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random variables following sub-Exponential/sub-Gaussian distribution with mean 0.

Under the SAS sampling scheme, let {Z̃(k)1, · · · , Z̃(k)n} be the subsample drawn from

the kth subsampling round. Let Z(k) = n−1
∑n

i=1 Z̃(k)i. Then for any t > 0, we have

P
(∣∣∣B−1

B∑
k=1

Z2

(k) −O(n−1)
∣∣∣ > t

)
≤ 2 exp

(
− Bn1−2δt2

2n−1+2δ + 2t/3

)
+N exp(−cn2δ),

def
= ∆sas

E2 (t, n, B,N), where c is a positive constant, n−1 ≲ t and δ ∈ (0, 1/2).

Proof. Let Zk = (Zk, Zk+1, · · · , Zk+n−1)
⊤ as a sequential subsample starting from Zk

and Zk = n−1
∑n

i=1 Zk+i−1. Consider the event E1 = {maxk |Zk| < n−1/2+δ} with

δ ∈ (0, 1/2]. By the Bernstein inequality, we have

P
(∣∣∣B−1

B∑
k=1

Z2

(k)

∣∣∣ > t
∣∣∣E1,Z) ≤ 2 exp

(
− Bt2

2ϕ+ 2n−1+2δt/3

)

where ϕ = var(Z2

(k)|Z) ≤ K−1
∑

k Z
4

k ≤ n−2+4δ under the event E1.

Next, since Zi follows sub-Exponential distribution, then we have P (|Z(k)| > t) ≤

exp(−nt2/σ2) for sufficiently small t. Letting t = n−1/2+δ we have P (|Z(k)| > n−1/2+δ) ≤

exp(−n2δ/(2σ2)), where σ2 = var(Zi). As a result, it leads to P (maxk |Z(k)| > t) ≤

K exp(−n2δ/σ2), where K = N − n+ 1. This leads to the final result.

Lemma E.13. Let Z = {Z1, Z2, · · · , ZN} be independent and identically distributed

random variables following sub-Exponential/sub-Gaussian distribution with mean 0.

Under the SAS sampling scheme, let {Z̃(k)1, · · · , Z̃(k)n} be the subsample drawn from
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the kth subsampling round. Then for any t > 0, we have

P
(∣∣∣(nB)−1

B∑
k=1

Z̃2
(k)i − σ2

z

∣∣∣ > t
)
≤ 2 exp

(
− Bt2

2ϵ2 + 2ϵt/3

)
+N∆E2(ϵ, n,M),

def
= ∆sas

E3 (t, n, B,N,M, ϵ), where ∆E2(ϵ, n,M) is given in Lemma E.3.

Proof. Let Zk = (Zk, Zk+1, · · · , Zk+n−1)
⊤ as a sequential subsample starting from Zk.

Consider the event E1 = {maxk |n−1
∑

i Z̃
2
(k)i − σ2

z | < ϵ}. Define D(k) = n−1
∑

i(Z̃
2
(k)i −

σ2
z). By the Bernstein inequality, we have

P
(∣∣∣B−1

B∑
k=1

D(k)

∣∣∣ > t
∣∣∣E1,Z) ≤ 2 exp

(
− Bt2

2ϵ2 + 2ϵt/3

)

ϕ ≤ K−1
∑

k D
2

(k) ≤ ϵ2 under the event E1.

Next, by using Lemma E.3, we have P (|D(k)| > ϵ) ≤ ∆E2(ϵ, n,M). Using maximum

inequality we obtain P (max1≤k≤K |D(k)| > t) ≤ N∆E2(ϵ, n,M).

Lemma E.14. Let Z = {Z1, Z2, · · · , ZN} be independent and identically distributed

random variables following sub-Exponential distribution with mean 0 and variance σ2
z .

Under the SAS sampling scheme, let {Z̃(k)1, · · · , Z̃(k)n} be the subsample drawn from

the kth subsampling round. Then for any t > 0, we have

P
( 1

n2B

∣∣∣ B∑
k=1

n∑
i,j

Z̃(k)i(Z̃
2
(k)j − σ2

z)
∣∣∣ > t

)
≤ 2 exp

(
− Bt2

2ϵ4 + 2ϵ2t/3

)
+N exp

(
− cmin(nϵ2, (nϵ)1/2)

)
def
= ∆sas∗

E4 (t, n, B, ϵ).
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Proof. Let Zk = (Zk, Zk+1, · · · , Zk+n−1)
⊤ as a sequential subsample starting from Zk.

Define Zk = n−1
∑n

i=1 Zk+i−1 and Z2
k = n−1

∑n
i=1 Z

2
k+i−1 − σ2

z . Consider the event

E1 = {maxk{|Zk|, |Z2
k|} < ϵ} with δ ∈ (0, 1/2). By the Bernstein inequality, we have

P
(∣∣∣B−1

B∑
k=1

Z2
(k) · Z(k)

∣∣∣ > t
∣∣∣E1,Z) ≤ 2 exp

(
− Bt2

2ϕ+ 2ϵ2t/3

)

where ϕ = var(Z2
(k) · Z(k)|Z) ≤ K−1

∑
k(Z2

k · Zk)
2 ≤ ϵ4 under the event E1.

Next, since Zi follows sub-Exponential distribution, then we have P (|Z(k)| > ϵ) ≤

exp(−nϵ2/σ2) for ϵ sufficiently small. In addition, by Lemma E.1, we have P (|Z2
(k)| >

ϵ) ≤ 2 exp(−cmin(nϵ2, (nϵ)1/2)). This leads to the final result.

Lemma E.15. Let Z = {Z1, Z2, · · · , ZN} be independent and identically distributed

random variables following sub-Exponential distribution with mean 0 and variance σ2
z .

Under the SAS sampling scheme, let {Z̃(k)1, · · · , Z̃(k)n} be the subsample drawn from

the kth subsampling round. Then for any t > 0, we have

P
( 1

n2B

∣∣∣ B∑
k=1

n∑
i,j

Z̃(k)iZ̃(k)j

∣∣∣ > t
)

≤ 2 exp
(
− Bt2

2ϵ4 + 2ϵ2t/3

)
+N exp

(
− cnϵ2

)
def
= ∆sas

E4 (t, n, B, ϵ).

Proof. The proof follows Lemma E.14 but using Lemma E.1 with α = 2.

Lemma E.16. Let Z = {Z1, Z2, · · · , ZN} be independent and identically distributed

random variables following sub-Exponential/sub-Gaussian distribution with mean 0.

Under the SAS sampling scheme, let {Z̃(k)1, · · · , Z̃(k)n} be the subsample drawn from
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the kth subsampling round. Then for any t > 0, we have

P
(∣∣∣B−1

B∑
k=1

n−1
∑
i

Z̃3
(k)i − σz3

∣∣∣ > t
)
≤ 2 exp

(
− Bt2

2ϵ2 + 2ϵt/3

)
+N∆E5(ϵ, n,M),

def
= ∆sas

E5 (t, n, B,N,M, ϵ), where σz3 = E(Z3
i ) and ∆E5(ϵ, n,M) is defined in Lemma

E.8.

Proof. Let Zk = (Zk, Zk+1, · · · , Zk+n−1)
⊤ as a sequential subsample starting from Zk.

Consider the event E1 = {maxk |n−1
∑

i Z̃
3
(k)i−σz3| < ϵ}. Define D(k) = n−1

∑
i(Z̃

3
(k)i−

σz3). By the Bernstein inequality, we have

P
(∣∣∣B−1

B∑
k=1

D(k)

∣∣∣ > t
∣∣∣E1,Z) ≤ 2 exp

(
− Bt2

2ϕ+ 2ϵt/3

)

ϕ ≤ K−1
∑

k D
2

(k) ≤ ϵ2 under the event E1. Next, we obtain P (Ec
1) ≤ N∆E5(ϵ, n,M)

by Lemma E.8.

Lemma E.17. Let Z = {Z1, Z2, · · · , ZN} be independent and identically distributed

random variables following Bernoulli distribution with mean π, i.e., P (Zi = 1) = π.

Under the SAS sampling scheme, let {Z̃(k)1, · · · , Z̃(k)n} be the subsample drawn from

the kth subsampling round and Z(k) = n−1
∑

i Z̃(k)i. Then for any t > 0, we have

P
(∣∣∣B−1

B∑
k=1

Z(k) − µ
∣∣∣ > t

)
≤ 2 exp

(
− Bn1/2−δt2

cπ + 2t/3

)
+N exp(−c2n

2δ),

def
= ∆sas

B (t, n, B,N, π), where cπ = min{π, n−1/2+δ}, c1, c2 are positive constants and

δ ∈ (0, 1/2).

Proof. The proof follows the proof of Lemma E.11 but replacing µ = π.
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F Additional Numerical Results

In this section, we report some additional numerical results.

F.1 Numerical Results for Statistical Inference under RAS

and DC

In this section we compare the statistical inference performances under RAS and

DC respectively. Specifically, we consider the same Example 1 and Example 2 in

the main text with a fixed N = 104 and n = 500. For the DC setting ,the number

of subsamples is automatically set to be BDC = N/n = 20. For the RAS setting, we

set BRAS = 400. For each example, we calculate ŜE
2

for AVS by (3.1) under the two

settings respectively. To compare the performance of the automatic statistical inference

for the different settings, we present RSE
def
= ŜE

2
/SE2 − 1 for the first five variables

using boxplot in Figure F.1. For a reliable evaluation, we replicate the experiment for

R = 100 times. As we can observe from Figure F.1, with larger number of B under

RAS setting, we could obtain more accurate estimation of SE2, and then it could yield

more reliable statistical inference result.

F.2 Numerical Results for a Large p Setting

In this section, we report the finite-sample performance of the proposed method

which is similar with that in Section 4, but under a larger dimension p setting. Specif-

ically, we consider the same Example 1 and Example 2, but with a fixed dimension

p = 5× 104 and N = 104. To gauge the finite-sample performance, the same measure-
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ments in the main text (i.e. SE, Bias, RMSE, AUC and TC ) are reported. Experiment

is replicated R = 100 times. The details are summarized in Table F.1. From Table

F.1, it could be observed that the finite-sample performance under a large p setting is

consistent with the results stated in Section 4.2.

−0.4

0.0

0.4

0.8

Variable

R
S

E

DC
RAS

−0.4

0.0

0.4

Variable

DC
RAS

Figure F.1: Boxplot of RSE for the DC (light box) and RAS (dark box) for Example 1
(left panel) and Example 2 (right panel). Each box is summarized based on R = 100
simulation replications.

F.3 Additional Numerical Results in Section 4.2.

In this subsection, we report the remaining numerical results which are not specified

in the Section 4.2. Specifically, the Bias, SE and RMSE values of three screening

measures (i.e., AVS, DAS, AMS) under RAS scheme with N = 105 are given in Figure

F.2. Correspondingly, the statistical performances under RAS scheme and SAS scheme

with N = 106 are given in Figure F.3 and F.4.

In addition, we report the result for stronger signal case in Example 1 by setting

α = 0.04, ρ = 0.1, and σ = 0.4. Under this case we can calculate that τmax = 1.22,

σ2
y = 0.34 and Rmin = 2.81× 10−3. Correspondingly we have mmax = 585 in Theorem

6–7. Then we set |M̂| = mmax and calculate the true model covering rate as TCR=∑M
m=1 I(MT ⊂ M̂(m))/M , where M̂(m) denotes the selected model in the mth replicate
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and M = 500. We present the simulation results in Table F.2. The results show that

all the methods are able to achieve a relatively high screening accuracy when the signal

strength is higher. In addition, the Biases of both DAS and AMS methods are smaller

than the AVS method. Furthermore, the selected model is able to consistently cover the

true model (with TCP≈ 1) as nB increases, which corroborates with our theoretical

findings in Theorem 6–7.

F.4 Detailed Variable Information in Section 4.3.

In this subsection, the detailed variable information for the airline dataset in Section

4.3 are summarized in Table F.3.
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Figure F.2: Bar chart of SE, log(Bias) and log(RMSE) values for the AVS, DAS and
AMS measures for different (n,B) under the RAS sampling scheme for Example 1
(left panels) and Example 2 (right panels). The sample size N is fixed to N = 105.
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Figure F.3: Bar chart of SE, log(Bias) and log(RMSE) values for the AVS, DAS and
AMS measures for different (n,B) under the RAS sampling scheme for Example 1
(left panels) and Example 2 (right panels). The sample size N is fixed to N = 106.
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Figure F.4: Bar chart of SE, log(Bias) and log(RMSE) values for the AVS, DAS and
AMS measures for different (n,B) under the SAS sampling scheme for Example 1
(left panels) and Example 2 (right panels). The sample size N is fixed to N = 106.
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