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Here we have included additional details concerning MCMC implementation. We also

have additional figures referred to in the manuscript that are helpful, but not essential, to

the reader.

1. MCMC DETAILS FOR IMPLEMENTATION

For posterior inference, we use a Metropolis-Hastings-within-Gibbs sampling scheme (Müller,

1991, and references therein). The necessary full conditional distributions are given in Section

1 of the Supplementary Material. Sampling δ can be done following Gamerman (1997).

Depending on T , every voxel contributes information to either φr or ηr, but not both, due

to the definitions of ξ(·, r) and ψ(·, r). Following Albert and Chib (1993), we introduce latent

variables ζ1vr | Tv,βr, φvr
ind∼ N(Tv(x

>
vrβr + φvr), 1), ζ0vr | Tv,γr, ηvr

ind∼ N((1 − Tv)(z>vrγr +

ηvr), 1), v = 1, . . . , V . This induces conditional conjugacy, thus facilitating straightforward

Gibbs sampling.

A convenient feature of CAR models is the availability of easily interpretable conditional

distributions that follow from the Markov property. The CAR prior on φr implies that

φvr | φ(−v),r, τφr ∼ N(ρφv, (wv.τφr)
−1), where φ(−v),r = (φ1r, . . . , φv−1,r, φv+1,r, . . . , φV r)

> ∈

RV−1, wv. =
∑V

k=1wvk, and φv = w−1v·
∑V

k=1wvkφkr. Combined with the augmented data

ζ1vr, this yields φvr | ζ1vr,φ(−v),r, τφ,βr, Tv ∼ N(µ∗v,r, σ
2,∗
v ), where σ2,∗

v = (Tv + τφwv.)
−1 and

µ∗v,r = σ2.∗(Tv(ζ
1
vr −x>vrβr) + ρφwv.τφφv). The Markov property still holds since, conditional

on its neighbors, φvr is independent of the rest of the field. Thus, we can update independent

elements of φr simultaneously (e.g., in parallel or through ‘vectorized’ calculations in R) while

conditioning on all of their common neighbors. Such simultaneous updating is accomplished

through chromatic sampling (Brown et al., 2021, and references therein), so named due to its

association with coloring the GMRF graph. With simultaneous updates, chromatic Gibbs

sampling dramatically reduces the cost of sequential single-site updating in R while avoiding

the computational burden of drawing from high-dimensional Gaussian distributions. In fact,

Brown et al. (2021) show that its computational cost increases at a much lower rate in R than

block sampling via multivariate Gaussian draws. When coded in C++ without parallelization,
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chromatic sampling and single-site sampling are computationally similar, differing only in the

order of site updates. For our application in Section 4, we found the convergence behavior of

both schemes to be case-dependent. An in-depth investigation of this issue would be outside

the scope of the current paper.

The following full conditional distributions follow readily from the full posterior density

in Section 2,

βr|φr, τφr

ind.∼ N
(
µ∗βr

,Σ∗βr

)
, r = 1, ..., R

γr|ηr, τηr

ind.∼ N
(
µ∗γr

,Σ∗γr

)
, r = 1, ..., R

τφr
|αφr

,φr
ind.∼ Ga

(
a∗φr

, b∗φr

)
, r = 1, ..., R

τηr
|αηr

,ηr
ind.∼ Ga

(
a∗ηr

, b∗ηr

)
, r = 1, ..., R

Tv|δ,φv,ηv,Y v
ind.∼ Bernoulli{p∗v1/(p∗v1 + p∗v0)}

(1)

where φv = (φv1, ..., φvR)>, ηv = (ηv1, ..., ηvR)>, Y v = (Yv1, ..., YvR)>, and
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µ∗β = Σ∗βX
>
r (D − ρφr

W )φr

µ∗γr
= Σ∗γZ

>
r (D − ρηr

W )ηr

Σ∗βr
=

{
X>r (D − ρφr

W )Xr + τ−1φr
Σ−1φr

}−1
Σ∗γr

=
{
Z>r (D − ρηr

W )Zr + τ−1ηr
Σ−1ηr

}−1
a∗φr

= aφr
+ V/2

a∗ηr
= aηr

+ V/2

b∗φr
= bφr

+ (φr −Xrβr)
>(D − ρφr

W )(φr −Xrβr)/2

b∗ηr
= bηr

+ (ηr −Zrγr)
>(D − ρηr

W )(ηr −Zrγr)/2

p∗v1 = {g−1(c>v δ)}
R∏
r=1

Φ(φvr)
Yvr{1− Φ(φvr)}(1−Yvr)

p∗v0 = {1− g−1(c>v δ)}
R∏
r=1

Φ(ηvr)
(1−Yvr){1− Φ(ηvr)}Yvr .

The remaining steps are to sample δ and the spatial random effects φr and ηr.

Introduce ζ1vr and ζ0vr and let V` = {v : Tv = `}, ` = 0, 1. Define Yvr = I(ζ1vr ≥ 0) for

v ∈ V1, and similarly Yvr = I(ζ0vr < 0) for v ∈ V0. Letting T = diag(T1, . . . , TV ) ∈ RV×V ,

ζ1r = (ζ11r, . . . , ζ
1
V r)
> ∈ RV , and ζ0r = (ζ01r, . . . , ζ

0
V r)
> ∈ RV , this can be expressed as ζ1r |

βr, φvr,T ∼ NV {T (φr+Xrβr), I} and ζ0r | βr, φvr,T ∼ NV {(I−T )(ηr+Zrγr), I}. Using

the augmented data likelihood, the full conditional distributions of the spatial effects are

given by φr|ζ1r, τφr
,βr ∼ NV (µ∗φr

,Σ∗φr
) and ηr|ζ0r, τηr

,γr ∼ NV (µ∗ηr
,Σ∗ηr

), for r = 1, ..., R,

where Σ∗φr
=
(
T + τφr

(D − ρφW )
)−1

,

Σ∗ηr
=
(
I − T + τηr

(D − ρηW )
)−1

, µ∗φr
= Σ∗φr

T >(ζ1r − TXrβr), and µ∗ηr
= Σ∗ηr

(I −

T )>(ζ0r − (I − T )Zrγr). For the conditional distribution of ζ, it can be shown that,

for all v, r, ζ1vr | Yvr, φvr, βr, Tv
ind∼ I(Yvr = 0)TN{Tv(φvr + x>vrβr), 1, (−∞, 0)} + I(Yvr =

1)TN{Tv(φvr + x>vrβr), 1, (0,∞)}, and ζ0vr | Yvr, ηvr, βr, Tv
ind∼ I(Yvr = 1)TN{(1 − Tv)(ηvr +

z>vrγr), 1, (−∞, 0)}+ I(Yvr = 0)TN{(1−Tv)(ηvr +z>vrγr), 1, (0,∞)}, where TN(µ, σ2, (a, b))
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denotes a Gaussian distribution with mean µ and variance σ2 truncated to the interval (a, b).

Under our proposed model (1) - (5) in the manuscript, the full conditional density of δ is

π(δ|T ,C) ∝ exp{−δ>Σ−1δ δ/2+
∑V

v=1 Tvθv − b(θv)}, where C ∈ RV×J is the design matrix

constructed from c1, . . . , cV , θv = log[g−1(c>v δ)/{1− g−1(c>v δ)}], and b(·) = log{1 + exp(·)}.

Define T (δ) = (T1(δ), . . . , TV (δ))> ∈ RV andQ(δ) = diag(Q1(δ), . . . , QV (δ))> with Tv(δ) =

c>v δ + {Tv − g−1(c>v δ)}ġ(g−1(c>v δ)) and Q−1v (δ) = b̈(θv){ġ(g−1(c>v δ))}2 for v = 1, . . . , V .

Then, given the current iterate δ(t), the proposal distribution is δ(t+1) | δ(t) ∼ NJ(m(t),V (t)),

wherem(t) = {Σ−1δ +C>Q(δ(t)))C}−1 C>Q(δ(t))T (δ(t)) and V (t) = {Σ−1δ +C>Q(δ(t))C}−1.

If the prior on δ is elicited through the CMP approach, this proposal mechanism can still

be used after suitable modification.

Under the CMP elicitation of Bedrick et al. (1996) with the logistic link, we add J

covariate-binomial reponse pairs, {(TV+1, cV+1), . . . , (TV+J , cV+J)} = {(ap̃j , c̃
>
j )}Jj=1, where

TV+j = ap̃j and c̃>j , j = 1, 2, ..., J , are psuedo true statuses and linearly independent covariate

vectors for the j subpopulations, respectively. Unlike binomial observations, the values TV+j,

are not necessarily integer-valued. The vector of transformed observations T (δ) then has

the following individual components

Tv(δ) = c>v δ + {Tv − g−1(x>v δ)}g′(g−1(c>v δ)), for v = 1, ..., V,

TV+j(δ) = c̃>j δ + {ap̃j − ñjg−1(c̃
>
j δ)}g′(ñjg−1(c̃>j δ)), for j = 1, ..., J,

where ñj are the binomial weights. Similarly, define the diagonal matrix of weights Q(δ) to

have diagonal components

Q−1v (δ) = b′′(θv){g′(g−1(c>v δ))}2, for v = 1, ..., V,

Q−1V+j(δ) = ñjb
′′(θ̃j){g′(ñjg−1(c̃>j δ))}2, for j = 1, ..., J,

where θv = log[g−1(c>v δ)/{1 − g−1(c>v β)}] and θ̃j = log[g−1(c̃>j δ)/{1 − g−1(c̃>j δ)}]. The

proposal density based on the previously sampled value of δ, say δ(g−1), is multivariate
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normal with mean and covariance matrix given by

m(g) = {C>Q(δ(g−1))C}−1C>Q(δ(g−1))T (δ(g−1))

C(g) = {C>Q(δ(g−1))C}−1,

where C is the usual design matrix for the covariates cv and c̃j. Using this mean vector and

covariance matrix, the remainder of the Metropolis-Hastings algorithm follows.

In the simulation study in Subsection 3.2, the prior knowledge about pseudo-cases (i)-

(iv) in the manuscript are reflected with data augmentation. With covariates (intercept,

rescaled SDL, standardized intensity, interaction), we augment the model with pseudo-

design matrix C̃ = [(1, 0, 5, 0)>, (1, 1,−3,−3)>, (1, 0.5, 0, 0)>, (1, 0.7, 5, 3.5)>]> and psuedo-

observations ap̃ = (392, 8, 50, 8)> with weights n∗ = (400, 400, 100, 400)>. In the hippocam-

pus segmentation example in Section 4 of the manuscript, the covariate vector is indexed as

(intercept, rescaled SDL, gray matter inclusion indicator, interaction). The psuedo-design

matrix for cases (i)-(iv) is C̃ = [(1, 0, 1, 0)>, (1, 0.5, 0, 0)>, (1, 0.5, 1, 0.5)>, (1, 0.1, 0, 0)>]>.

The pseudo-observations are created with ap̃j = n∗jp
∗
j , j = 1, . . . , 4, with p∗1 = 0.9999, p∗2 =

0.001, p∗3 = 0.1, p∗4 = 0.01, and n∗1 = n∗2 = n∗3 = n∗4 = 25000.

2. SUPPLEMENTARY FIGURES
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Figure 1: Simulated squared intensity differences associated to the one reliable (upper left) and three
unreliable segmentations in the simulated label fusion example from Subsection 3.2.
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Figure 2: MCMC Trace plots of the δ coefficients for the simulated label fusion example. The
Geweke (Z) statistics and lag 1 autocorrelations are displayed above each plot.
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Figure 3: Posterior means of the atlas sensitivity fields (left four panels) and specificity fields (right
four panels) in the simulated example.

Figure 4: Manually segmented hippocampus (left), weighted and summed SDL map of the atlases
(middle) and gray matter segmentation of the target (right) for the label fusion application. The
gray matter segmentation is obtained by dichotomizing a tissue class segmentation obtained from
the ATROPOS algorithm.
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Figure 5: Trace plots and ergodic averages for the δ coefficients for the single-brain hippocampus
segmentation application. The Geweke Z statistics and lag 1 autocorrelations are displayed above
the trace plots.
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Figure 6: Manual segmentation (top left), one selected atlas segmentation (top right), and the mean
sensitivity (bottom left) and specificity (bottom right) maps associated with this atlas.
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Figure 7: Trace plot of the hippocampal volume for subject 1263 mentioned in Subsection 4.2. The
“jump” suggests a bi-modal marginal posterior distribution.
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