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Assumptions for Theorems

Let ⟨·, ·⟩ and ∥·∥ be the L2(T ) inner product and norm, respectively. For notational simplicity, let

x̃ai(t) = xai(g
−1(t)) and define the covariance of the curve x̃ai(t) as Kxa(s, t) = Cov[x̃ai(s), x̃ai(t)]

, where Kxa(s, t) is continuous on the interval [0, 1]. Then by Mercer’s Theorem we have

Kxa(s, t) =
∞∑
l=1

λalϕal(s)ϕal(t),

where λa1 > λa2 > . . . > 0 are eigenvalues and ϕa1(t), ϕa2(t) . . . are eigenfunctions of the covariance

operator corresponding to Kxa(s, t). Then by the Karhunen-Loève representation, the process x̃ai
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and the functional coefficient βa(t) follows the following eigen decompositions

x̃ai(t) =
∞∑
l=1

pailϕal(t) βa(t) =
∞∑
l=1

ealϕal(t),

where pail = ⟨x̃ai, ϕal⟩ are uncorrelated random variables with zero mean and variance λal and

eal = ⟨βa, ϕal⟩.

In practice, Kxa(s, t) is unknown and we can take the empirical version by

K̂xa(s, t) =
∞∑
l=1

λ̂alϕ̂al(s)ϕ̂al(t),

where (λ̂al, ϕ̂al) is the estimator of (λal, ϕal) with λ̂a1 ≥ λ̂a2 . . . ≥ 0.

Therefore, the systematic component in equation (12) can be rewritten as

ηi = vT

i b+

∫ 1

0

x̃i(t)β(t)dt = vT

i b+
2∑

a=1

∞∑
l=1

p̃aileal = vT

i b+
2∑

a=1

Kx∑
l=1

p̃aileal +Ri,

where p̃ail = ⟨x̃ai, ϕ̂al⟩, Ri =
2∑

a=1

∞∑
l=Kx+1

p̃aileal and Kx is the tuning parameter which is set to be

sufficiently large.

For notational simplicity, we define p̃i = (p̃T
1i, p̃

T
2i)

T = (p̃1i1, . . . , p̃1iKx , p̃2i1, . . . , p̃2iKx)
T,

e = (eT
1 , e

T
2 )

T = (e11, . . . , e1Kx , e21, . . . , e2Kx)
T, Y = (y1, . . . , yN)

T, v = (vT
1 , . . . ,v

T
N)

T, X̃ =

(x̃1(t), . . . , x̃N(t)), η = (η1, . . . , ηN)
T.

Let D = (v, X̃) and θ = (bT, eT)T be the unknown parameter vector of the models defined in

equation (11) and equation (12). Then the estimation θ̂ = (b̂T, êT)T is obtained by maximizing

the following log-likelihood function

ℓ(θ)
△
= ℓ(Y ;η) =

N∑
i=1

ℓi(yi; ηi) =
N∑
i=1

{
yiζ(vi,xi) + B[ζ(vi,xi)] + C(yi)

}
For simplicity, let C be a constant whose value might change according to different circum-

stances. Denote ℓ̇i,d(yi; d) and ℓ̈i,d(yi; d) as the first- and second-order derivative of ℓi(yi; d) with

respect to d, respectively. Also, similar to [1], we define

I(D) = −E
[
ℓ̈η(Y ; η)|D

]
= −E

[ N∑
i=1

ℓ̈i,ηi(yi; ηi)|D
]
,

where ηi = vT
i b+

∫ 1

0
x̃i(t)β(t)dt.
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In model (11), the response variable yi is related to both the scalar variables and the functional

variables. So, the main complicated issue comes from the dependence between vi and x̃i(t). To

solve this problem, similar to [2], we define

G(X̃) =
E(vℓ̈η(Y ; η)|X̃)

E(ℓ̈η(Y ; η)|X̃)
, and v = ṽ +G(X̃),

where ṽ = (ṽ1, . . . , ṽp+1)
p+1 is a zero mean (p + 1)-dimensional random vector and G(X̃) =

(G1(X̃), . . . , Gp+1(X̃))T is a (p + 1)-dimensional functional vector with Gj(X̃) ∈ L2(T ) for j =

1, . . . , p+ 1.

Suppose that the following assumptions hold

(A1) For each i ∈ {1, . . . , N}, E∥x̃i∥4 < ∞.

(A2) For each a ∈ [1, 2] and l, E(p4ail) ≤ Cλ2
al with the eigenvalue λal satisfies C

−1l−α ≤ λal ≤ Cl−α

and λal − λa(l+1) ≥ C−1l−α−1 for l ≥ 1 and some constant α > 1. In addition, |e∗al| ≤ Cl−γ

for some constant γ > α/2 + 1.

(A3) The tuning parameter Kx satisfies

Kx ≍ N
1

α+2γ ,

where the notation aN ≍ bN means that there exist constants 0 < L < M < ∞ such that

L ≤ aN/bN ≤ M for all N.

(A4) For each i, the scalar covariates vi satisfies E∥vi∥4 < ∞.

(A5) E(ṽ) = 0,

Ω1 = E
{ N∑

i=1

ℓ̈i,η∗i (yi; η
∗
i )ṽiṽ

T

i

}
and Ω2 = E

{ N∑
i=1

ℓ̇2i,η∗i (yi; η
∗
i )ṽiṽ

T

i

}
,

where Ω1 and Ω2 are assumed to be positive definite matrices and η∗i = vT
i b

∗+
∫ 1

0
x̃i(t)β

∗(t).

(A6) |I(D)| < C and I(D) satisfies the first-order Lipschitz condition.

(A7) The true value θ∗
x of θx is unique and θ̂x

p→ θ∗
x where θ̂x is the MLE of θx.

(A8) For i = 1, . . . , N , the likelihood function ℓi(θx) is thrice continuously differentiable with

respect to θx.
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(A9) There exist positive definite matrices A(θ∗
x) and B(θ∗

x) such that

lim
N→∞

− 1

N

N∑
i=1

∂2
θxℓi(θ

∗
x) = A(θ∗

x), lim
N→∞

1

N

N∑
i=1

∂θxℓi(θ
∗
x)∂θxℓi(θ

∗
x)

T = B(θ∗
x).

Remark 1. Assumptions (A1)-(A3) are quite usual in the settings of functional linear model(see

[3] and [4]). Assumption (A1) requires that x̃i has a finite fourth moment and is necessary to get

the L2 convergence of the estimated functional coefficients. In particular, the condition E(p4ail) ≤

Cλ2
al in Assumption (A2) holds if the random process x̃i is a Gaussian Process. The requirements

of the eigenvalues in Assumption (A2) prevent the spacings between adjacent eigenvalues from

being too small and ask that the slope function β(t) is smoother than the sample path of x̃i [2].

They are of great importance in ensuring the rate of convergence in Theorem 2.3. The last part

of Assumptions (A2) prevents the coefficients e∗al from decreasing too slowly. To optimize the

convergence rate of the functional coefficients, requirement of smoothing parameter in Assumption

(A3) is needed. Assumptions (A4)-(A6) are used to deal with the linear part with scalar variables.

Assumption (A4) is analogy to Assumption (A1). The condition of the Fisher information I(D)

in Assumption (A6) is analogous to [1]. Assumptions (A7)-(A8) are commonly used conditions in

parametric models, and they are applied here to develop the asymptotical consistency of the MLE

for the functional nonlinear mixed effects model for curve alignment.

Technical lemmas and proofs.

Let η̃i = vT
i b

∗ + p̃T
i e

∗, where b∗ and e∗ denote the true values of b and e, respectively.

Lemma 1. Let Ri =
∫ 1

0
x̃i(t)β

∗(t)dt−p̃T

i e
∗ for i = 1, . . . , N . Then under Assumptions (A1)-(A6),

we have

∥Ri∥2 = ∥η∗i − η̃i∥2 = Op(N
−(2γ+α−1)/(α+2γ)).

Thus

η∗i − η̃i = Op(N
−(2γ+α−1)/2(α+2γ)).
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Proof. Note that

Ri =

∫ 1

0

x̃i(t)β
∗(t)dt− p̃T

i e
∗

=
2∑

a=1

∞∑
l=1

⟨x̃ai, ϕal⟩⟨β∗
a, ϕal⟩ −

2∑
a=1

Kx∑
l=1

⟨x̃ai, ϕ̂al⟩⟨β∗
a, ϕal⟩

=
2∑

a=1

Kx∑
l=1

⟨x̃ai, ϕal⟩⟨β∗
a, ϕal⟩ −

2∑
a=1

Kx∑
l=1

⟨x̃ai, ϕ̂aj⟩⟨β∗
a, ϕal⟩

+
2∑

a=1

∞∑
l=Kx+1

⟨x̃ai, ϕal⟩⟨β∗
a, ϕal⟩

=
2∑

a=1

Kx∑
l=1

⟨x̃ai, ϕal − ϕ̂al⟩e∗al +
2∑

a=1

∞∑
l=Kx+1

⟨x̃ai, ϕal⟩e∗al

= I1 + I2

where I1 =
2∑

a=1

Kx∑
l=1

⟨x̃ai, ϕal − ϕ̂al⟩e∗al, and

I2 =
2∑

a=1

∞∑
l=Kx+1

⟨x̃ai, ϕal⟩e∗al =
2∑

a=1

∞∑
l=Kx+1

paile
∗
al.

Since ∥ϕ̂al − ϕal∥2 = Op(N
−1l2), then it follows from Assumptions (A1)-(A3) that

∥I1∥2 = ∥
2∑

a=1

Kx∑
l=1

⟨x̃ai, ϕal − ϕ̂al⟩e∗al∥2

≤ 2Kx

Kx∑
l=1

∥⟨x̃ai, ϕal − ϕ̂al⟩e∗al∥2

≤ 2Kx

Kx∑
l=1

∥ϕal − ϕ̂al∥2|e∗al|2

≤ OP (Kx)
Kx∑
l=1

N−1l2l−2γ

≤ OP (N
−1Kx)

Kx∑
l=1

l−2γ+2

≤ OP (N
−1Kx) = OP (N

− 2γ+α+1
α+2γ )

For I2, note that pail are uncorrelated random variables with zero mean and variance λal, then
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we have

E(∥I2∥2) = E(
2∑

a=1

∞∑
l=Kx+1

paile
∗
al)

2

=
2∑

a=1

∞∑
l=Kx+1

e∗2alλal

≤ 2C
∞∑

l=Kx+1

l−(2γ+α)

= Op(K
−(2γ+α−1)
x ) = Op(N

− 2γ+α−1
α+2γ )

Then Ri = I1 + I2 = Op(N
− 2γ+α−1

2(α+2γ) ) + Op(N
− 2γ+α−1

2(α+2γ) ) = Op(N
− 2γ+α−1

2(α+2γ) ) holds, which indicates

that ∥Ri∥2 = ∥η∗i − η̃i∥2 = Op(N
−(2γ+α−1)/(α+2γ)), thus Lemma 1 holds. �

Let ṽi = vi −G(x̃i) and

b̆ = arg max
b

N∑
i=1

ℓi(yi; ṽ
T

i b+ p̃T

i e
∗ +G(x̃i)b

∗).

Then the following Lemma says that the estimation b̆ is asymptotically distributed as normal

distribution.

Lemma 2. Under Assumptions (A1)-(A9), we have

√
N(b̆− b∗) → N(0,Ω−1

1 Ω2Ω
−1
1 ),

where Ω1 = E
{ N∑

i=1

ℓ̈i,η∗i (yi; η
∗
i )ṽiṽ

T

i

}
, Ω2 = E

{ N∑
i=1

ℓ̇2i,η∗i (yi; η
∗
i )ṽiṽ

T

i

}
and ṽi = vi −G(x̃i).

Proof. Let ω =
√
N(b− b∗) and ω̆ =

√
N(b̆− b∗), which according to the definition of b̆, is

obtained by maximizing the following function

M(ω) =
N∑
i=1

ℓi(yi; ṽ
T

i b
∗ + p̃T

i e
∗ +G(x̃i)b

∗ + ṽT

i ω/
√
N)−

N∑
i=1

ℓi(yi;v
T

i b
∗ + p̃T

i e
∗).

Taking a second-order Taylor’s expansion of M(ω) yields

M(ω) =
1√
N

N∑
i=1

ℓ̇i,η̃i(yi; η̃i)ṽ
T

i ω +
1

2
ωTΣω,
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where

Σ =
1

N

N∑
i=1

ℓ̈i,η̃i(yi; η̃i + νi)ṽiṽ
T

i

with νi lies between 0 and ṽiω/
√
N . It follows from [5] that Σ = −Ω1 + op(1).

On the other hand,

1

N

N∑
i=1

ℓ̇i,η̃i(yi; η̃i)ṽ
T

i =
1√
N

N∑
i=1

ℓ̇i,η∗i (yi; η
∗
i )ṽ

T

i +
1√
N

N∑
i=1

ℓ̈i,η∗i (yi; η
∗
i )ṽ

T

i (η̃i − η∗i )

+ op(1)

= I3 + I4 + op(1),

where

I3 =
1√
N

N∑
i=1

ℓ̇i,η∗i (yi; η
∗
i )ṽ

T

i and I4 =
1√
N

N∑
i=1

ℓ̈i,η∗i (yi; η
∗
i )ṽ

T

i (η̃i − η∗i ).

It is easy to find that I4 = op(1). By the Lindeberg-Feller central limit theory, we have

I3 → N(0,Ω2). Then,

M(ω) = IT

3ω − 1

2
ωTΩ1ω + op(1).

The results of [6] and [7] show that

ω̆ = Ω−1
1 I3 + op(1),

then Lemma 2 holds from the Slutsky Theorem. �

Lemma 3. Under Assumptions (A1)-(A9), we have

∥θ̂ − θ̆∥2 = Op(N
− 2γ−1

α+2γ ),

where θ̂ = (b̂
T

, êT)T and θ̆ = (b̆
T

, e∗T)T.

Proof. Taking a first-order Taylor’s expansion of ℓ̇(θ̂) = ∂ℓ(θ)
∂θ

|θ=θ̂ at θ̆ yields

0 = ℓ̇(θ̂) = ℓ̇(θ̆) + ℓ̈(θ̄)(θ̂ − θ̆) + op(1),

where θ̄ lies between θ̂ and θ̆, ℓ̇(θ̆) = ∂ℓ(θ)
∂θ

|θ=θ̆ and ℓ̇(θ̄) = ∂ℓ(θ)
∂θ

|θ=θ̄.
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Then we have

θ̂ − θ̆ = −[ℓ̈(θ̄)]−1ℓ̇(θ̆).

Denote

ℓ̇(θ̆) =

{
(
∂ℓ(θ̆)

∂b
)T, (

∂ℓ(θ̆)

∂e
)T
}T

=
N∑
i=1

ℓ̇i,η̆i(yi; η̆i)(v
T

i , p̃
T

i )
T,

where η̆i = vT
i b̆+ p̃T

i e
∗.

Note that

∂ℓ(θ̆)

∂b
=

N∑
i=1

ℓ̇i,η̆i(yi; η̆i)vi =
N∑
i=1

ℓ̇i,η∗i (yi; η
∗
i )vi +

N∑
i=1

ℓ̈i,η̄i(yi; η̄i)(v
T

i (b̆− b∗) +Ri)vi,

and

∂ℓ(θ̆)

∂e
=

N∑
i=1

ℓ̇i,η̆i(yi; η̆i)p̃i =
N∑
i=1

ℓ̇i,η∗i (yi; η
∗
i )p̃i +

N∑
i=1

ℓ̈i,η̄i(yi; η̄i)(p̃
T

i (ĕ− e∗) +Ri)p̃i,

where η̄i lies between η∗i and η̆i.

Similar to [8], we have

E
(
∥

N∑
i=1

ℓ̇i,η∗i (yi; η
∗
i )vi∥

)
= O(N1/2). (S1)

The Assumption (A2) and Lemma 1 indicate that

∥
N∑
i=1

ℓ̈i,η̄i(yi; η̄i)(v
T
i (b̆− b∗) +Ri)vi∥ = Op(N

1/2) +Op(N ·N−(2γ+α−1)/2(α+2γ))

= Op(
√
NKx).

(S2)

Equation (S1) and (S2) show that ∂ℓ(θ̆)/∂b = Op(
√
NKx). Similarly, we have ∂ℓ(θ̌)/∂e =

Op(
√
NKx). Therefore, ℓ̇(θ̆) = Op(

√
NKx).

Similar to Lemma A.3 of [9], we have
∥∥( 1

N
ℓ̈(θ̄)

)−1∥∥ = Op(λ
−1/2
Kx

) = Op(K
α/2
x ), which yields

∥θ̂ − θ̆∥ ≤
∥∥( 1

N
ℓ̈(θ̄)

)−1∥∥∥∥ 1
N
ℓ̇(θ̆)

∥∥
= Op(K

α/2
x )Op(N

−(2γ+α−1)/2(α+2γ))

= Op(N
−(2γ−1)/2(α+2γ))

Thus, the result ∥θ̂ − θ̆∥2 = Op(N
−(2γ−1)/(α+2γ)) holds. �

Proof of Theorem 2.1. The identifiability proof goes as follows. By assumptions in model (1),

the random effects and the random error can be integrated into a new Gaussian process error
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denoted as ϵ∗i (t) with E{ϵ∗i (t)} = 0. Then we have that ϵ∗i (t) = xi(t) − τ(gi(t)), thus there

is no ambiguity about the error term. Suppose that E{xi(t)} = τ1(g1i(t)) = τ2(g2i(t)) for all

i = 1, . . . , N , then we have τ1(t) = τ2(g2i(g
−1
1i (t))). Since the left-hand side of this equation doesn’t

depend on i, we have that g2i(g
−1
1i (t)) = l(t) for all i some function l(·). Then g−1

1i (t) = g−1
2i (l(t)) for

all i. The assumption in Theorem 1 shows that E(g1i) = E(g2i), then we have l(t) = t. Therefore,

g1i(t) = g2i(t) for all i and the warping functions are identifiable.

Proof of Theorem 2.2. Let η̂i = vT
i b̂+p̃T

i ê and for any z ∈ Rp+1, define η̂i(z) = vT
i b̂+p̃T

i ê+ṽT
i z,

where ṽi = vi −G(x̃i). Obviously, when z = 0,

η̂(z) = arg max
η(z)

ℓ(Y ; η(z)).

Then the following equation follows from a Taylor’s expansion

0 = ∂ℓ(η̂(z))
∂z

|z=0 =
N∑
i=1

ℓ̇i,η̂i(yi; η̂i)ṽi

=
N∑
i=1

ℓ̇i,η∗i (yi; η
∗
i )ṽi +

N∑
i=1

ℓ̈i,η∗i (yi; η
∗
i )ṽi(η̂i − η∗i ) + op(1),

Applying Lemma 2 and Lemma 3, the second term on the right hand side of the above equation

can be rewritten as

1

N

N∑
i=1

ℓ̈i,η∗i (yi; η
∗
i )ṽi(η̂i − η∗i ) =

1

N

N∑
i=1

ℓ̈i,η∗i (yi; η
∗
i )ṽiṽ

T

i (b̂− b∗) + op(N
1/2).

Then we have

(b̂− b∗) = −
[ 1
N

N∑
i=1

ℓ̈i,η∗i (yi; η
∗
i )ṽiṽ

T

i

]−1[ 1
N

N∑
i=1

ℓ̇i,η∗i (yi; η
∗
i )ṽi

]
+ op(N

−1/2).

Therefore, by Central Limit Theory and Slutsky’s Theorem, we have

√
N(b̂− b∗) → N(0,Ω−1

1 Ω2Ω
−1
1 ),

where Ω1 and Ω2 are defined in Lemma 2.
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Proof of Theorem 2.3. Similar to [2], for any a ∈ [1, 2], we have

∥β̂a(t)− β∗
a∥ =

∥∥ Kx∑
l=1

êalϕ̂al −
∞∑
l=1

e∗alϕal

∥∥2

≤ 2
∥∥ Kx∑

l=1

êalϕ̂al −
Kx∑
l=1

e∗alϕal

∥∥2
+ 2

∥∥ ∞∑
l=Kx+1

e∗alϕal

∥∥2

≤ 4
∥∥ Kx∑

l=1

(êal − e∗al)ϕ̂al

∥∥2
+ 4

∥∥ Kx∑
l=1

e∗al(ϕ̂al − ϕal)
∥∥2

+ 2
∞∑

l=Kx+1

e∗2al

≤ 4∥êa − e∗
a∥2 + 8Kx

Kx∑
l=1

e∗2al ∥ϕ̂al − ϕal∥2 + 2
∞∑

l=Kx+1

e∗2al .

Note that

∞∑
l=Kx+1

e∗2al ≤ C
∞∑

l=Kx+1

l−2γ = O(K−(2γ−1)
x ) = O(N−(2γ−1)/(α+2γ)), (S3)

and by ∥ϕ̂al − ϕal∥2 = Op(N
−1l2), we have

8Kx

Kx∑
l=1

e∗2al ∥ϕ̂aj − ϕaj∥2 ≤ Op(N
−1Kx) = op(N

−(2γ−1)/(α+2γ)). (S4)

In addition, from Lemma 3 we have ∥ê− e∗∥2 = Op(N
−(2γ−1)/(α+2γ)), then Theorem 2.3 holds

by combining this with equations (S3) and (S4).

Proof of Corollary 2.4. Let η̂i = vT
i b̂+

∫ 1

0
x̃i(t)β̂(t)dt, where b̂ and β̂(t) are obtained from our

proposed estimation procedure. Then, we have

η̂i − η∗i = vT

i b̂+

∫ 1

0

x̃i(t)β̂(t)dt−
[
vT

i b
∗ +

∫ 1

0

x̃i(t)β
∗(t)dt

]
= vT

i (b̂− b∗) +
2∑

a=1

∞∑
l=1

⟨x̃ai, ϕal⟩⟨β̂a, ϕ̂al⟩ −
2∑

a=1

∞∑
l=1

⟨x̃ai, ϕal⟩⟨β∗
a, ϕal⟩

= vT

i (b̂− b∗) +
2∑

a=1

∞∑
l=1

⟨x̃ai, ϕal⟩(êal − e∗al)

= I5 + I6,
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where êal = ⟨β̂a, ϕ̂al⟩, e∗al = ⟨β∗
a, ϕal⟩, I5 = vT

i (b̂− b∗) and

I6 =
2∑

a=1

∞∑
l=1

⟨x̃ai, ϕal⟩(êal − e∗al) =
2∑

a=1

∞∑
l=1

pail(êal − e∗al).

Given Theorem 2.2, the fact that ∥b̂− b∗∥ = Op(N
−1/2) holds. Then under Assumption (A4)

we have E∥I5∥2 = ∥b̂− b∗∥2Ev2
i = Op(N

−1).

Since ⟨x̃ai, ϕal⟩ are uncorrelated random variables with zero mean and variance λal, and by

Lemma 3 we have ∥ê− e∗∥2 = Op(N
−(2γ−1)/(α+2γ)). Then under Assumption (A2), we have

E(∥I6∥2) =
2∑

a=1

∞∑
l=1

λal∥êal − e∗al∥2 ≤ 2Op(N
2γ−1
α+2γ )C

∞∑
l=1

l−α = Op(N
2γ−1
α+2γ ).

Thus

η̂i − η∗ = I5 + I6 = Op(N
−1/2) +Op(N

−(2γ−1)/(α+2γ)) = Op(N
−1/2).

Note that the functional logistic regression model is a special case of model (11) and (12) with

a logistic link function, i.e. ηi = logit(πi). Since the inverse link function h−1(ηi) is continuous

and differentiable in ηi, then h−1(η̂i)− h−1(η∗i ) = Op(N
−1/2) holds, which indicate that π̂i − π∗

i =

Op(N
−1/2).

Proof of Theorem 2.5. θ̂x is the MLE of the second level model obtained through conditional

models described in Section 2.2, then under Assumptions (A7)-(A9), the theorem follows from

[10] immediately, to save space, we omit the proof here.
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