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the timing to evaluate Bessel function and confluent hypergeometric function. Section S.2
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S.1 Illustration of Timing to Evaluate Bessel Function
and Confluent Hypergeometric Function

When the confluent hypergeometric function is evaluated by calling the GNU scientific li-
brary GSL via Rcpp package and the modified Bessel function of second kind is evaluated
with the base package in R, with 10000 times repeated evaluations, on average, the confluent
hypergeometric function takes about 10.7 microseconds for each evaluation, while the Bessel
function takes about 7.8 microseconds for each evaluation. The timings are recorded using

the R package microbenchmark with results shown in Figure S.1.

S.2 1-D Process Realizations

In Figure S.2, we show the realizations from zero mean Gaussian processes with the CH class
and the Matérn class under different parameter settings. When the distance is within the
effective range, the Matérn covariance function results in more large correlations than the
CH covariance function. This makes the process realizations from the Matérn class smoother
even though the smoothness parameter is fixed at the same value for both the Matérn class
and the CH class. For the CH class, if o has a smaller value, the corresponding correlation
function has more small values within the effective range. This makes the process realizations
under the CH class look rougher. As we expect, when the effective range and the tail decay
parameter are fixed, the process realizations under the CH class look smoother for a larger

value of the smoothness parameter.
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Fig. S.1. Benchmark of the computing time to evaluate the confluent hypergeometric
function and the Bessel function in R. “Bessel” refers to the timing for evaluating the modified
Bessel function of the second kind and “HypergU” refers to the timing for evaluating the
confluent hypergeometric function of the second kind.
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Fig. S.2. Realizations over 2000 regular grid points in the domain [0, 2000] from zero mean
Gaussian processes with the CH covariance model and the Matérn covariance model under
different parameter settings. The realizations from the CH covariance are shown in the first
three columns and those from the Matérn covariance are shown in the last column. For the
first two rows, the effective range (ER) is fixed at 200. For the last two rows, the effective
range is fixed at 500. ER is defined as the distance at which correlation is approximately

0.05.
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S.3 Ancillary Results

To show the asymptotic behavior of the MLE of the microergodic parameter, we need some
results in terms of spectral densities of covariance functions. More precisely, the tail behavior
of the spectral densities can be used to check the equivalence of probability measures gen-
erated by stationary Gaussian random fields. Equivalence of Gaussian measures defined by
Gaussian processes has been studied in probability and statistics with sufficient conditions
given in Theorem 17 of Chapter III of Ibragimov and Rozanov (1978) for d = 1 and given
on page 156 of Yadrenko (1983) and page 120 of Stein (1999) for d > 1. In particular, the
following sufficient conditions can be used to check the equivalence of Gaussian probability
measures defined by covariance functions. If for some A > 0 and for some finite ¢ € R, one

has

0< filw)|w* <o as |w|— o0, and (S.1)
filw) = fo(w))? e s
/|w|>c{ fi(w) } dw < oo, (S.2)

then the two corresponding Gaussian measures P; and P, are equivalent. For isotropic

Gaussian random fields, the condition (S.2) can be expressed as

e N

where w := |w| with |-| denoting the Euclidean norm. The detailed discussion on equivalence
of Gaussian measures and the condition for equivalence can be found in Chapter 4 of Stein
(1999) and references (e.g., Stein, 1988, 1993; Stein and Handcock, 1989).

In what follows, we will introduce a few useful lemmas. Lemma 1 is used to diagonalize

two covariance matrices and it is needed in Lemma 2, which gives an important result on the

S.5



behavior of eigenvalues of a correlation matrix constructed from the CH correlation function.

Lemma 1. Let A and B be two n x n symmetric positive definite matrices. Then there
exists a non-singular matriz U such that UTAU = 1,,.,, and U'BU = D, where D is an

n X n diagonal matriz with positive diagonal entries.

Proof. For the symmetric matrix A, it follows from the Schur Decomposition Theorem
(e.g., Magnus and Neudecker, 1999, p. 17) that there exists an orthogonal n x n matrix
S consisting of eigenvectors of A and a diagonal matrix A := diag{\;,..., A\, } such that
STAS = A. Since A is positive definite, the diagonal entries of A are all positive. Let
AY? = diag{\/A1, ..., VA, } be the “square root” of A. Then we call AY/2 := A'/2S a square
root of A satisfying A = (AT)/2A1/2. As the matrix A'/? is invertible, the symmetric ma-
trix (AT)"Y2BA~Y/2 is well-defined. Note that (AT)"/2BA~'/2 is positive definite since
for all x € R", xT(AT)"'/2BA~/2x = |BY/2A~'/?x||? > 0 with the inequality becoming an
equality only if x = 0. Hence (AT)""/2BA~'/2 is also a symmetric and positive definite ma-
trix. According to the Schur Decomposition Theorem, there exists an orthogonal matrix O
and diagonal matrix D with positive diagonal entries such that OT(AT)"'/?BA~1/20 = D.
Now we define the non-singular matrix U := A~120, which satisfies UTAU = 1I,,,,,, as to
be established. O

Lemma 2. Suppose that v > 0 is fired. Given a set of n observation locations in a bounded
domain D, let 0iR.,(0y) be the nxn covariance matriz defined by the CH covariance function
C(h,v, ag, By, 08) with By := {a, Bo} and 0?R,,(0) be the n x n covariance matriz defined by
the CH covariance function C(h,v,a, 8,0%) with 6 := {«, B}. Assume that g, 0 > d/2. Let
A = diag{\1pn, ..., \un} be an n x n diagonal matriz with diagonal elements Ay, > 0 for

k=1,...,n such that U'02R,(00)U = 1,, and U'o’R,,(0)U = A for some non-singular
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matriz U. Then it can be established that for any e > 0, as n — oo,

—n IE%Z{A D — 1] = 0.
Proof. Note that the existence of the matrix U is true according to Lemma 1 and thus
Mems bk =1,...,n are well-defined.

Let & : R? — R be a function of the form &(w) = [p. exp{—ix"w}co(x)dx for any
w € R where ¢y(x) = |x|*74I(|x] < 1) for any x € RY k = (v + d/2)/(2m) with | - |
denoting the Euclidean norm, and m = |v + d/2] 4+ 1 with |z denoting the largest integer
less than or equal to . As d € {1,2,3}, k € (0,1/2), it follows from Lemma 2.3 of Wang
(2010) and proof of Theorem 8 of Bevilacqua et al. (2019) that the function &, is a continuous,
isotropic, and strictly positive function with &(w) < |w|™* when |w| — oo.

Let ¢ = ¢g * ... * ¢y denote the 2m-fold convolution of the function ¢q with itself, and
let & (w) = [paexp{—ix"w}ei(x)dx. Then & (w) = &(w)?™ for all w € R%. This implies
that & is also a continuous, isotropic, and strictly positive function. By Proposition 1, the

—(v+d) " and hence

spectral density f(|w|) of the CH covariance function satisfies f(|w|) < |w|
we have f(|w|)/&1(w) < 1 as |w| — oo. Note that this ratio (as a function of |w|) is a well-
defined and continuous function on arbitrary compact interval of the positive real line with

& > 0. Thus, there exist two positive constants (not depending on w) such that

< C¢, as|w|— . (S.4)

For any fixed v > 0, let f,,s(Jw|) denote the spectral density of the CH covariance
C(h;v,a, 8,0%) and let fyy a0.6,(|w|) denote the spectral density of the CH covariance C(h; v,

o, Bo,02). Then we define

B S B AR %)
e Ew) '
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It follows from direct calculation that for a constant C, > 0,

/]Rdn(w)de N 1“2(7;?/22) { /0 7 et (fa,a,ﬂ(r)§_1<fc;0,ao,go(7“))2dr

- d—1 fﬂ,a,ﬂ(r) - on,ao,ﬁ’o(T)>2
* /C"n ' ( 51 (I') dr} ’

where 7 = |r| and r € R%.

As shown in Theorem 3, for any fixed v > 0, the spectral density of the CH class satisfies
the conditions (S.1) and (S.2) when U;,EU(ZF’LO)‘) = "ggy (lrlz;ao(;) This implies that there exists a
constant C) (not depending on w) such that

)l < ey Y e R,

It follows immediately that the two integrals in the righ-hand side of Equation (S.5) are
hence finite for d = 1,2,3. Thus, 7 is square integrable, i.e., n € L?*(R?). From classic
Fourier theory (see Chapter 1 of Stein and Weiss (1971)), an immediate consequence of the
square integrability of 7 is that there exists a square-integrable function ¢g : R¢ — C such

that
n(w) — gr(w)Pdw, as k — oo,
R4

where gp(w) = [ra exp{—ix"w}g(x)I(|X|max < k)dx for all w € R and [X|pax = max<j<q |2;]
for x = (z1,...,24) € RL

Let a >0, m, := |la+d/2| +1,a0 := (a+d/2)/(2m,). Define

Go(x) = |x|™ (x| <1), VxeR,

So(w) = /Rd exp{—ix'w}é(x)dx, VYw € R%
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Let ¢; := Co*- - - * ¢ denote the 2m,-fold convolution of ¢y with itself. Let {¢, :n=1,2,...}
be a sequence of real numbers such that ¢, € (0,1) for all n and lim,_,o €, = 0. Then we

define

where C, : fRd ¢1(x)dx. Then we obtain the Fourier transform of e,,:

én(x) —/ exp{—ix'w}e,(x)dx = ,
Rd C.

where & (w) := Jpa exp{—ixTw}éi(x)dx = £2ma (y). This implies that there exists a constant

C% (not depending on w and n) such that

Ce
|én(w)] < 7
(]_ + €n|w|)a+d/2

Vw € R%. (S.6)
Note that it follows from Plancherel’s theorem that

| latx=3) = gt)Fax = —iwTy} - ()P

20 ly|"
= (Q—d/ |w|* | (w) [Pdw,
7T) R4

and it follows from Minkowski’s equality that

1/2 1/2
{ [ Jeas gt —g<x>|2dx} _ { L] ey —g(x))en(y>dy!2dx}
R4 Re J|y|<2mgen
91—fo/2 2m En eo/Q /2
- e VA de}

_ 21780/2(2ma6n)£0/200 / |w|£0 " 1/2
B (2m)*/ T ke (1 |wl?)? ’
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where the integral [, |w|®(1 + |w|?)"2dw is finite for £y < min{2,4 — d}. Thus, there exists

a constant Cy, such that

e % g(x) — g(x)Pdx < Cyey! (5.7)

Rd
for ¢y < min{2,4 — d}.

Next, we will show some useful bounds on eigenvalues of covariance matrices based on
results from spectral theory.

Let b(s,u) := Ey, ,[Z(s)Z(u)] - Ey, .. 5 1Z(s)Z(u)] for all s,u € D = [0, L4, Tt follows
from Equation (2.24) of Wang (2010) and the fact that supp(c;) C [—2m, 2m]¢ that for all
s,ue D,

b(s,u) = /Rd exp{~i(s — u) ' WH fo.a s (@) = foo.a0.6 (lw]) }dw
— [ exp{ils = w)whn(w)ts (w)deo
Rd
= (27r)d/ / g(x —y)ei(s — x)c1(u — y)dxdy (S.8)
Re JRd
= (2ﬂ)d/ / en * g(x —y)ei(s — x)er(u — y)dxdy
Re JRd

wem [ [ rayats = xa o - yxdy,

where h*(x,y) = {g(x —y) — e * g(x — Y) H(|X + ¥|max < 4m + 2L) for all x,y € R? and
h} is square integrable.
Define

ht(x,y) = / en(x —u)g(u —y)du, Vx,y € R%
[U|max<2m+2mq+L

The function h** : R* — C is again square integrable. Direct calculation yields that the
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first part of Equation (S.8) can be re-expressed as

ey [ [ eweatox = yieuls - xeafu - y)ixdy
—en' [ byl - x)at - y)dxdy

(S.9)
=) [ epfitw’s - vTw)6 @)
Rd JRA
X {/ exp{—i(w't — VTt)}én(w)n(v)dt} dvdw.
[t|max <2m+2mq+L
Let 07 : RY — C be the Fourier transform of g — e, * g and define
Gnp(w) == /d exp{—iw ' x}g(x) — ey * g(x)] 1 (|%]max < k)dx.
R
This implies that

/ 17 (W) — Gnp(w)Pdw — 0, as k — oc. (S.10)

R4

Let O(w) =27 [, exp{—it"w}I(|t|max < 4m +2L)dt. Then 6 is continuous and square

integrable with

/ 0(w)2dw < oo. (S.11)

Direct calculation yields that the second part of Equation (S.8) can be re-expressed as

) [ | [ Habey)enls = x)er(u — y)axdy

= (2m)~¢ /Rd /Rd expli(wTs — v ) (w ‘2|— v) ) (w ; V) ()6, (v, (S.12)
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Combining Equations (S.9) and (S.12) allows us to write b(s, u) as a sum of two parts:
b _ —d o Te T
s = [ ewnli’s - vTwla(wa®
Ré JR

X {/ exp{—i(w't — VTt)}én(w)n(v)dt} dvdw
[t|max <2m-+2mq+L

wen [ et v (257 6 (25 @i,

In the rest of the proof, we will relate b(s,u) with the eigenvalues of the CH covariance
matrix and give bounds on these eigenvalues. Let {¢1,...,1,} be as in Equation (2.15) of

Wang (2010). Then it follows from Equations (2.16) and (2.60) of Wang (2010) that

Ok V) s — Ok Uk frg g 50 = Mo — L =1 Uy + D,ivn,

where

[ ot (25)0 (U5 awiasay,
e / (@) @)a (V)

« { / exp{—i(wt — th)}én(w)n(v)dt} dvdw,
[t max <2m-+2mq+L

with  denote the complex conjugate of x. It then follows from Bessel’s inequality that

Z| il <2t foup SO A opas [ oPa,
s€Rd fao g ,80
Sl < 2 d{sup Cals)? }/ .
’ seRd fao ap Bo( ) [t|max <2m~+2mq+L

x{ Rd|én(w)|2dw+4dn(v)2dv}.
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Combining the above inequalities with Equations (S.4), (S.6), (S.7), (S.10), and (S.11),

we observe that there exist constants C, C,Cy (not depending on n) such that
n
Z ‘Dk,n|2 < Cefz()?
k=1
n " 1/2
Dl < {n |’77$,n|2} < VCnep?,
k=1 k=1
n
C
~t 1
Z |Vk;,n’ S (a + CgE) s

k=1
where E := [p,n(v)?dv is finite. Thus it follows that
n - Cl
D [k — 1 < VCne + — T OE. (S.13)

k=1

When «, ag > d/2, the spectral density of the CH covariance function is well-defined and

is finite for any frequency. Thus, the ratio

Joas(|w])
foo,ao,ﬂo(‘wD

is well-defined for all w € R%. We also observe that there exist constants ¢y >0 and é'f >0

(not depending on w) such that

:, < Jrasll)

< <, VweR
Fovaopo(l@]) = 7

It follows immediately that &; < A\g,, < Cj forall k=1,...,n.
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Finally, using (S.13) yields that for any € > 0,

1 n 1/2 sz/Q 1
{max{)\;é }ZM’“"_H < ¢ + (ﬁ_’_CQE) . (S.14)

: ; cent/2 \ ed
ey/n | 1<i<n p Cre crent/2 \ ed

Therefore, the right-hand side of Equation (S.14) tends to 0 as n — oo, as desired.
O

Based on Lemma 1 and Lemma 2, we can study the asymptotic behavior of the MLE for

the microergodic parameter of the CH covariance function.

Lemma 3. Let {D, },>1 be an increasing sequence of subsets of a bounded domain D such
that U2 D, is bounded. Assume that v is fived. Let Py be the Gaussian probability measure
defined under C(h;v, ag, Bo, 02). Let c(8) = 2By T(v + ap)/T(aw). Assume that ay >
d/2, 80 > 0,02 > 0. The following results can be established.

(a) Asn — 00, é,(0) 22 ¢(8y) under measure Py for any fived a > d/2 and B > 0;

(b) Asn — oo, /n{é,(0) — c(6y)} £, N (0,2[c(00)]?) for any fized o > d/2 and 3 > 0.

Proof. The proof of Part (a) follows from the same arguments as in the proof of Theorem 3
in Zhang (2004) and is omitted. For the proof of Part (b), we follow the arguments in Wang
(2010); Wang and Loh (2011) and Bevilacqua et al. (2019). Without loss of generality,
we assume D = [0,L]4,0 < L < oo is a bounded subset of R? with d = 1,2,3. Let
02 be a positive constant such that o?8~#T(v + a)/T'(a) = 028, T'(v + ag)/T(ap). Let
c(0) =a*87*T(v+ a)/T(a) and é,(0) = 62572 (v + a)/T'(a). Then we have

L

2
o)

Vi {60(8) — c(60)} = <& {%zz R;'(0)Z, — S7Z] R,;l(eo)zn}

S.14



Under Gaussian measure Py defined by the covariance function C'(h;v, ag, 5o, 02), we have

(] 1
ZIR: (00)Z,)0% ~ % and C&g {U—(Q)ZIRJ(eo)zn - n} £y (0, 2c(80)]2).

as n — 0o. To prove the result, it suffices to show that

1 1 1
% {;ZIRnl(e)Zn — %ZIRnl(HO)Zn} Fo, 0, as n — oo, (S.15)

under Gaussian measure P,.

According to Lemma 1, there exists an n X n non-singular matrix U such that
0iU'R,(60,)U=1, °U'R,(6)U=A,

where A := diag{\; , ..., A\pn} Is an n xn diagonal matrix with diagonal elements satisfying
M > 0 for k= 1,...,n. Now we define the random vector Y := (Vy,...,Y,)T = U'Z,.
It is easy to check that Y ~ N,(0,1,) for Z, generated under the measure Py. Thus, the

®

>e>—>0, as n — o0.

assertion (S.15) is true if for any € > 0,
1

Py [ —

' (ﬁ
1

=Py (ﬁ

By Markov’s inequality, the probability in the assertion (S.16) can be bounded as

1
n (5

1 1
—Z, R, (0)Z, — Z R, (60)Z,
0o

o2 "

(S.16)

n

Z()‘l;l@ -1y

k=1

n

> s = 1Y

k=1

1 O 1 -
< e | [P 21D —
~ 6) - e\/ﬁ; A = 1= ev/n {giegz{)\m } Aen =1
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The rest of the proof is to show that for any € > 0, the term

1 I
o/n {112%)%{)‘1',71 }Z A — 1

k=1
goes to 0 as n — oo. This is true according to Lemma 2. O]

Lemma 3 implies that the estimator ¢,(0) of the microergodic parameter converges to
the true microergodic parameter, almost surely, when the number of observations tends to
infinity in a fixed and bounded domain. This result holds true for any value of 8. As will be
shown, if one replaces 6 with its maximum likelihood estimator in ¢,(@), this conclusion is
true as well. The second statement of Lemma 3 indicates that ¢,(6) converges to a normal
distribution.

A key fact is that the above lemma holds true for arbitrarily fixed 8. A more practical
situation is to estimate € and o2 by maximizing the log-likelihood (7). The following lemma

is needed to prove the asymptotic behavior of &, (e, 8,,) and é, (G, 8) under infill asymptotics.

Lemma 4. Suppose that d is the dimension of the domain D and Z, is a vector of n
observations in D. For any oy, s such that d/2 < a1 < ay and any Bi, By such that

0 < By < B2, we have the following results:
(a) nla, B1) < én(a, B2) for any fived o > d/2.
(b) éalar, B) > éulas, B) for any fived B> 0.

Proof. The difference

I'(v+ ay)
BT (o)

[(v + as)

—1 _ - \7 =)
R (01) 522VF(042)

60 (01) ~ e0(02) = 27 { R (6} 2,/

_ Tv4a) p-1 _ T(v+ag)
= ) Bn (1) ~ 5may)

semidefinite. Notice that A is positive semidefinite if and only if B := ?%:Tg;; R,.(0:) —

is nonnegative for any Z, if the matrix A : R, '(6,) is positive
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2v
%Vi(zll)Rn(Ol) is positive semidefinite. The entries of B can be expressed in terms of a

function Kz : R? — R, with

['(v+ as)

BT (an)

R i — Sj; ) ) )
P(V—i—al) (‘S SJ’ oy ﬁl V)

Bij:KB(S’i_S]') = R(’Si_sj|;a27627y)_

where | - | denotes the Euclidean norm. The matrix B is positive semidefinite if Kp is a

positive definite function. Define the Fourier transform of Kz by

() = g [ esplie xHp ()
= F(%:i(c;i)) {(271r)d /Rd exp{—inx}R(lx\;ag,ﬁg,y)dx}
- F(%;Z_(C;)) {(er)d /Rd exp{—inX}R(|X|;al,ﬁl,y)dx} :

The integrals in fp(w) are finite for oy, aq > d/2. Let g(w) be the spectral density of the

CH correlation function with parameters «, 3, v:

1
g(w) = W/ exp{—iw 'x}R(|x|; o, B, v)dx
221/ v
~ T2B2T(a) / {4v/(B%t) + |w|*} TPt exp{—1/t}dt.

Thus, Kp is positive definite if fg is positive for all w € R?. Notice that fg is given by

(4v)r

. 2 (v+d/2) —(v+az+1)
fB(w)_—Wd/QF(V+a2 / {4u ) (531) + Jw]}HD et e £ 1ty

e [ 0 oy e e ),

It is straightforward to check that when o := a; = as > d/2,
B < By = fp(w)>0, VYwecRL
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Thus, if 81 < Pe, then ¢,(a, 81) < én(a, B2), as claimed in Part (a).
The proof of Part (b) is as follows. Note that fp(w) can be expressed as fp(w) =
{(4v)" [m?}(I(az) — I(an)), where

o 1
I(a) == — {4/ (% 2~ (vhd/2D = (rtat) —1/t}dt
@ [ Foa e + P exp{~1/1)
00 v+a—1
— /0 ﬁ exp{—u} (4vu/B> + ]w\z)_(Ver/Q) du
= By (U/B* + |w|) "2,
with U ~ Gamma(v + «, 1). This expectation is finite if & > d/2. Suppose that a; < as
and B := B; = Po. To show fp(w) is negative for all w € RY, it suffices to show that
I(ag) — I(a1) < 0. Let Uy ~ Gamma(v + ay,1) and Uy ~ Gamma(v + ag,1). Then
U, £ Uy + Uy, where Uy ~ Gamma(as — oy, 1) and Uy is independent of U;. Thus, the
quantify I(asy) can be upper bounded by I(ay), since,

Ay ) —(v+d/2)
[(042) = EU1,U0 {E(Ul + UQ) + |(.d| }
—(v+d/2)
4u 4v
= EU1,U0 {EUl + |UJ|2 + @Uo}
—(v+d/2)
4u
SEUl{@Ul_’_h&JP} :](al).

]

This lemma indicates that the MLE of the microergodic parameter is monotone when
one of its parameters is fixed. This property is used to prove the asymptotics of the MLE for

the microergodic parameter. Based on Lemma 3 and Lemma 4 , one can show that ¢,(6,,)

has the same asymptotic properties as ¢,(0) for any fixed 6.
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S.4 Technical Proofs

This section contains all the proofs that are not given in the main text. For notational
convenience, we drop the parameters of the covariance function when there is no scope for

ambiguity:.

S.4.1 Proof of Theorem 1

Proof. As C(0) = 02 > 0, it remains to verify the positive definiteness of the function
C(+). For any n, all sequences {a; € R:i=1,...,n} and all sequences of spatial locations

{s; e R :i=1,...,n}, it follows that

n o n n n 0o
Zzaiajc<hij; v,a,f3,0%) = ZZ(M%/ M(hij; v, ¢, o?)m(¢% o, B)d¢?
i=1 j=1 i=1 j=1 0
o0
— [ e Aan(a. et 2 0
0
where h;; = |s; — s;| with | - | denoting the Euclidean norm and a := (ai,...,a,) . The
matrix A = [M(h;;)]ij=1,..n IS a covariance matrix constructed via a Matérn covariance

function that is positive definite in R? for all d, and hence A is a positive definite matrix,
which yields that a” Aa > 0 for any a. This implies that the resultant integral is nonnegative
for any a, and it is strictly positive for a # 0. Thus, the function C(h) is positive definite in
R? for any all d.

To derive the form of Equation (3), we start with the gamma mixture representation in

Equation (2), and substitute for 7(¢?) the required inverse gamma density.

0.2

Cltima,5,0%) = gt [Tt | [7 7t exp(a 26m()de?] exp (-1 )
0.252(1

~ sorerer 2o ewtaszene e
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 exp{=3/(26)}dg"] exp (—vh fx)dz

_ o’ Oox(u—l) = —2(vtatl) gy f (52 4 o 2 2
e AR p{—(5" +2)/(267)}do
x exp{—vh?/z}dzx

O'QﬁQOzF(V_i_a) 00 1) .
L'(v)T () /0 2D (@ + 7)Y exp (—vh? x)de

S.4.2 Proof of Theorem 2

Proof. (a) Using the property of modified Bessel function (see Abramowitz and Stegun,

1965, p. 375), as |h| — 0, we can express the Matérn covariance function as

ai(h) + as(¢,v,0?)|h|* log |h| + O(|h|*); when v =0,1,2,...,
M(B) = 1(h) + as( )[h[* log |h] + O(|[*)

as(h) + ag(é, v, a®)|h|? + O(|h|*); otherwise,

where a;(h),i = 1,3 are of the form Zk o Ck (0, v, 0?)h** with ¢ (¢, v, 0%) being the co-

. _ 1/+10.2
efficients that depend on parameters ¢, v, 0%. The terms ay(¢, v, 0?) = 2u—1(r(igr(y+1)¢>2v
and a4(p,v,0%) = 5 sin(w);(?;(;;(wl)zzﬁ?”' The terms as(¢, v, 02)|h|* log |h| and a4(¢, v,

o?)|h|* are called principal irreqular terms that determine the differentiability of a
random field (see Stein, 1999, p. 32). This implies that the Matérn covariance function
is 2m times differentiable if and only if ¥ > m for an integer m. By mixing the param-
eter ¢? over an inverse gamma distribution ZG(a, 3%/2), when h — 0, the covariance

function C'(h) can be written as

C(h) I ar(h)m(¢?)de* + ao(v, o?)|h|* log |h| + O(|h|*); when v =0,1,2,...,

I as(h)m () de? + as(v, o2)|h[* + O(|h[*D); otherwise,

S.20



where

a(v.0%) = [ ax(6.,0)m(6)d?
0

_2(=1)"e? T(v+a)
=TT+ 1) 7T(a)

and

ia(v, 0?) = / " aa(, v, 02 (7)de?
0

B —7o? I'(v+ «)
~ sin(m) T (v)[(v + 1) BT (a)
=o' T(1—v)T(v+a)
= TTw+D) T

Note that ds (v, 0?) is finite for any positive integer v and any fixed a > 0,8 > 0, and
ay(v, 0?) is finite for v € (0,00) \ Z and o > 0,3 > 0. Thus, the covariance C'(h) has

the same differentiability as the Matérn covariance.

(b) It follows from Theorem 1 that

2 N2« 00 V4o
C(h;v,a,B,0%) = c i(yl;;v(;—) @) /o <%52) v Lexp (—vh?/x)dx

fﬂ U2F<V+a> = v—1 2 v —(v+a)
(2v/B2)°T(v)[(a) /0 =t + 57/ (2v)

x exp{—h?/(2t)} dt
oW e2rl(v+a) [ t Ve a1/
= @/ TN ) / (t T 52/(%)) !

exp{—h?/(2t)} dt.

X

1
V2nt
v+ao
Let L(z) = (%) . Then L(z) is a slowly varying function at co. Viewed as a

x+p32/
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function of h, the above integral is a Gaussian scale mixture with respect to ¢t. Thus,
an application of Theorem 6.1 of Barndorff-Nielsen et al. (1982) yields

o221 (v + «)

C(hv,a, B,0°%) ~ (27)7Y22°T (@) |h| 722 L(R?), as h — oo,

(2v/B%)T(v)I' (@)
~ m —2a 2 as o0
vyt s ke
LIPTIWA Q) gy as b o

vel'(v)

Thus, the tail decays as |h|72*L(h?) when a > 0.

S.4.3 Proof of Proposition 1

Proof. Let ®; denote the family of the continuous functions from [0, 00) to R that represent
correlation functions of stationary and isotropic random processes on R?. Then the family
®, is nested satisfying & D Py O -+ D Py, where &, := Ng>1 P, is the family of radial
functions that are positive definite on any number of dimensions in Euclidean space.

The proof consists of two parts. We first show that the CH correlation function belongs
to @4, from [0,00) to R. Then we use Theorem 6.1 of Barndorff-Nielsen et al. (1982) to
derive the tail behavior of the spectral density.

Note that Schoenberg (1938) shows that any member ¢ that is in the family ®; can be

written as a scale mixture with a probability measure F' on [0, 00):
vk = / W2 Jog gy p(wh)dF (W), b >0,
0

where J,(-) is the ordinary Bessel function (see 9.1.20 of Abramowitz and Stegun, 1965). It
is well-known (see Chapter 2 of Matérn, 1960) that the Matérn correlation is positive definite
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in any number of dimensions in Euclidean space and it is a member of ®., for any positive
values of ¢ and v. The CH correlation function as a scale mixture of the Matérn correlation
is also a member of @, (see the proof in Theorem 1). The Fourier transform of f € @,

denoted by F(f), is available in a convenient form (Yaglom, 1987) with

F(f)w) = (2m) / " )DL T (ot f (), > 0.

Notice that the Matérn covariance function (1) has spectral density

fm(w) = (2m)~/* / T wh) DT g o k) M(R) d,
0

_ (Vwe)
77‘1/2((\/%/@2—1—(*)2)””/2'

Thus, the spectral density of the covariance function C'(h) is

f(w) _ (27?)_d/2 /m(wh)_(d_z)/zky(d2)/2(Wh)hd_1 /Oo ,/\/l(h, v, &, 0‘2)7T(¢2)d¢2dh
0 0

_022”1/”(,82/2)0“ 00 o
= F(a) /0 7rd/2(2y¢—2+w2)u+d/2

¢~ exp{—5°/(20%)}dg?
0.22V—04VV/620¢

- T | (@r e exp () 2 s

where the above spectral density is finite for a > d/2 and is infinite for a € (0,d/2].
To derive the tail behavior, we make the change of variable ¢* = 3?t/w?. The spectral

density above can be expressed as

A e 2\,—1 —(v+d/2)y—(v+a+l) 2
1) = = aray v (vt + 1)/ exp{—w’/(26)}dt
/2T () 0
o 0 v+d/2
= U%—V(zw)l/?w”‘d/ (;)( e
mi282 T () o \2v/B*+t 2mt

x exp{—w?/(2t)}dt.
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We define i)
L(z) == {;} .
x+ 32/ (2v)

Then L(z) is a slowly varying function at co. The above integral is also a Gaussian scale
mixture. Thus, an application of Theorem 6.1 of Barndorff-Nielsen et al. (1982) yields that
as |w| = oo,
0.221/701V1/
flw) ~ 7232 ()

22V T(V+a) (gua)
74232 (a)

(2 )1/2w2a—d<2ﬂ_>—1/221/2+(u+a—1/2)) |w|—2(u+a—1/2)—1L<w2>

L(w?).

S.4.4 Proof of Theorem 3

Proof. Let fi(w),i = 1,2 be the spectral densities with parameters {c?, 3;, a;, v} for two
covariance functions Cj(-),Cy(-). The condition (S.1) says the spectral density f;(w) is
bounded at zero and oo when w — oo. In fact, the boundness of f; near zero follows from
the assumption that «; > d/2. Let A = 2v + d. Then, one can show that

ot (B7/2) " (2v)" T (v + o)
72T (ay) '

lim fi(w)|w/* T =
wW—00

Thus, the condition (S.1) is satisfied.
We first show the sufficiency. Assume that the condition in Equation (5) holds. To prove
the equivalence of two measures, it suffices to show that the condition (S.2) is satisfied.

Notice that as w — oo,

{o + B3 (2w) 142
o+ B3/ (20) )

filw) = fo(w)
fi(w)

-1
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< w D [fw? 4 B3/ (2u) 3 — {u? 4 B/ (20) 1|
< {1+ (83 /2v)w 2} H2 — {1 + (B} /2v)w ™2} F2|
< {1+ (v +d/2)(B2/2v)w 2 + O(w™)}
— {1+ +d/2)(B/2v)w™* + O(w™)}|
<18 = B3l(v +d/2)/ (2v)w™ + O(w™).

The integral in (S.2) is finite for d = 1,2, 3. Therefore, the two measures are equivalent.

It remains to show the necessary condition. Suppose that

ol T(v+ao) |, 03B, T(v+ as)

[(on) NGy
Let
02 = 2 52:Zr(a1)r(u +a2)
BT ()T (v + ay)
Then

o0 T (v + o) _ 036, (v + o)
['(an) I'(az) '

Thus, the two covariances C'(h; v, oy, B1,08) and C(h; v, oy, 81, 03) define two equivalent mea-

sures. It remains to show that C'(h;v, ay, f1,03) and C(h; v, ag, B2, 03) define two equivalent

Gaussian measures, which follows from the proof in Theorem 2 of Zhang (2004).

S.4.5 Proof of Theorem 4

Proof. Let ky = 0222 T0ta) 4nq &y = 02(20)"¢~2/a¥/2. Then the condition in Equa-

01 ﬂ-d/252u]_"(a)
tion (6) implies that k; = ko. It follows that as |w| — oo,
ks

k_l( 2 + 2y/¢2)f(u+d/2)(w2 + ﬁ2/<2y))(u+d/2) 1

filw) = fo(w)
fi(w)
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= (W + 20/¢") " o [y [ (w? + 20/ 67)
—(W*+ 7/ (20)) )]

< B [ 4 2w 1) (4 5 (20)) )|

< {1+ @u/d?)w2) 0D {14 822w ) 0|

< {1+ @v/¢") (v +d/2)w™* + Ow™)} = {1+ (8/(2)) (v + d/2)w "
+O0(w™)}.

< |2v/¢* — 87/ (2v)|(v + d/2)w™* + O(w ™).

The integral in (S.2) is finite for d = 1, 2, 3. Therefore, these two measures are equivalent. []

S.4.6 Proof of Theorem 5

Proof. Note that the CH covariance function C(h; v, a, 3, 0?) is a continuous function of the
covariance parameters a, 3,02 over their natural parameter space {(c?, , 3) : 0% > 0, >
0,5 > 0}, and hence the likelihood function is also a continuous function over this natural
parameter space.

For case (a), it follows from the continuity of the likelihood function and the assumption
in case (a) that 3, € [1, 8u] for all n. Applying Lemma 4 yields that &, (a, 8) < én (e, Bn) <
én(cr, By). The result thus follows from Lemma 3 immediately.

For case (b), it follows from the continuity of the likelihood function and the assumption in
case (b) that &, € [ar, ay] for all n. Applying Lemma 4 yields that ¢,(ay, 8) < é,(Gn, 5) <
¢n(ag, B). The result thus follows from Lemma 3 immediately.

For case (c), it follows from the continuity of the likelihood function and the assumption in
case (c) that &, € [ar, ay] and B, € [BL, By for all n. According to Lemma 4, é,(ay, Br) <
én(aU,Bn) < én(&n,ﬁn) and ¢, (G, Bn) < én(aL,Bn) < énlar, Bu). The result thus follows

from Lemma 3 immediately. [
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S.4.7 Proof of Theorem 6

Proof. Part (a) and Part (b) can be proven by applying Theorem 1 and Theorem 2 of Stein
(1993). Let f;(w) be the spectral density of the CH class C(h;v,a;, f3;,07) with i = 1,2.
Note that lim,, . fi(w)|w|* T is finite. If the condition in Equation (5) is satisfied, then,

_ folw) L fr(w)|wPr
S ) T R

The proof of Part (c) is analogous to the proof of Theorem 4 in Kaufman and Shaby
(2013). Let

(v + ap)'(a)
(v + a1)l(ag)

T
o} = 03(51/60)2"F

Then Py and P; define two equivalent measures. We write

According to Part (b) of Theorem 6, it suffices to show that almost surely under P;,

Var, g, 52 {Zn(el) — Z(s0)}

- — 1.
va’ry,eho'%{zn(el) - Z(SO)}
By Equation (9),
Var, g, 52{Z(61) — Z(s0)} 62
Var, g, 2{Z.(61) = Z(s0)} o1

Note that under P;, we have 62 ~ (02/n)xn, and hence 62 converges almost surely to o7 as

n — o0o. As Py is equivalent to Py, It follows from Lemma 3 that 62 — o7, almost surely

under Py. O
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S.4.8 Proof of Theorem 7

Proof. Let fo(w) be the spectral density of the Matérn covariance function M (h;v, ¢, o?)
and fi(w) be the spectral density of the covariance function C(h;v,«, 3,0%). Notice that
the spectral density of the Matérn covariance satisfies the condition (S.1). It suffices to show
that lim, . f1(w)/fo(w) = 1. Let kg = 02¢™2 and k; = o? (8%/2)7'T(v + a)/T(a). If
ko = ki, it follows that

2u+d
i &) gy AP R (2w 2w 2 + 1)

w—00 fo(w> T wSeo fo(w)|w|2”+d T wseo k‘o

= ki /ko = 1.

Thus, the covariance function C'(h;v, a, 8,0%) yields an asymptotically equivalent BLP as

the Matérn covariance M(h;v, ¢, 03). O

S.28



S.5 Examples to Illustrate Asymptotic Normality

As shown in Section 3.2, each individual parameter in the CH model cannot be estimated
consistently, however, the microergodic parameter can be estimated consistently.

To study the finite sample performance of the asymptotic properties of MLE for the mi-
croergodic parameter, we simulate 1000 realizations from a zero-mean Gaussian process with
the CH class over 100-by-100 regular grid in the unit domain D = [0, 1] x [0, 1]. As there are
no clear guidelines to pick the sample sizes such that the finite sample performances can ap-
propriately reflect the asymptotic results, we randomly select n = 4000, 5000, 6000 locations
from these 10,000 grid points. The variance parameter is fixed at 1 for all realizations. We
consider two different values for the smoothness parameter v at 0.5 and 1.5, three different
values for the tail decay parameter a at 0.5, 2 and 5. The scale parameter 3 is chosen such
that the effective range is 0.6 or 0.9. Although all the theoretical results in Section 3 are
valid for a > d/2, we also run the simulation setting with & = 0.5 to see whether there is
any interesting numerical results compared to cases where o > d/2.

Let C'(h;v, g, By, 02) be the true covariance. We use ¢,(0) to denote the maximum
likelihood estimator of the microergodic parameter c¢(8y) = 023, >’ T'(v + ag)/T(ap) for any
6. Then the 95% confidence interval for ¢(6y) is given by é,(0) 4 1.961/2¢,(8)?/n. Lemma 3
and Theorem 5 show that this interval is asymptotically valid when n is large and o > d/2
for (1) arbitrarily fixed 0, (2) 8 = (a, B,), (3) @ = (4, 5) and (4) 0 = (&, 53,). In
this simulation study, we primarily focus on the finite sample performance of ¢,(6), where
0 = (o, V05050), 0 = (v, Bo), 0 = (i, V/200), 8 = (v, 3,), and @ = (G, B,). Exhaustive

simulations with all other settings of @ is considered future work. Let

_ Vn{e(6) — c(60)}
\/56(90) .

&

Then ¢ should asymptotically follow the standard normal distribution. Based on these 1000
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realizations, we compute the empirical coverage probability of the 95% percentile confidence
interval, bias and root-mean-square error (RMSE) for ¢(6y) and compare the quantiles of £
with the standard normal quantiles.

The results are reported in Table S.1, Table S.2 and Table S.3 of the Supplementary
Material. They can be summarized as follows. When the true parameters are used, i.e.,
0 = 0,, as expected, the sampling distribution of ¢, (8y) gives the best normal approximation
and converges to the asymptotic distribution in Lemma 3 when n increases. The sampling
distribution of ¢,(@) can be highly biased and approach to the truth can be very slow
with increase in n. Fixing [ at a larger value gives better empirical results than fixing
£ at a small value. When the scale parameter is chosen to be its maximum likelihood
estimator, i.e., 3 = f3,, the sampling distribution of en(a, Bn) converges to the asymptotic
distribution given in Theorem 5 as n increases. When « is small, e.g., & = 0.5, the sampling
distributions of ¢,(0), with (ag, v0.58,), (a0, v260), (Oéo,Bn) and (dn,ﬁn) substituted for
0, has noticeable biases. As the tail decay parameter or the effective range increases, the
sampling distributions of ¢,(€) have smaller biases. As v becomes smaller, the sampling
distributions of ¢,(0) approaches the truth better with increase in n. When v = 0.5 and
a € {2,5}, these sampling distributions have negligible biases as n increases. When both «
and [ are substituted by their maximum likelihood estimator, the sampling distribution of
¢n(0) has smaller bias and gives better approximation to the true asymptotic distribution
given in Theorem 5 as n increases for a > d/2 = 1.

When « is fixed at its true value and [ is estimated by maximum likelihood method, the
MLE of the microergodic parameter, é,(a, Bn), gives better finite sample performance than
the cases where 3 is misspecified. When both o and 3 are estimated by maximum likelihood
method, the MLE of the microergodic parameter, ¢, (d&,, Bn), also gives better finite sample
performance than the cases where 3 is misspecified and « is fixed at its true value. One would

also expect that this is true when either a or 3 is misspecified at incorrect values. In general,
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the MLE of the microergodic parameter has better finite sampler performance than those
with any individual parameter fixed at an incorrect value in the microergodic parameter.
Theorem 5 requires @ > d/2 in order to derive asymptotic results for &, (d&,, Bn) However,
it is interesting to observe from these simulation results that ¢,(@) seems to converge to
a normal distribution even when o < d/2, i.e., when o« = 0.5. It is an open problem to
determine the exact distribution that the maximum likelihood estimator ¢, (é,, Bn) of the
microergodic parameter converges to asymptotically when « and 8 are substituted with their

maximum likelihood estimators for true o € (0,d/2].
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Table S.1. Percentiles of ¢ and CVG, bias, and RMSE of ¢,(0) when ag = 0.5.
Settings 5% 25% 50% 5% 95% CVG bias RMSE
N(0,1) -1.6449 -0.6749 0 0.6749 1.6449 0.95 0
ER=06,v=05
0
n = 4000 -1.449 -0.542 0.009 0.686 1.767 0.955 0.020 0.327
a=apB =7 n = 5000 -1.469 -0.665 -0.077 0.696 1.573 0.965 -0.003 0.289
n = 6000 -1.705 -0.618 0.056 0.662 1.847 0.929 0.010 0.280
n = 4000 2.113 3.098 3.730 4.424 5.549 0.044 1.259 1.308
a=ag,f =050 n = 5000 2.129 2.930 3.578 1.439 5.347 0.040 1.097 1.140
n = 6000 1.798 3.015 3.705 4.397 5.606 0.071 1.005 1.049
n = 4000 3471 -2.608 -2.073 -1.420 -0.394 0.415 -0.676 0.746
a=ap,B =20 n = 5000 -3.480 -2.693 2114 -1.395 -0.519 0.404 -0.611 0.676
n = 6000 -3.688 -2.623 -1.967 -1.376 -0.214 0.462 -0.543 0.606
n = 4000 -1.871 -0.711 0.095 1.000 2.244 0.889 0.047 0.428
a=ap,B =/, n = 5000 -1.912 -0.767 0.022 0.881 2.134 0.881 0.013 0.371
n = 6000 -2.016 -0.760 0.096 0.862 2.097 0.879 0.019 0.343
n = 4000 -1.778 -0.875 0.000 0.925 2.382 0.887 0.030 0.446
a=a,, =P, n = 5000 -2.129 -0.816 0.026 0.893 2.227 0.870 0.019 0.395
n = 6000 -2.268 -0.911 -0.015 0.865 2.117 0.875 -0.006 0.363
ER=0.6,r=15
0
n = 4000 -1.654 -0.604 -0.014 0.701 1.776 0.949 12.650 370.7
a=ap,f =/ n = 5000 -1.430 -0.687 -0.046 0.672 1.576 0.969 0.283 312.0
n = 6000 -1.731 -0.649 0.070 0.710 1.740 0.929 7.182 307.5
n = 4000 26.20 27.77 28.82 30.03 31.76 0.000 10495 10513
a=ag,f =056 n = 5000 27.09 28.35 29.37 30.55 31.99 0.000 9567 9581
n = 6000 27.22 28.79 29.85 30.89 32.68 0.000 8360 8874
n = 4000 -13.70 -12.93 -12.48 -11.99 -11.21 0.000 -4526 4534
a=ag,B =20 n = 5000 -13.99 -13.35 -12.90 -12.36 -11.62 0.000 4177 4184
n = 6000 -14.47 -13.61 -13.11 -12.58 -11.80 0.000 -3886 3893
n = 4000 -2.993 -1.121 0.172 1515 3.505 0.670 72.52 732.5
a=ay.B =7 n = 5000 -2.823 -1.155 0.146 1.452 3.398 0.700 49.49 624.8
n = 6000 -3.068 -1.090 0.235 1.433 3.093 0.733 44,59 543.1
n = 4000 -3.887 -1.656 0.061 1.681 4.142 0.565 9.059 895.5
= ay, | n = 5000 -3.607 -1.643 0.055 1.497 4.142 0.592 16.27 772.1
n = 6000 -4.107 -1.678 -0.206 1.488 3.774 0.592 -70.59 832.3
ER=09,r=05
0
n = 4000 -1.589 -0.557 -0.013 0.669 1.748 0.955 0.007 0.220
a=apB =/ n = 5000 -1.429 -0.654 0.065 0.759 1.683 0.978 0.012 0.190
n = 6000 -1.512 -0.591 0.004 0.702 1.768 0.943 0.009 0.179
n = 4000 0.628 1.679 2.278 2.967 4.052 0.399 0.513 0.563
a=ap,8=05p n = 5000 0.727 1.546 2.306 2.994 3.958 0.420 0.454 0.496
n = 6000 0.548 1.543 2.200 2.888 4,013 0.445 0.403 0.444
n = 4000 -2.812 -1.808 -1.259 -0.595 0.440 0.769 -0.272 0.346
a=ap,B =20 n = 5000 -2.620 -1.846 -1.170 -0.478 0.379 0.760 -0.229 0.295
n = 6000 -2.635 -1.756 -1.187 -0.477 0.586 0.799 -0.205 0.270
n = 4000 -1.856 -0.688 0.087 0.911 1.946 0.905 0.021 0.262
a=ap,B =7 n = 5000 -1.587 -0.696 0.062 0.822 1.930 0.926 0.018 0.220
n = 6000 -1.646 -0.589 0.045 0.833 2.008 0.918 0.020 0.202
n = 4000 -1.876 -0.748 0.082 0.882 2.157 0.887 0.016 0.276
a=a,, =P, n = 5000 -1.865 -0.692 0.023 0.853 1.994 0.902 0.014 0.233
n = 6000 -1.884 -0.744 0.006 0.901 1.978 0.904 0.008 0.213
ER=09,vr=15
0
n = 4000 -1.598 -0.618 -0.015 0.663 1.747 0.958 2.284 106.8
a=ap, B =7 n = 5000 -1.426 -0.647 0.063 0.774 1711 0.977 6.598 92.45
n = 6000 -1.660 -0.623 0.059 0.685 1.743 0.945 2.287 87.41
n = 4000 17.15 18.51 19.42 20.44 21.94 0.000 2096 2102
a=ag, 8 =050 n = 5000 17.34 18.50 19.50 20.42 21.83 0.000 1877 1881
n = 6000 17.06 18.45 19.36 20.24 21.70 0.000 1699 1703
n = 4000 -10.02 -9.207 -8.722 -8.151 -7.284 0.000 -934.2 938.3
a=ag,B =20 n = 5000 -9.964 -9.263 -8.691 -8.092 -7.331 0.000 -8.835 839.5
n = 6000 -10.13 -9.280 8717 -8.159 -7.26 0.000 -766.2 769.8
n = 4000 -2.455 -0.993 0.029 1.282 2.953 0.771 15.62 180.4
a=ay.B =7, n = 5000 -2.224 -1.038 -0.031 1.140 2.706 0.789 8.661 151.8
n = 6000 -2.259 -0.918 0.082 1.152 2.586 0.803 11.20 131.2
n = 4000 3178 -1.316 -0.002 1.215 3.289 0.691 1.887 208.8
n = 5000 -3.055 1211 -0.003 1.229 3.129 0.708 2.440 1783
n = 6000 -2.820 -1.285 0.006 1.236 3.051 0.710 0.875 156.7




Table S.2. Percentiles of £ and CVG, bias, and RMSE of ¢,(0) when oy = 2.

Settings 5% 25% 50% 75% 95% CVG bias RMSE
N(0,1) -1.6449 -0.6749 0 0.6749 1.6449 0.95 0
FER=0.6,0=05
0
n = 4000 -1.557 -0.604 -0.013 0.691 1.759 0.954 0.004 0.099
a=a,f =0 n = 5000 -1.442 -0.614 0.003 0.723 1.575 0.962 0.002 0.086
n = 6000 -1.689 -0.462 0.093 0.728 1.970 0.947 0.003 0.084
n = 4000 -1.072 -0.128 0.486 1.179 2.264 0.921 0.052 0.113
a=ay, =050 n = 5000 -0.999 -0.179 0.493 1.183 2.047 0.939 0.043 0.097
n = 6000 -1.315 -0.010 0.556 1.184 2.396 0.929 0.041 0.094
n = 4000 -1.801 -0.860 -0.258 0.440 1.505 0.949 -0.021 0.101
a=ag, =20 n = 5000 -1.680 -0.840 -0.232 0.479 1.347 0.946 -0.018 0.088
n = 6000 -1.880 -0.681 -0.136 0.517 1.756 0.931 -0.012 0.084
n = 4000 -1.616 -0.600 0.040 0.758 1.796 0.954 0.008 0.103
n = 5000 -1.443 -0.583 0.070 0.752 1.705 0.962 0.006 0.088
n = 6000 -1.564 -0.505 0.171 0.774 1.941 0.938 0.008 0.087
n = 4000 -1.576 -0.546 0.140 0.798 1.880 0.944 0.014 0.104
a =G, B=0a n = 5000 -1.426 -0.565 0.094 0.785 1.747 0.956 0.009 0.089
n = 6000 -1.595 -0.614 0.079 0.764 1.882 0.953 0.007 0.085
ER=06,v=15
0
n = 4000 -1.567 -0.624 -0.010 0.689 1.764 0.952 0.103 2.513
a=ag, =0 » = 5000 -1.469 -0.633 0.005 0.734 1.620 0.958 0.083 2.200
n = 6000 -1.729 -0.614 0.016 0.592 1.646 0.953 -0.013 2.027
n = 4000 1.226 2.227 2.885 3.622 4.748 0.215 7.351 7.840
a=ay, =050 n = 5000 1.056 2.005 2.772 3.469 4.427 0.257 6.145 6.586
n = 6000 0.725 1.861 2.602 3.180 4.350 0.296 5.225 5.657
n = 4000 -2.801 -1.876 -1.283 -0.593 0.433 0.749 -3.103 3.948
a=a, 8 =20 n = 5000 -2.590 -1.829 -1.185 -0.497 0.385 0.765 -2.612 3.379
n = 6000 -2.807 -L771 -1.128 -0.565 0.493 0.779 -2.350 3.073
n = 4000 -1.613 -0.649 0.093 0.790 1.923 0.928 0.223 2.701
a=apfB=pn n = 5000 -1.417 -0.648 0.046 0.818 1.821 0.957 0.197 2.332
n = 6000 -1.623 -0.655 0.056 0.691 1.793 0.954 0.071 2.111
n = 4000 -1.558 -0.598 0.095 0.811 1.977 0.921 0.301 2.759
a=dy, =P, n = 5000 -1.543 -0.594 0.040 0.798 1.827 0.950 0.186 2.342
n = 6000 -1.604 -0.569 0.090 0.763 1.827 0.946 0.198 2.132
ER=09,v=05
0
n = 4000 -1.574 -0.594 -0.026 0.666 1.776 0.952 0.002 0.066
n = 5000 -1.458 -0.664 -0.052 0.638 1.547 0.962 -0.001 0.057
n = 6000 -1.742 -0.548 0.145 0.809 1.784 0.942 0.005 0.055
n = 4000 -1.319 -0.321 0.254 0.930 2.042 0.938 0.020 0.069
o =ag, 8 =050 n = 5000 -1.220 -0.411 0.185 0.904 1.817 0.962 0.014 0.059
n = 6000 -1.567 -0.366 0.385 1.022 2.052 0.925 0.017 0.058
n = 4000 -1.704 -0.723 -0.158 0.524 1.635 0.950 -0.007 0.066
a=ag,8=2p n = 5000 -1.579 -0.786 -0.173 0.517 1.424 0.963 -0.007 0.057
n = 6000 -1.862 -0.653 0.024 0.700 1.646 0.950 -0.001 0.054
n = 4000 -1.586 -0.578 0.022 0.695 1.799 0.948 0.005 0.068
a=ayf=p n = 5000 -1.440 -0.615 -0.006 0.696 1.648 0.959 0.001 0.058
n = 6000 -1.653 -0.450 0.244 0.880 1.646 0.930 0.009 0.055
n = 4000 -1.572 -0.550 0.123 0.789 1.862 0.950 0.008 0.068
a=d,, =0, n = 5000 -1.378 -0.541 0.097 0.798 1.782 0.957 0.007 0.059
n = 6000 -1.659 -0.595 0.055 0.727 1.786 0.954 0.003 0.055
FER=09,v=15
0
n = 4000 -1.589 -0.595 -0.015 0.700 1.748 0.955 0.028 0.744
a=ag, =0 n = 5000 -1.454 -0.668 -0.029 0.673 1.531 0.966 -0.006 0.638
n = 6000 -1.701 -0.671 -0.098 0.572 1.747 0.940 -0.031 0.652
n = 4000 -0.026 0.961 1.579 2.307 3.369 0.675 1.205 1.434
a=ap, =055 n = 5000 -0.117 0.805 1.443 2.165 3.003 3.705 0.978 1183
n = 6000 -0.371 0.705 1.327 1.957 3.189 0.764 0.813 1.037
n = 4000 -2.288 -1.288 -0.722 -0.002 1.009 0.886 -0.498 0.886
a=ag,B=126 n = 5000 -2.098 -1.348 -0.706 -0.010 0.858 0.916 -0.447 0.771
n = 6000 -2.312 -1.309 -0.728 -0.050 1.071 0.887 -0.411 0.742
n = 4000 -1.684 -0.599 0.092 0.751 1.805 0.934 0.058 0.780
a=ay,B=p, n = 5000 -1.468 -0.698 -0.003 0.696 1.641 0.966 0.007 0.658
n = 6000 -1.670 -0.725 -0.068 0.660 1.775 0.931 -0.023 0.644
n = 4000 -1.532 -0.611 0.100 0.820 1.903 0.934 0.080 0.781
a=d, 8=4, n = 5000 -1.422 -0.584 0.050 0.746 1.745 0.959 0.049 0.664

n = 6000 -1.498 -0.544 0.068 0.810 1.843 0.950 0.042 0.618




Table S.3. Percentiles of £ and CVG, bias, and RMSE of ¢,(0) when ag = 5.

Settings 5% 25% 50% 75% 95% VG bias RMSE
N(0,1) -1.6449 -0.6749 0 0.6749 1.6449 0.95 0
ER=06,v=05
0
n = 4000 -1.612 -0.659 -0.049 0.655 1.661 0.954 0.000 0.085
a=ag,f =0 n = 5000 -1.468 -0.636 -0.027 0.685 1.683 0.961 0.002 0.074
n = 6000 -1.633 -0.560 0.079 0.723 1751 0.940 0.003 0.070
n = 4000 -1.273 -0.289 0.319 1.010 2.038 0.942 0.030 0.091
a=ap,B =056 n = 5000 -1.183 0.311 0.208 1.033 2.054 0.942 0.027 0.079
n = 6000 -1.261 0.245 0.401 1.023 2.070 0.932 0.025 0.074
n = 4000 1757 -0.829 -0.222 0.479 1.477 0.945 -0.015 0.086
a=ag, =20 n = 5000 -1.616 -0.793 -0.191 -0.500 -1.520 0.958 -0.011 0.074
n = 6000 1787 -0.709 -0.071 0.556 1.587 0.936 -0.007 0.070
n = 4000 -1.607 0.633 0.000 0.690 1.705 0.951 0.003 0.087
n = 5000 -1.434 -0.591 0.030 0.719 1.766 0.953 0.005 0.075
n = 6000 -1.609 -0.564 0.094 0.758 1.822 0.930 0.006 0.071
n = 4000 -1.556 0.538 0.142 0.813 1.884 0.948 0.012 0.089
a =G, B=0a n = 5000 -1.378 0514 0.116 0.835 1.762 0.958 0.010 0.076
n = 6000 -1.530 0.557 0.100 0.758 1.832 0.950 0.008 0.070
ER=06,v=15
0
n = 4000 -1.611 0.651 -0.015 0.676 1.748 0.957 0.026 1.179
a=ap,B=7f , = 5000 -1.409 -0.606 0.052 0.727 1.705 0.958 0.069 1.031
n = 6000 -1.346 -0.495 0.146 0.763 1.660 0.950 0.114 0.930
n = 4000 0.153 1.146 1.783 2.469 3.601 0.618 2132 2.463
a=ap,8 =056 n = 5000 0.109 1.070 1.720 2432 3475 0.628 1.818 2113
n = 6000 0.053 1.018 1.675 2.311 3.351 0.653 1.623 1.886
n = 4000 -2.308 -1.383 -0.802 -0.088 0.934 0.875 -0.877 1.456
a=ap, =20 n = 5000 -2.093 -1.323 -0.675 0.004 0.964 0.909 -0.685 1.224
n = 6000 -1.985 -1.186 -0.521 0.083 0.993 0.929 -0.538 1.059
n = 4000 -1.664 -0.641 0.069 0.757 1.802 0.951 0.070 1.239
a=apfB=pn n = 5000 -1.362 0.615 0.080 0.792 1.788 0.956 0.105 1.074
n = 6000 -1.368 -0.588 0.177 0.809 1.812 0.950 0.129 0.966
n = 4000 1528 -0569 0.138 0.845 1.937 0.929 0.181 1.263
a=dy, =P, n = 5000 -1.342 -0.522 0.105 0.838 1.822 0.956 0.150 1.065
n = 6000 -1.468 -0.518 0.102 0.842 1.920 0.937 0.142 1.003
ER=109,v=05
0
n = 4000 -1.567 -0.013 0.681 1.759 0.955 0.002 0.057
n = 5000 -1.482 -0.034 0.643 1.563 0.961 0.000 0.049
n = 6000 -1.513 0.077 0.637 1.745 0.953 0.002 0.045
n = 4000 1377 0.179 0.871 1.956 0.947 0.013 0.058
a=ap,B8 =055 n = 5000 -1.333 0.153 0.835 1.743 0.961 0.009 0.050
n = 6000 -1.357 0.233 0.800 1.894 0.947 0.009 0.046
n = 4000 -1.663 -0.109 0.587 1.646 0.957 -0.004 0.057
a=ap, 8 =120 n = 5000 -1.554 -0.121 0.556 1.465 0.958 -0.005 0.049
n = 6000 -1.605 -0.006 0.559 1.655 0.942 -0.002 0.045
n = 4000 1571 0.016 0.716 1.744 0.951 0.004 0.058
a=ayf=p n = 5000 -1.424 -0.007 0.669 1.638 0.962 0.001 0.049
n = 6000 -1.462 0.095 0.704 1.803 0.949 0.003 0.045
n = 4000 1574 0.106 0.803 1.853 0.952 0.007 0.059
a=d,, =0, n = 5000 -1.327 0.134 0.810 1.778 0.960 0.007 0.049
n = 6000 -1.606 0.058 0.713 1.756 0.956 0.003 0.046
ER=09,v=15
0
n = 4000 1574 -0.616 -0.015 0.661 1.764 0.955 0.009 0.345
a=ag,b ="/ n = 5000 -1.414 -0.617 0.015 0.741 1.612 0.974 0.017 0.298
n = 6000 -1.743 -0.591 0.066 0.677 1.795 0.933 0.008 0.292
n = 4000 -0.614 0.325 0.969 1.631 2.762 0.837 0.351 0.498
a=ap, =055 n = 5000 -0.587 0.274 0.936 1.652 2593 0.857 0.299 0.428
n = 6000 -0.978 0.198 0.889 1.566 2.643 0.870 0.248 0.389
n = 4000 -1.988 -1.042 -0.448 0.234 1.285 0.933 -0.139 0.369
a=ag, =20 n = 5000 -1.784 -1.013 -0.373 0.330 1.207 0.956 -0.105 0.313
n = 6000 -2.094 -0.968 -0.301 0.312 1.420 0.925 -0.097 0.306
n = 4000 -1.590 -0.609 0.029 0.720 1.791 0.943 0.021 0.356
a=ay,B=p, n = 5000 -1.364 -0.605 0.055 0.779 1.677 0.967 0.025 0.303
n = 6000 -1.648 -0.608 0.107 0.709 1.823 0.947 0.015 0.296
n = 4000 -1.533 -0.549 0.113 0.849 1.836 0.940 0.047 0.369
a=d, 8=4, n = 5000 -1.387 -0.526 0.111 0.798 1.733 0.961 0.039 0.307

n = 6000 -1.352 -0.534 0.111 0.765 1.755 0.956 0.039 0.281




S.6 Additional Simulation Examples

The results in the three cases in Section 4 of the main manuscript are based n = 2000
observations. In Section S.6.1 of the Supplementary Material, we provide results on exactly
the same simulation settings with n = 500 and 1000. Similar conclusions can be drawn
there. In addition, we also investigate the predictive performance when the covariance of the
underlying true process is a product of individual covariance functions in Section S.6.2 of the
Supplementary Material. The examples there show significant improvement of the CH class
over the Matérn class and the GC class. In all these simulation examples, we found that the
CH class is quite flexible in terms of capturing both the smoothness and the tail behavior.
No matter which covariance structure (the Matérn class or the GC class) the true underlying
process is generated from, the CH class is able to capture the underlying true covariance
structure with satisfactory performance as implied by our theoretical developments. In
contrast, the Matérn class is not able to capture the underlying true covariance structure with
polynomially decaying dependence and the GC class is not able to capture the underlying
true covariance structure with different degrees of smoothness behaviors. Below are the

detailed results.

S.6.1 Predictive Performance with Different Sample Sizes

In this section, we use the same simulation settings as in Section 4 but with n = 500 and
1000 observations for parameter estimation. The simulation setup here is the same as the
one considered in Section 4. For n = 500 observations, the results are shown in Figure S.3
for Case 1, Figure S.4 for Case 2, and Figure S.5 for Case 3. For n = 1000 observations, the
results are shown in Figure S.6 for Case 1, Figure S.7 for Case 2, and Figure S.8 for Case 3.
To conclude, the CH class is very flexible since it can allow different smoothness behaviors

in the same way as the Matérn class and can allow different degrees of tail behaviors that
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can capture the one in the GC class.
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Fig. S.3. Case 1: Comparison of predictive performance and estimated covariance struc-
tures when the true covariance is the Matérn class with 500 observations. The predictive
performance is evaluated at 10-by-10 regular grids in the square domain. These figures
summarize the predictive measures based on RMSPE, CVG and ALCI under 30 simulated
realizations.

S.37



1.00- - RMSPE CVG ALCI

;l 1.1- 0.98- 3.9-
0.75-
}_ 0.96- 3.8-
\: 1.0-
0.50- ¥, 3.7-
s 0.94-
\. i 3.6-
0.25- \\ o9 0.92-
Sl 3.5-
1 e Lo Lt Y S, T
0.00 . . . . . 0.8- I L4 0.90-
o 100 200 300 400 Matern New Cadchy Matern New Cadchy Matern Neéew Cadchy
- True Matern — New -- Cauchy
v =05 ER = 200
1.00- - RMSPE cvG ALCI
\ 0.98-
1.1-
0.75- | 4.00-
\ 0.96-
1.0-
0.50- 1 3.75-
\
0.25- Y. 0.9-
\ 000 3.50-
~_ e 92-
e el e
0.00- e LS L L LS L SR RN TS 0.8- Il L
0 100 200 300 400 Matern New CaL‘lchy Matern New Caljchy Matern New CaL‘lchy
True Matern — New -- Cauchy
v =25 ER =200
1.00- - RMSPE CVG ALCI
|‘ 0.95- +-
0.75- | 0.90- 3.7-
0.950-
\ 0.85- 3.5
os0- %
\ 0.80-
\ 0.925- T 3.3-
0.25- . 0.754 T
S 3.1-
e et e 0.70- 0.900-
0.004 . s 1 | |
; : C : Y . . i . . . 2.9- . . .
o 250 500 750 1000 Matern New Cauchy Matern New Cauchy Matern New Cauchy
- True Matern — New -- Cauchy
v =0.5, ER = 500
1.00- - RMSPE cvG ALCI
t; 0.95- 3 0.98- 3.4-
075+ 0.90-
. 0.96-
L 0.85- 3.2-
080"y, 0.94-
‘\, 0.80- .
0.25- 'y 0.75-
‘\ 0.92- 3.0-
~.";"'.;""-3-1'-'-'-.'-;.'-'.-.'_-_-.:.-.-.-..-_-.; -------- 0791
0.00- i i i 1 - . 0.90-
0 250 500 750 1000 Matern New Cadchy Matern New Cadchy Matern New CaL;chy

- True - - Matern = New -~ Cauchy
v =25 FR =500
Fig. S.4. Case 2: Comparison of predictive performance and estimated covariance structures
when the true covariance is the CH class with 500 observations. The predictive performance
is evaluated at 10-by-10 regular grids in the square domain. These figures summarize the
predictive measures based on RMSPE, CVG and ALCI under 30 simulated realizations.
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Fig. S.5. Case 3: Comparison of predictive performance and estimated covariance structures
when the true covariance is the GC class with 500 observations. The predictive performance
is evaluated at 10-by-10 regular grids in the square domain. These figures summarize the
predictive measures based on RMSPE, CVG and ALCI under 30 simulated realizations.
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Fig. S.6. Case 1: Comparison of predictive performance and estimated covariance struc-
tures when the true covariance is the Matérn class with 1000 observations. The predictive
performance is evaluated at 10-by-10 regular grids in the square domain. These figures
summarize the predictive measures based on RMSPE, CVG and ALCI under 30 simulated
realizations.
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Fig. S.7. Case 2: Comparison of predictive performance and estimated covariance structures
when the true covariance is the CH class with 1000 observations. The predictive performance
is evaluated at 10-by-10 regular grids in the square domain. These figures summarize the
predictive measures based on RMSPE, CVG and ALCI under 30 simulated realizations.
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Fig. S.8. Case 3: Comparison of predictive performance and estimated covariance structures
when the true covariance is the GC class with 1000 observations. The predictive performance
is evaluated at 10-by-10 regular grids in the square domain. These figures summarize the
predictive measures based on RMSPE, CVG and ALCI under 30 simulated realizations.
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S.6.2 Simulation with a Tensor Product of Covariance Functions

In this section, we study the predictive performance of the CH class with a product form,
ie., r(|ls—ul)) = [1%, R(|s; — ui|; 6;), where R(-; ;) is an isotropic covariance function with
parameter 6;. This product form of covariance functions allows different properties along
different coordinate directions (or input space) and has been widely used in uncertainty
quantification and machine learning.

We simulate the true processes under the Matérn class and the CH class with effective
range fixed at 200 and 500. For the smoothness parameter, we consider v = 0.5,2.5. The tail
decay parameter in the CH class is chosen to be 0.5. As each dimension has a different range
parameter or scale parameter, we choose these parameters in each dimension such that their
correlation will be 0.5'/2 at distance 200 and 500. This will guarantee the overall effective
range will be 200 and 500, respectively. For each simulation setting, the true process is
simulated at n = 100,500, 1000 locations. The GC class has a smoothness parameter that
is specified as in Section 4. The prediction locations are the same as those in Section 4.

In the first case where the true process has a product of Matérn covariance functions,
the prediction results under the Matérn class, the CH class and the GC class are shown in
panels from (a) to (f) of Figure S.9. As expected, the Matérn class and the CH class yield
indistinguishable predictive performance in terms of RMSPE, CVG, and ALCI. However, the
GC class has much worse performance than the other two covariance classes. In the second
case where the true process has a product of CH functions, the prediction results under these
three covariance classes are shown in panels from (g) to (1) of Figure S.9. As expected, the
CH class yields much better prediction results than the Matérn class, since the Matérn class
has an exponentially decaying tail that is not able to capture the tail behavior in the CH
class. It is worth noting that the GC class yields much worse predictive performance than
the other two covariance classes. This is quite different from the situation when the true

process does not have a product covariance form.
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Fig. S.9. Predictive performance over 10-by-10 regular grids under three covariance classes
when the true process has a product form of covariance structures.
formance is studied under different smoothness parameters, effective ranges and number of
observation locations.
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S.7 Additional Numerical Results

This section contains parameter estimation results and figures referenced in Section 5. Fig-
ure S.10 shows the directional semivariograms for the OCO2 data. Table S.4 shows the
estimated parameters under the Matérn covariance model and the CH covariance in the
cross-validation study of Section 5. Figure S.11 compares kriging predictors and associ-
ated standard errors under the CH class and Matérn class in the cross-validation study of

Section 5.

25

—— omnid.

2.0
S

15

semivariance
1.0

05

0.0
|

T T T T
(0] 10 20 30

distance (km)

Fig. S.10. Graphical assessments of isotropy in the OCO2 data. The directional semivari-
ograms do not appear to exhibit differences, indicating that the assumption of an isotropic
covariance function is likely to be true.
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Table S.4. Cross-validation results based on the Matérn covariance model and the CH
covariance model.

Matérn class CH class
v=0.5 v=15 v =0.5 v=15
b 411.1 411.1 411.0 411.0
o? 1.679 1.439 1.750 1.585
) 160.5 104.1 — —
@ — — 0.381 0.353
I5; — — 80.17 58.65
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(a) Difference of kriging predictors (b) Ratio of kriging standard errors.

Fig. S.11. Comparison of kriging predictions under the Matérn class and the CH class.
The left panel shows the difference between kriging predictors under the CH class and those
under the Matérn class. The right panel shows the ratio of kriging standard errors under
the CH class to those under the Matérn class.
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