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S.1 Illustration of Timing to Evaluate Bessel Function

and Confluent Hypergeometric Function

When the confluent hypergeometric function is evaluated by calling the GNU scientific li-

brary GSL via Rcpp package and the modified Bessel function of second kind is evaluated

with the base package in R, with 10000 times repeated evaluations, on average, the confluent

hypergeometric function takes about 10.7 microseconds for each evaluation, while the Bessel

function takes about 7.8 microseconds for each evaluation. The timings are recorded using

the R package microbenchmark with results shown in Figure S.1.

S.2 1-D Process Realizations

In Figure S.2, we show the realizations from zero mean Gaussian processes with the CH class

and the Matérn class under different parameter settings. When the distance is within the

effective range, the Matérn covariance function results in more large correlations than the

CH covariance function. This makes the process realizations from the Matérn class smoother

even though the smoothness parameter is fixed at the same value for both the Matérn class

and the CH class. For the CH class, if α has a smaller value, the corresponding correlation

function has more small values within the effective range. This makes the process realizations

under the CH class look rougher. As we expect, when the effective range and the tail decay

parameter are fixed, the process realizations under the CH class look smoother for a larger

value of the smoothness parameter.
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Fig. S.1. Benchmark of the computing time to evaluate the confluent hypergeometric
function and the Bessel function in R. “Bessel” refers to the timing for evaluating the modified
Bessel function of the second kind and “HypergU” refers to the timing for evaluating the
confluent hypergeometric function of the second kind.
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Fig. S.2. Realizations over 2000 regular grid points in the domain [0, 2000] from zero mean
Gaussian processes with the CH covariance model and the Matérn covariance model under
different parameter settings. The realizations from the CH covariance are shown in the first
three columns and those from the Matérn covariance are shown in the last column. For the
first two rows, the effective range (ER) is fixed at 200. For the last two rows, the effective
range is fixed at 500. ER is defined as the distance at which correlation is approximately
0.05.
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S.3 Ancillary Results

To show the asymptotic behavior of the MLE of the microergodic parameter, we need some

results in terms of spectral densities of covariance functions. More precisely, the tail behavior

of the spectral densities can be used to check the equivalence of probability measures gen-

erated by stationary Gaussian random fields. Equivalence of Gaussian measures defined by

Gaussian processes has been studied in probability and statistics with sufficient conditions

given in Theorem 17 of Chapter III of Ibragimov and Rozanov (1978) for d = 1 and given

on page 156 of Yadrenko (1983) and page 120 of Stein (1999) for d > 1. In particular, the

following sufficient conditions can be used to check the equivalence of Gaussian probability

measures defined by covariance functions. If for some λ > 0 and for some finite c ∈ R, one

has

0 < f1(ω)|ω|λ <∞ as |ω| → ∞, and (S.1)∫
|ω|>c

{
f1(ω)− f2(ω)

f1(ω)

}2

dω <∞, (S.2)

then the two corresponding Gaussian measures P1 and P2 are equivalent. For isotropic

Gaussian random fields, the condition (S.2) can be expressed as

∫ ∞
c

ωd−1

{
f1(ω)− f2(ω)

f1(ω)

}2

dω <∞, (S.3)

where ω := |ω| with |·| denoting the Euclidean norm. The detailed discussion on equivalence

of Gaussian measures and the condition for equivalence can be found in Chapter 4 of Stein

(1999) and references (e.g., Stein, 1988, 1993; Stein and Handcock, 1989).

In what follows, we will introduce a few useful lemmas. Lemma 1 is used to diagonalize

two covariance matrices and it is needed in Lemma 2, which gives an important result on the
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behavior of eigenvalues of a correlation matrix constructed from the CH correlation function.

Lemma 1. Let A and B be two n × n symmetric positive definite matrices. Then there

exists a non-singular matrix U such that U>AU = In×n and U>BU = D, where D is an

n× n diagonal matrix with positive diagonal entries.

Proof. For the symmetric matrix A, it follows from the Schur Decomposition Theorem

(e.g., Magnus and Neudecker, 1999, p. 17) that there exists an orthogonal n × n matrix

S consisting of eigenvectors of A and a diagonal matrix Λ := diag{λ1, . . . , λn} such that

S>AS = Λ. Since A is positive definite, the diagonal entries of Λ are all positive. Let

Λ1/2 := diag{
√
λ1, . . . ,

√
λn} be the “square root” of Λ. Then we call A1/2 := Λ1/2S a square

root of A satisfying A = (A>)1/2A1/2. As the matrix A1/2 is invertible, the symmetric ma-

trix (A>)−1/2BA−1/2 is well-defined. Note that (A>)−1/2BA−1/2 is positive definite since

for all x ∈ Rn, x>(A>)−1/2BA−1/2x = ‖B1/2A−1/2x‖2 ≥ 0 with the inequality becoming an

equality only if x = 0. Hence (A>)−1/2BA−1/2 is also a symmetric and positive definite ma-

trix. According to the Schur Decomposition Theorem, there exists an orthogonal matrix O

and diagonal matrix D with positive diagonal entries such that O>(A>)−1/2BA−1/2O = D.

Now we define the non-singular matrix U := A−1/2O, which satisfies U>AU = In×n, as to

be established.

Lemma 2. Suppose that ν > 0 is fixed. Given a set of n observation locations in a bounded

domain D, let σ2
0Rn(θ0) be the n×n covariance matrix defined by the CH covariance function

C(h, ν, α0, β0, σ
2
0) with θ0 := {α0, β0} and σ2Rn(θ) be the n×n covariance matrix defined by

the CH covariance function C(h, ν, α, β, σ2) with θ := {α, β}. Assume that α0, α > d/2. Let

Λ := diag{λ1,n, . . . , λn,n} be an n × n diagonal matrix with diagonal elements λk,n > 0 for

k = 1, . . . , n such that U>σ2
0Rn(θ0)U = In and U>σ2Rn(θ)U = Λ for some non-singular
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matrix U. Then it can be established that for any ε > 0, as n→∞,

1

ε
√
n

max
1≤i≤n

n∑
k=1

{λ−1
i,n}|λk,n − 1| → 0.

Proof. Note that the existence of the matrix U is true according to Lemma 1 and thus

λk,n, k = 1, . . . , n are well-defined.

Let ξ0 : Rd → R be a function of the form ξ0(ω) =
∫
Rd exp{−ix>ω}c0(x)dx for any

ω ∈ Rd, where c0(x) = |x|κ−dI(|x| ≤ 1) for any x ∈ Rd, κ = (ν + d/2)/(2m) with | · |

denoting the Euclidean norm, and m = bν + d/2c+ 1 with bxc denoting the largest integer

less than or equal to x. As d ∈ {1, 2, 3}, κ ∈ (0, 1/2), it follows from Lemma 2.3 of Wang

(2010) and proof of Theorem 8 of Bevilacqua et al. (2019) that the function ξ0 is a continuous,

isotropic, and strictly positive function with ξ0(ω) � |ω|−κ when |ω| → ∞.

Let c1 = c0 ∗ . . . ∗ c0 denote the 2m-fold convolution of the function c0 with itself, and

let ξ1(ω) =
∫
Rd exp{−ix>ω}c1(x)dx. Then ξ1(ω) = ξ0(ω)2m for all ω ∈ Rd. This implies

that ξ1 is also a continuous, isotropic, and strictly positive function. By Proposition 1, the

spectral density f(|ω|) of the CH covariance function satisfies f(|ω|) � |ω|−(2ν+d), and hence

we have f(|ω|)/ξ1(ω) � 1 as |ω| → ∞. Note that this ratio (as a function of |ω|) is a well-

defined and continuous function on arbitrary compact interval of the positive real line with

ξ1 > 0. Thus, there exist two positive constants (not depending on ω) such that

cξ1 ≤
f(|ω|)
ξ1(ω)

≤ Cξ1 , as |ω| → ∞. (S.4)

For any fixed ν > 0, let fσ,α,β(|ω|) denote the spectral density of the CH covariance

C(h; ν, α, β, σ2) and let fσ0,α0,β0(|ω|) denote the spectral density of the CH covariance C(h; ν,

α0, β0, σ
2
0). Then we define

η(ω) :=
fσ,α,β(|ω|)− fσ0,α0,β0(|ω|)

ξ1(ω)
.
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It follows from direct calculation that for a constant Cη > 0,

∫
Rd
η(ω)2dω =

2πd/2

Γ(d/2)

{∫ Cη

0

rd−1

(
fσ,α,β(r)− fσ0,α0,β0(r)

ξ1(r)

)2

dr

+

∫ ∞
Cη

rd−1

(
fσ,α,β(r)− fσ0,α0,β0(r)

ξ1(r)

)2

dr

}
,

(S.5)

where r = |r| and r ∈ Rd.

As shown in Theorem 3, for any fixed ν > 0, the spectral density of the CH class satisfies

the conditions (S.1) and (S.2) when σ2Γ(ν+α)
β2νΓ(α)

=
σ2
0Γ(ν+α0)

β2ν
0 Γ(α0)

. This implies that there exists a

constant C0
η (not depending on ω) such that

|η(ω)| ≤
C0
η

(1 + |ω|2)
, ∀ω ∈ Rd.

It follows immediately that the two integrals in the righ-hand side of Equation (S.5) are

hence finite for d = 1, 2, 3. Thus, η is square integrable, i.e., η ∈ L2(Rd). From classic

Fourier theory (see Chapter 1 of Stein and Weiss (1971)), an immediate consequence of the

square integrability of η is that there exists a square-integrable function g : Rd → C such

that ∫
Rd
|η(ω)− ĝk(ω)|2dω, as k →∞,

where ĝk(ω) =
∫
Rd exp{−ix>ω}g(x)I(|x|max ≤ k)dx for all ω ∈ Rd and |x|max = max1≤j≤d |xj|

for x = (x1, . . . , xd) ∈ Rd.

Let a > 0, ma := ba+ d/2c+ 1, a0 := (a+ d/2)/(2ma). Define

c̃0(x) := |x|a0−dI(|x| ≤ 1), ∀x ∈ Rd,

ξ̃0(ω) :=

∫
Rd

exp{−ix>ω}c̃0(x)dx, ∀ω ∈ Rd.
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Let c̃1 := c̃0 ∗ · · · ∗ c̃0 denote the 2ma-fold convolution of c̃0 with itself. Let {εn : n = 1, 2, . . .}

be a sequence of real numbers such that εn ∈ (0, 1) for all n and limn→∞ εn = 0. Then we

define

en(x) :=
1

Ceεdn
c̃1

(
x

εn

)
,

where Ce :=
∫
Rd c̃1(x)dx. Then we obtain the Fourier transform of en:

ên(x) =

∫
Rd

exp{−ix>ω}en(x)dx =
ξ̃1(εnω)

Ce
,

where ξ̃1(ω) :=
∫
Rd exp{−ix>ω}c̃1(x)dx = ξ̃2ma

0 (ω). This implies that there exists a constant

Cê (not depending on ω and n) such that

|ên(ω)| ≤ Cê
(1 + εn|ω|)a+d/2

, ∀ω ∈ Rd. (S.6)

Note that it follows from Plancherel’s theorem that∫
Rd
|g(x− y)− g(y)|2dx =

1

(2π)d

∫
Rd
|(exp{−iw>y} − 1)η(ω)|2dω

≤ 22−`0|y|`0
(2π)d

∫
Rd
|ω|`0|η(ω)|2dω,

and it follows from Minkowski’s equality that

{∫
Rd
|en ∗ g(x)− g(x)|2dx

}1/2

=

{∫
Rd

∫
|y|≤2maεn

|(g(x− y)− g(x))en(y)dy|2dx
}1/2

≤ 21−`0/2(2maεn)`0/2

(2π)d/2

{∫
Rd
|ω|`0|η(ω)|2dω

}1/2

≤ 21−`0/2(2maεn)`0/2

(2π)d/2
C0
η

{∫
Rd

|ω|`0
(1 + |ω|2)2

dω

}1/2

,
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where the integral
∫
Rd |ω|

`0(1 + |ω|2)−2dω is finite for `0 < min{2, 4− d}. Thus, there exists

a constant C`0 such that ∫
Rd
|en ∗ g(x)− g(x)|2dx ≤ C`0ε

`0
n (S.7)

for `0 < min{2, 4− d}.

Next, we will show some useful bounds on eigenvalues of covariance matrices based on

results from spectral theory.

Let b(s,u) := Efσ,α,β [Z(s)Z(u)]−Efσ0,α0,β0 [Z(s)Z(u)] for all s,u ∈ D = [0, L]d. It follows

from Equation (2.24) of Wang (2010) and the fact that supp(c1) ⊂ [−2m, 2m]d that for all

s,u ∈ D,

b(s,u) =

∫
Rd

exp{−i(s− u)>ω}{fσ,α,β(|ω|)− fσ0,α0,β0(|ω|)}dω

=

∫
Rd

exp{−i(s− u)>ω}η(ω)ξ1(ω)dω

= (2π)d
∫
Rd

∫
Rd
g(x− y)c1(s− x)c1(u− y)dxdy

= (2π)d
∫
Rd

∫
Rd
en ∗ g(x− y)c1(s− x)c1(u− y)dxdy

+ (2π)d
∫
Rd

∫
Rd
h∗n(x,y)c1(s− x)c1(u− y)dxdy,

(S.8)

where h∗n(x,y) = {g(x− y)− en ∗ g(x− y)}I(|x + y|max ≤ 4m + 2L) for all x,y ∈ Rd and

h∗n is square integrable.

Define

h∗∗n (x,y) :=

∫
|u|max≤2m+2ma+L

en(x− u)g(u− y)du, ∀x,y ∈ Rd.

The function h∗∗n : R2d → C is again square integrable. Direct calculation yields that the
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first part of Equation (S.8) can be re-expressed as

(2π)d
∫
Rd

∫
Rd
en ∗ g(x− y)c1(s− x)c2(u− y)dxdy

= (2π)d
∫
Rd

∫
Rd
h∗∗n (x,y)c1(s− x)c1(u− y)dxdy

= (2π)−d
∫
Rd

∫
Rd

exp{i(ω>s− v>u)}ξ1(ω)ξ1(v)

×
{∫
|t|max≤2m+2ma+L

exp{−i(ω>t− v>t)}ên(ω)η(v)dt

}
dvdω.

(S.9)

Let η∗n : Rd → C be the Fourier transform of g − en ∗ g and define

ĝn,k(ω) :=

∫
Rd

exp{−iω>x}[g(x)− en ∗ g(x)]I(|x|max ≤ k)dx.

This implies that ∫
Rd
|η∗n(ω)− ĝn,k(ω)|2dω → 0, as k →∞. (S.10)

Let θ(ω) = 2−d
∫
Rd exp{−it>ω}I(|t|max ≤ 4m+ 2L)dt. Then θ is continuous and square

integrable with ∫
Rd
θ(ω)2dω <∞. (S.11)

Direct calculation yields that the second part of Equation (S.8) can be re-expressed as

(2π)d
∫
Rd

∫
Rd
h∗n(x,y)c1(s− x)c1(u− y)dxdy

= (2π)−d
∫
Rd

∫
Rd

exp{i(ω>s− v>u)}η∗n
(
ω + v

2

)
θ

(
ω − v

2

)
ξ1(ω)ξ1(v)dωdv.

(S.12)
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Combining Equations (S.9) and (S.12) allows us to write b(s,u) as a sum of two parts:

b(s,u) = (2π)−d
∫
Rd

∫
Rd

exp{i(ω>s− v>u)}ξ1(ω)ξ1(v)

×
{∫
|t|max≤2m+2ma+L

exp{−i(ω>t− v>t)}ên(ω)η(v)dt

}
dvdω

+ (2π)−d
∫
Rd

∫
Rd

exp{i(ω>s− v>u)}η∗n
(
ω + v

2

)
θ

(
ω − v

2

)
ξ1(ω)ξ1(v)dωdv.

In the rest of the proof, we will relate b(s,u) with the eigenvalues of the CH covariance

matrix and give bounds on these eigenvalues. Let {ψ1, . . . , ψn} be as in Equation (2.15) of

Wang (2010). Then it follows from Equations (2.16) and (2.60) of Wang (2010) that

〈ψk, ψk〉fσ,α,β − 〈ψk, ψk〉fσ0,α0,β0 = λk,n − 1 =: ν̃∗k,n + ν̃†k,n,

where

ν̃∗k,n :=
1

(2π)d

∫
Rd

∫
Rd
ψk(ω)ψk(v)η∗n

(
ω + v

2

)
θ

(
ω − v

2

)
ξ1(ω)ξ1(v)dωdv,

ν̃†k,n :=
1

(2π)d

∫
Rd

∫
Rd
ψk(ω)ψk(v)ξ1(ω)ξ1(v)

×
{∫
|t|max≤2m+2ma+L

exp{−i(ω>t− v>t)}ên(ω)η(v)dt

}
dvdω,

with x̄ denote the complex conjugate of x. It then follows from Bessel’s inequality that

n∑
k=1

|ν̃∗k,n|2 ≤ 2−d−1π−d
{

sup
s∈Rd

ξ1(s)2

fσ0,α0,β0(s)

}∫
Rd
|η∗n(ω)|2dω

∫
Rd
|θ(v)|2dv,

n∑
k=1

|ν̃†k,n| ≤ 2−d−1π−d
{

sup
s∈Rd

ξ1(s)2

fσ0,α0,β0(s)

}∫
|t|max≤2m+2ma+L

dt

×
{∫

Rd
|ên(ω)|2dω +

∫
Rd
η(v)2dv

}
.
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Combining the above inequalities with Equations (S.4), (S.6), (S.7), (S.10), and (S.11),

we observe that there exist constants C,C1, C2 (not depending on n) such that

n∑
k=1

|ν̃∗k,n|2 ≤ Cε`0n ,

n∑
k=1

|ν̃∗k,n| ≤

{
n

n∑
k=1

|ν̃∗k,n|2
}1/2

≤
√
Cnε`0n ,

n∑
k=1

|ν̃†k,n| ≤
(
C1

εdn
+ C2E

)
,

where E :=
∫
Rd η(v)2dv is finite. Thus it follows that

n∑
k=1

|λk,n − 1| ≤
√
Cnε`0n +

C1

εdn
+ C2E. (S.13)

When α, α0 > d/2, the spectral density of the CH covariance function is well-defined and

is finite for any frequency. Thus, the ratio

fσ,α,β(|ω|)
fσ0,α0,β0(|ω|)

is well-defined for all ω ∈ Rd. We also observe that there exist constants c̃f > 0 and C̃f > 0

(not depending on ω) such that

c̃f ≤
fσ,α,β(|ω|)
fσ0,α0,β0(|ω|)

≤ C̃f , ∀ω ∈ Rd.

It follows immediately that c̃f ≤ λk,n ≤ C̃f for all k = 1, . . . , n.
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Finally, using (S.13) yields that for any ε > 0,

1

ε
√
n

{
max
1≤i≤n

{λ−1
i,n}
} n∑

k=1

|λk,n − 1| ≤ C1/2ε
`0/2
n

c̃fε
+

1

c̃fεn1/2

(
C1

εdn
+ C2E

)
. (S.14)

Therefore, the right-hand side of Equation (S.14) tends to 0 as n→∞, as desired.

Based on Lemma 1 and Lemma 2, we can study the asymptotic behavior of the MLE for

the microergodic parameter of the CH covariance function.

Lemma 3. Let {Dn}n≥1 be an increasing sequence of subsets of a bounded domain D such

that ∪∞n=1Dn is bounded. Assume that ν is fixed. Let P0 be the Gaussian probability measure

defined under C(h; ν, α0, β0, σ
2
0). Let c(θ0) := σ2

0β
−2ν
0 Γ(ν + α0)/Γ(α0). Assume that α0 >

d/2, β0 > 0, σ2
0 > 0. The following results can be established.

(a) As n→∞, ĉn(θ)
a.s.−→ c(θ0) under measure P0 for any fixed α > d/2 and β > 0;

(b) As n→∞,
√
n {ĉn(θ)− c(θ0)} L−→ N (0, 2[c(θ0)]2) for any fixed α > d/2 and β > 0.

Proof. The proof of Part (a) follows from the same arguments as in the proof of Theorem 3

in Zhang (2004) and is omitted. For the proof of Part (b), we follow the arguments in Wang

(2010); Wang and Loh (2011) and Bevilacqua et al. (2019). Without loss of generality,

we assume D = [0, L]d, 0 < L < ∞ is a bounded subset of Rd with d = 1, 2, 3. Let

σ2 be a positive constant such that σ2β−2νΓ(ν + α)/Γ(α) = σ2
0β
−2ν
0 Γ(ν + α0)/Γ(α0). Let

c(θ) = σ2β−2νΓ(ν + α)/Γ(α) and ĉn(θ) = σ̂2
nβ
−2νΓ(ν + α)/Γ(α). Then we have

√
n {ĉn(θ)− c(θ0)} =

c(θ0)√
n

{
1

σ2
Z>nR−1

n (θ)Zn −
1

σ2
0

Z>nR−1
n (θ0)Zn

}
+
c(θ0)√
n

{
1

σ2
0

Z>nR−1
n (θ0)Zn − n

}
.
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Under Gaussian measure P0 defined by the covariance function C(h; ν, α0, β0, σ
2
0), we have

Z>nR−1
n (θ0)Zn/σ

2
0 ∼ χ2

n and
c(θ0)√
n

{
1

σ2
0

Z>nR−1
n (θ0)Zn − n

}
L−→ N (0, 2[c(θ0)]2),

as n→∞. To prove the result, it suffices to show that

1√
n

{
1

σ2
Z>nR−1

n (θ)Zn −
1

σ2
0

Z>nR−1
n (θ0)Zn

}
P0−→ 0, as n→∞, (S.15)

under Gaussian measure P0.

According to Lemma 1, there exists an n× n non-singular matrix U such that

σ2
0U
>Rn(θ0)U = In, σ2U>Rn(θ)U = Λ,

where Λ := diag{λ1,n, . . . , λn,n} is an n×n diagonal matrix with diagonal elements satisfying

λk,n > 0 for k = 1, . . . , n. Now we define the random vector Y := (Y1, . . . , Yn)> = U>Zn.

It is easy to check that Y ∼ Nn(0, In) for Zn generated under the measure P0. Thus, the

assertion (S.15) is true if for any ε > 0,

P0

(
1√
n

∣∣∣∣ 1

σ2
Z>nR−1

n (θ)Zn −
1

σ2
0

Z>nR−1
n (θ0)Zn

∣∣∣∣ > ε

)
= P0

(
1√
n

∣∣∣∣∣
n∑
k=1

(λ−1
k,n − 1)Y 2

k

∣∣∣∣∣ > ε

)
→ 0, as n→∞.

(S.16)

By Markov’s inequality, the probability in the assertion (S.16) can be bounded as

P0

(
1√
n

∣∣∣∣∣
n∑
k=1

(λ−1
k,n − 1)Y 2

k

∣∣∣∣∣ > ε

)
≤ 1

ε
√
n

n∑
k=1

|λ−1
k,n − 1| ≤ 1

ε
√
n

{
max
1≤i≤n

{λ−1
i,n}
} n∑

k=1

|λk,n − 1|.
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The rest of the proof is to show that for any ε > 0, the term

1

ε
√
n

{
max
1≤i≤n

{λ−1
i,n}
} n∑

k=1

|λk,n − 1|

goes to 0 as n→∞. This is true according to Lemma 2.

Lemma 3 implies that the estimator ĉn(θ) of the microergodic parameter converges to

the true microergodic parameter, almost surely, when the number of observations tends to

infinity in a fixed and bounded domain. This result holds true for any value of θ. As will be

shown, if one replaces θ with its maximum likelihood estimator in ĉn(θ), this conclusion is

true as well. The second statement of Lemma 3 indicates that ĉn(θ) converges to a normal

distribution.

A key fact is that the above lemma holds true for arbitrarily fixed θ. A more practical

situation is to estimate θ and σ2 by maximizing the log-likelihood (7). The following lemma

is needed to prove the asymptotic behavior of ĉn(α, β̂n) and ĉn(α̂n, β) under infill asymptotics.

Lemma 4. Suppose that d is the dimension of the domain D and Zn is a vector of n

observations in D. For any α1, α2 such that d/2 < α1 < α2 and any β1, β2 such that

0 < β1 < β2, we have the following results:

(a) ĉn(α, β1) ≤ ĉn(α, β2) for any fixed α > d/2.

(b) ĉn(α1, β) ≥ ĉn(α2, β) for any fixed β > 0.

Proof. The difference

ĉn(θ1)− ĉn(θ2) = Z>n

{
Γ(ν + α1)

β2ν
1 Γ(α1)

R−1
n (θ1)− Γ(ν + α2)

β2ν
2 Γ(α2)

R−1
n (θ2)

}
Zn/n

is nonnegative for any Zn if the matrix A := Γ(ν+α1)

β2ν
1 Γ(α1)

R−1
n (θ1) − Γ(ν+α2)

β2ν
2 Γ(α2)

R−1
n (θ2) is positive

semidefinite. Notice that A is positive semidefinite if and only if B :=
β2ν
2 Γ(α2)

Γ(ν+α2)
Rn(θ2) −
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β2ν
1 Γ(α1)

Γ(ν+α1)
Rn(θ1) is positive semidefinite. The entries of B can be expressed in terms of a

function KB : Rd → R, with

Bij = KB(si − sj) =
β2ν

2 Γ(α2)

Γ(ν + α2)
R(|si − sj|;α2, β2, ν)− β2ν

1 Γ(α1)

Γ(ν + α1)
R(|si − sj|;α1, β1, ν),

where | · | denotes the Euclidean norm. The matrix B is positive semidefinite if KB is a

positive definite function. Define the Fourier transform of KB by

fB(ω) :=
1

(2π)d

∫
Rd

exp{−iω>x}KB(x)dx

=
β2ν

2 Γ(α2)

Γ(ν + α2)

{
1

(2π)d

∫
Rd

exp{−iω>x}R(|x|;α2, β2, ν)dx

}
− β2ν

1 Γ(α1)

Γ(ν + α1)

{
1

(2π)d

∫
Rd

exp{−iω>x}R(|x|;α1, β1, ν)dx

}
.

The integrals in fB(ω) are finite for α1, α2 > d/2. Let g(ω) be the spectral density of the

CH correlation function with parameters α, β, ν:

g(ω) :=
1

(2π)d

∫
Rd

exp{−iω>x}R(|x|;α, β, ν)dx

=
22ννν

πd/2β2νΓ(α)

∫ ∞
0

{4ν/(β2t) + |ω|2}−(ν+d/2)t−(ν+α+1) exp{−1/t}dt.

Thus, KB is positive definite if fB is positive for all ω ∈ Rd. Notice that fB is given by

fB(ω) =
(4ν)ν

πd/2Γ(ν + α2)

∫ ∞
0

{4ν/(β2
2t) + |ω|2}−(ν+d/2)t−(ν+α2+1) exp{−1/t}dt

− (4ν)ν

πd/2Γ(ν + α1)

∫ ∞
0

{4ν/(β2
1t) + |ω|2}−(ν+d/2)t−(ν+α1+1) exp{−1/t}dt.

It is straightforward to check that when α := α1 = α2 > d/2,

β1 < β2 =⇒ fB(ω) > 0, ∀ω ∈ Rd.
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Thus, if β1 < β2, then ĉn(α, β1) ≤ ĉn(α, β2), as claimed in Part (a).

The proof of Part (b) is as follows. Note that fB(ω) can be expressed as fB(ω) =

{(4ν)ν/πd/2}(I(α2)− I(α1)), where

I(α) :=

∫ ∞
0

1

Γ(ν + α)
{4ν/(β2t) + |ω|2}−(ν+d/2)t−(ν+α+1) exp{−1/t}dt

=

∫ ∞
0

uν+α−1

Γ(ν + α)
exp{−u}

(
4νu/β2 + |ω|2

)−(ν+d/2)
du

= EU
(
4νU/β2 + |ω|2

)−(ν+d/2)
,

with U ∼ Gamma(ν + α, 1). This expectation is finite if α > d/2. Suppose that α1 < α2

and β := β1 = β2. To show fB(ω) is negative for all ω ∈ Rd, it suffices to show that

I(α2) − I(α1) ≤ 0. Let U1 ∼ Gamma(ν + α1, 1) and U2 ∼ Gamma(ν + α2, 1). Then

U2
L
= U1 + U0, where U0 ∼ Gamma(α2 − α1, 1) and U0 is independent of U1. Thus, the

quantify I(α2) can be upper bounded by I(α1), since,

I(α2) = EU1,U0

{
4ν

β2
(U1 + U0) + |ω|2

}−(ν+d/2)

= EU1,U0

{
4ν

β2
U1 + |ω|2 +

4ν

β2
U0

}−(ν+d/2)

≤ EU1

{
4ν

β2
U1 + |ω|2

}−(ν+d/2)

= I(α1).

This lemma indicates that the MLE of the microergodic parameter is monotone when

one of its parameters is fixed. This property is used to prove the asymptotics of the MLE for

the microergodic parameter. Based on Lemma 3 and Lemma 4 , one can show that ĉn(θ̂n)

has the same asymptotic properties as ĉn(θ) for any fixed θ.
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S.4 Technical Proofs

This section contains all the proofs that are not given in the main text. For notational

convenience, we drop the parameters of the covariance function when there is no scope for

ambiguity.

S.4.1 Proof of Theorem 1

Proof. As C(0) = σ2 > 0, it remains to verify the positive definiteness of the function

C(·). For any n, all sequences {ai ∈ R : i = 1, . . . , n} and all sequences of spatial locations

{si ∈ Rd : i = 1, . . . , n}, it follows that

n∑
i=1

n∑
j=1

aiajC(hij; ν, α, β, σ
2) =

n∑
i=1

n∑
j=1

aiaj

∫ ∞
0

M(hij; ν, φ, σ
2)π(φ2;α, β)dφ2

=

∫ ∞
0

a>Aaπ(φ2;α, β)dφ2 ≥ 0,

where hij = |si − sj| with | · | denoting the Euclidean norm and a := (a1, . . . , an)>. The

matrix A := [M(hij)]i,j=1,...,n is a covariance matrix constructed via a Matérn covariance

function that is positive definite in Rd for all d, and hence A is a positive definite matrix,

which yields that a>Aa ≥ 0 for any a. This implies that the resultant integral is nonnegative

for any a, and it is strictly positive for a 6= 0. Thus, the function C(h) is positive definite in

Rd for any all d.

To derive the form of Equation (3), we start with the gamma mixture representation in

Equation (2), and substitute for π(φ2) the required inverse gamma density.

C(h; ν, α, β, σ2) =
σ2

2νΓ(ν)

∫ ∞
0

x(ν−1)

[∫ ∞
0

φ−2ν exp{−x/(2φ2)}π(φ2)dφ2

]
exp (−νh2/x)dx

=
σ2β2α

2ν+αΓ(ν)Γ(α)

∫ ∞
0

x(ν−1)

[∫ ∞
0

φ−2ν exp{−x/(2φ2)}φ−2(α+1)
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× exp{−β2/(2φ2)}dφ2
]

exp (−νh2/x)dx

=
σ2β2α

2ν+αΓ(ν)Γ(α)

∫ ∞
0

x(ν−1)

[∫ ∞
0

φ−2(ν+α+1) exp{−(β2 + x)/(2φ2)}dφ2

]
× exp{−νh2/x}dx

=
σ2β2αΓ(ν + α)

Γ(ν)Γ(α)

∫ ∞
0

x(ν−1)(x+ β2)−(ν+α) exp (−νh2/x)dx.

S.4.2 Proof of Theorem 2

Proof. (a) Using the property of modified Bessel function (see Abramowitz and Stegun,

1965, p. 375), as |h| → 0, we can express the Matérn covariance function as

M(h) =

a1(h) + a2(φ, ν, σ2)|h|2ν log |h|+O(|h|2ν); when ν = 0, 1, 2, . . . ,

a3(h) + a4(φ, ν, σ2)|h|2ν +O(|h|2dνe); otherwise,

where ai(h), i = 1, 3 are of the form
∑bνc

k=0 ck(φ, ν, σ
2)h2k with ck(φ, ν, σ

2) being the co-

efficients that depend on parameters φ, ν, σ2. The terms a2(φ, ν, σ2) = (−1)ν+1σ2

2ν−1Γ(ν)Γ(ν+1)φ2ν

and a4(φ, ν, σ2) = −πσ2

2ν sin(νπ)Γ(ν)Γ(ν+1)φ2ν
. The terms a2(φ, ν, σ2)|h|2ν log |h| and a4(φ, ν,

σ2)|h|2ν are called principal irregular terms that determine the differentiability of a

random field (see Stein, 1999, p. 32). This implies that the Matérn covariance function

is 2m times differentiable if and only if ν > m for an integer m. By mixing the param-

eter φ2 over an inverse gamma distribution IG(α, β2/2), when h → 0, the covariance

function C(h) can be written as

C(h) =


∫∞

0
a1(h)π(φ2)dφ2 + ã2(ν, σ2)|h|2ν log |h|+O(|h|2ν); when ν = 0, 1, 2, . . . ,∫∞

0
a3(h)π(φ2)dφ2 + ã4(ν, σ2)|h|2ν +O(|h|2dνe); otherwise,
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where

ã2(ν, σ2) :=

∫ ∞
0

a2(φ, ν, σ2)π(φ2)dφ2

=
2(−1)ν+1σ2

Γ(ν)Γ(ν + 1)

Γ(ν + α)

β2νΓ(α)
,

and

ã4(ν, σ2) :=

∫ ∞
0

a4(φ, ν, σ2)π(φ2)dφ2

=
−πσ2

sin(νπ)Γ(ν)Γ(ν + 1)

Γ(ν + α)

β2νΓ(α)

=
−σ2Γ(1− ν)

Γ(ν + 1)

Γ(ν + α)

β2νΓ(α)
.

Note that ã2(ν, σ2) is finite for any positive integer ν and any fixed α > 0, β > 0, and

ã4(ν, σ2) is finite for ν ∈ (0,∞) \ Z and α > 0, β > 0. Thus, the covariance C(h) has

the same differentiability as the Matérn covariance.

(b) It follows from Theorem 1 that

C(h; ν, α, β, σ2) =
σ2β2αΓ(ν + α)

Γ(ν)Γ(α)

∫ ∞
0

(
x

x+ β2

)ν+α

x−α−1 exp (−νh2/x)dx

t=x/(2ν)
=======

σ2Γ(ν + α)

(2ν/β2)αΓ(ν)Γ(α)

∫ ∞
0

tν−1(t+ β2/(2ν))−(ν+α)

× exp{−h2/(2t)} dt

=
σ2
√

2πΓ(ν + α)

(2ν/β2)αΓ(ν)Γ(α)

∫ ∞
0

(
t

t+ β2/(2ν)

)ν+α

t−α−1/2

× 1√
2πt

exp{−h2/(2t)} dt.

Let L(x) =
(

x
x+β2/(2ν)

)ν+α

. Then L(x) is a slowly varying function at ∞. Viewed as a
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function of h, the above integral is a Gaussian scale mixture with respect to t. Thus,

an application of Theorem 6.1 of Barndorff-Nielsen et al. (1982) yields

C(h; ν, α, β, σ2) ∼ σ2
√

2πΓ(ν + α)

(2ν/β2)αΓ(ν)Γ(α)
(2π)−1/22αΓ(α)|h|−2αL(h2), as h→∞,

∼ σ22αΓ(ν + α)

(2ν/β2)αΓ(ν)
|h|−2αL(h2), as h→∞

∼ σ2β2αΓ(ν + α)

ναΓ(ν)
|h|−2αL(h2), as h→∞.

Thus, the tail decays as |h|−2αL(h2) when α > 0.

S.4.3 Proof of Proposition 1

Proof. Let Φd denote the family of the continuous functions from [0,∞) to R that represent

correlation functions of stationary and isotropic random processes on Rd. Then the family

Φd is nested satisfying Φ1 ⊃ Φ2 ⊃ · · · ⊃ Φ∞, where Φ∞ := ∩d≥1Φd is the family of radial

functions that are positive definite on any number of dimensions in Euclidean space.

The proof consists of two parts. We first show that the CH correlation function belongs

to Φd, from [0,∞) to R. Then we use Theorem 6.1 of Barndorff-Nielsen et al. (1982) to

derive the tail behavior of the spectral density.

Note that Schoenberg (1938) shows that any member ψ that is in the family Φd can be

written as a scale mixture with a probability measure F on [0,∞):

ψ(h) =

∫ ∞
0

h−(d−2)/2J(d−2)/2(ωh)dF (ω), h ≥ 0,

where Jν(·) is the ordinary Bessel function (see 9.1.20 of Abramowitz and Stegun, 1965). It

is well-known (see Chapter 2 of Matérn, 1960) that the Matérn correlation is positive definite
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in any number of dimensions in Euclidean space and it is a member of Φ∞ for any positive

values of φ and ν. The CH correlation function as a scale mixture of the Matérn correlation

is also a member of Φ∞ (see the proof in Theorem 1). The Fourier transform of f ∈ Φd,

denoted by F(f), is available in a convenient form (Yaglom, 1987) with

F(f)(ω) = (2π)−d/2
∫ ∞

0

(uω)−(d−2)/2J(d−2)/2(uω)ud−1f(u)du, ω ≥ 0.

Notice that the Matérn covariance function (1) has spectral density

fM(ω) = (2π)−d/2
∫ ∞

0

(ωh)−(d−2)/2J(d−2)/2(ωh)hd−1M(h) dh,

=
σ2(
√

2ν/φ)2ν

πd/2((
√

2ν/φ)2 + ω2)ν+d/2
.

Thus, the spectral density of the covariance function C(h) is

f(ω) = (2π)−d/2
∫ ∞

0

(ωh)−(d−2)/2J(d−2)/2(ωh)hd−1

∫ ∞
0

M(h; ν, φ, σ2)π(φ2)dφ2dh

=
σ22ννν(β2/2)α

Γ(α)

∫ ∞
0

φ−2ν

πd/2(2νφ−2 + ω2)ν+d/2
φ−2(α+1) exp{−β2/(2φ2)}dφ2

=
σ22ν−αννβ2α

πd/2Γ(α)

∫ ∞
0

(2νφ−2 + ω2)−ν−d/2φ−2(ν+α+1) exp{−β2/(2φ2)}dφ2.

where the above spectral density is finite for α > d/2 and is infinite for α ∈ (0, d/2].

To derive the tail behavior, we make the change of variable φ2 = β2t/ω2. The spectral

density above can be expressed as

f(ω) =
σ22ν−αννβ2α

πd/2Γ(α)
ω2α−d

∫ ∞
0

((2ν/β2)t−1 + 1)−(ν+d/2)t−(ν+α+1) exp{−ω2/(2t)}dt

=
σ22ν−ανν

πd/2β2νΓ(α)
(2π)1/2ω2α−d

∫ ∞
0

(
t

2ν/β2 + t

)(ν+d/2)

t(−ν−α+1/2)−1 1√
2πt

× exp{−ω2/(2t)}dt.
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We define

L(x) :=

{
x

x+ β2/(2ν)

}ν+d/2

.

Then L(x) is a slowly varying function at ∞. The above integral is also a Gaussian scale

mixture. Thus, an application of Theorem 6.1 of Barndorff-Nielsen et al. (1982) yields that

as |ω| → ∞,

f(ω) ∼ σ22ν−ανν

πd/2β2νΓ(α)
(2π)1/2ω2α−d(2π)−1/221/2+(ν+α−1/2))|ω|−2(ν+α−1/2)−1L(ω2)

∼ σ222νννΓ(ν + α)

πd/2β2νΓ(α)
ω−(2ν+d)L(ω2).

S.4.4 Proof of Theorem 3

Proof. Let fi(ω), i = 1, 2 be the spectral densities with parameters {σ2
i , βi, αi, ν} for two

covariance functions C1(·), C2(·). The condition (S.1) says the spectral density fi(ω) is

bounded at zero and ∞ when ω → ∞. In fact, the boundness of fi near zero follows from

the assumption that αi > d/2. Let λ = 2ν + d. Then, one can show that

lim
ω→∞

f1(ω)|ω|2ν+d =
σ2

1(β2
1/2)−ν(2ν)νΓ(ν + α1)

πd/2Γ(α1)
.

Thus, the condition (S.1) is satisfied.

We first show the sufficiency. Assume that the condition in Equation (5) holds. To prove

the equivalence of two measures, it suffices to show that the condition (S.2) is satisfied.

Notice that as ω →∞,∣∣∣∣f1(ω)− f2(ω)

f1(ω)

∣∣∣∣ =

∣∣∣∣{ω2 + β2
2/(2ν)}−(ν+d/2)

{ω2 + β2
1/(2ν)}−(ν+d/2)

− 1

∣∣∣∣
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≤ ω−(2ν+d)
∣∣{ω2 + β2

2/(2ν)}ν+d/2 − {ω2 + β2
1/(2ν)}ν+d/2

∣∣
≤
∣∣{1 + (β2

2/2ν)ω−2}ν+d/2 − {1 + (β2
1/2ν)ω−2}ν+d/2

∣∣
≤
∣∣{1 + (ν + d/2)(β2

2/2ν)ω−2 +O(ω−4)}

− {1 + (ν + d/2)(β2
1/2ν)ω−2 +O(ω−4)}

∣∣
≤ |β2

1 − β2
2 |(ν + d/2)/(2ν)ω−2 +O(ω−4).

The integral in (S.2) is finite for d = 1, 2, 3. Therefore, the two measures are equivalent.

It remains to show the necessary condition. Suppose that

σ2
1β
−2ν
1 Γ(ν + α1)

Γ(α1)
6= σ2

2β
−2ν
2 Γ(ν + α2)

Γ(α2)
.

Let

σ2
0 := σ2

2

β−2ν
2 Γ(α1)Γ(ν + α2)

β−2ν
1 Γ(α2)Γ(ν + α1)

.

Then
σ2

0β
−2ν
1 Γ(ν + α1)

Γ(α1)
=
σ2

2β
−2ν
2 Γ(ν + α2)

Γ(α2)
.

Thus, the two covariances C(h; ν, α1, β1, σ
2
0) and C(h; ν, α1, β1, σ

2
1) define two equivalent mea-

sures. It remains to show that C(h; ν, α1, β1, σ
2
0) and C(h; ν, α2, β2, σ

2
2) define two equivalent

Gaussian measures, which follows from the proof in Theorem 2 of Zhang (2004).

S.4.5 Proof of Theorem 4

Proof. Let k1 = σ2
1

22νννΓ(ν+α)

πd/2β2νΓ(α)
and k2 = σ2

2(2ν)νφ−2ν/πd/2. Then the condition in Equa-

tion (6) implies that k1 = k2. It follows that as |ω| → ∞,∣∣∣∣f1(ω)− f2(ω)

f1(ω)

∣∣∣∣ =

∣∣∣∣k2

k1

(ω2 + 2ν/φ2)−(ν+d/2)(ω2 + β2/(2ν))(ν+d/2) − 1

∣∣∣∣
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= (ω2 + 2ν/φ2)−(ν+d/2) ×
∣∣k2/k1(ω2 + 2ν/φ2)ν+d/2

−(ω2 + β2/(2ν))(ν+d/2)
∣∣

≤ ω−(2ν+d) ×
∣∣(ω2 + 2ν/φ2)ν+d/2 − (ω2 + β2/(2ν))(ν+d/2)

∣∣
≤
∣∣{1 + (2ν/φ2)ω−2}−(ν+d/2) − {1 + β2/(2ν)ω−2}(ν+d/2)

∣∣
≤
∣∣{1 + (2ν/φ2)(ν + d/2)ω−2 +O(ω−4)} − {1 + (β2/(2ν))(ν + d/2)ω−2

+O(ω−4)}
∣∣ .

≤ |2ν/φ2 − β2/(2ν)|(ν + d/2)ω−2 +O(ω−4).

The integral in (S.2) is finite for d = 1, 2, 3. Therefore, these two measures are equivalent.

S.4.6 Proof of Theorem 5

Proof. Note that the CH covariance function C(h; ν, α, β, σ2) is a continuous function of the

covariance parameters α, β, σ2 over their natural parameter space {(σ2, α, β) : σ2 > 0, α >

0, β > 0}, and hence the likelihood function is also a continuous function over this natural

parameter space.

For case (a), it follows from the continuity of the likelihood function and the assumption

in case (a) that β̂n ∈ [βL, βU ] for all n. Applying Lemma 4 yields that ĉn(α, βL) ≤ ĉn(α, β̂n) ≤

ĉn(α, β̂U). The result thus follows from Lemma 3 immediately.

For case (b), it follows from the continuity of the likelihood function and the assumption in

case (b) that α̂n ∈ [αL, αU ] for all n. Applying Lemma 4 yields that ĉn(αU , β) ≤ ĉn(α̂n, β) ≤

ĉn(αU , β). The result thus follows from Lemma 3 immediately.

For case (c), it follows from the continuity of the likelihood function and the assumption in

case (c) that α̂n ∈ [αL, αU ] and β̂n ∈ [βL, βU ] for all n. According to Lemma 4, ĉn(αU , βL) ≤

ĉn(αU , β̂n) ≤ ĉn(α̂n, β̂n) and ĉn(α̂n, β̂n) ≤ ĉn(αL, β̂n) ≤ ĉn(αL, βU). The result thus follows

from Lemma 3 immediately.
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S.4.7 Proof of Theorem 6

Proof. Part (a) and Part (b) can be proven by applying Theorem 1 and Theorem 2 of Stein

(1993). Let fi(ω) be the spectral density of the CH class C(h; ν, αi, βi, σ
2
i ) with i = 1, 2.

Note that limω→∞ fi(ω)|ω|2ν+d is finite. If the condition in Equation (5) is satisfied, then,

lim
ω→∞

f2(ω)

f1(ω)
= lim

ω→∞

f2(ω)|ω|2ν+d

f1(ω)|ω|2ν+d
= 1.

The proof of Part (c) is analogous to the proof of Theorem 4 in Kaufman and Shaby

(2013). Let

σ2
1 := σ2

0(β1/β0)2ν Γ(ν + α0)Γ(α1)

Γ(ν + α1)Γ(α0)
.

Then P0 and P1 define two equivalent measures. We write

Varν,θ1,σ̂2
n
{Ẑn(θ1)− Z(s0)}

Varν,θ0,σ2
0
{Ẑn(θ1)− Z(s0)}

=
Varν,θ1,σ̂2

n
{Ẑn(θ1)− Z(s0)}

Varν,θ1,σ2
1
{Ẑn(θ1)− Z(s0)}

Varν,θ1,σ2
1
{Ẑn(θ1)− Z(s0)}

Varν,θ0,σ2
0
{Ẑn(θ1)− Z(s0)}

.

According to Part (b) of Theorem 6, it suffices to show that almost surely under P1,

Varν,θ1,σ̂2
n
{Ẑn(θ1)− Z(s0)}

Varν,θ1,σ2
1
{Ẑn(θ1)− Z(s0)}

→ 1.

By Equation (9),

Varν,θ1,σ̂2
n
{Ẑn(θ1)− Z(s0)}

Varν,θ1,σ2
1
{Ẑn(θ1)− Z(s0)}

=
σ̂2
n

σ2
1

.

Note that under P1, we have σ̂2
n ∼ (σ2

0/n)χn, and hence σ̂2
n converges almost surely to σ2

0 as

n → ∞. As P0 is equivalent to P1, It follows from Lemma 3 that σ̂2
n → σ2

1, almost surely

under P0.
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S.4.8 Proof of Theorem 7

Proof. Let f0(ω) be the spectral density of the Matérn covariance function M(h; ν, φ, σ2
0)

and f1(ω) be the spectral density of the covariance function C(h; ν, α, β, σ2
1). Notice that

the spectral density of the Matérn covariance satisfies the condition (S.1). It suffices to show

that limω→∞ f1(ω)/f0(ω) = 1. Let k0 = σ2
0φ
−2ν and k1 = σ2

1 (β2/2)−νΓ(ν + α)/Γ(α). If

k0 = k1, it follows that

lim
ω→∞

f1(ω)

f0(ω)
= lim

ω→∞

f1(ω)|ω|2ν+d

f0(ω)|ω|2ν+d
= lim

ω→∞

k1

k0

(
2νφ−2ω−2 + 1

)ν+d/2
= k1/k0 = 1.

Thus, the covariance function C(h; ν, α, β, σ2
1) yields an asymptotically equivalent BLP as

the Matérn covariance M(h; ν, φ, σ2
0).
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S.5 Examples to Illustrate Asymptotic Normality

As shown in Section 3.2, each individual parameter in the CH model cannot be estimated

consistently, however, the microergodic parameter can be estimated consistently.

To study the finite sample performance of the asymptotic properties of MLE for the mi-

croergodic parameter, we simulate 1000 realizations from a zero-mean Gaussian process with

the CH class over 100-by-100 regular grid in the unit domain D = [0, 1]× [0, 1]. As there are

no clear guidelines to pick the sample sizes such that the finite sample performances can ap-

propriately reflect the asymptotic results, we randomly select n = 4000, 5000, 6000 locations

from these 10,000 grid points. The variance parameter is fixed at 1 for all realizations. We

consider two different values for the smoothness parameter ν at 0.5 and 1.5, three different

values for the tail decay parameter α at 0.5, 2 and 5. The scale parameter β is chosen such

that the effective range is 0.6 or 0.9. Although all the theoretical results in Section 3 are

valid for α > d/2, we also run the simulation setting with α = 0.5 to see whether there is

any interesting numerical results compared to cases where α > d/2.

Let C(h; ν, α0, β0, σ
2
0) be the true covariance. We use ĉn(θ) to denote the maximum

likelihood estimator of the microergodic parameter c(θ0) = σ2
0β
−2ν
0 Γ(ν + α0)/Γ(α0) for any

θ. Then the 95% confidence interval for c(θ0) is given by ĉn(θ)±1.96
√

2ĉn(θ)2/n. Lemma 3

and Theorem 5 show that this interval is asymptotically valid when n is large and α > d/2

for (1) arbitrarily fixed θ, (2) θ = (α, β̂n), (3) θ = (α̂n, β) and (4) θ = (α̂n, β̂n). In

this simulation study, we primarily focus on the finite sample performance of ĉn(θ), where

θ = (α0,
√

0.5β0), θ = (α0, β0), θ = (α0,
√

2β0), θ = (α0, β̂n), and θ = (α̂n, β̂n). Exhaustive

simulations with all other settings of θ is considered future work. Let

ξ :=

√
n{ĉn(θ)− c(θ0)}√

2c(θ0)
.

Then ξ should asymptotically follow the standard normal distribution. Based on these 1000
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realizations, we compute the empirical coverage probability of the 95% percentile confidence

interval, bias and root-mean-square error (RMSE) for c(θ0) and compare the quantiles of ξ

with the standard normal quantiles.

The results are reported in Table S.1, Table S.2 and Table S.3 of the Supplementary

Material. They can be summarized as follows. When the true parameters are used, i.e.,

θ = θ0, as expected, the sampling distribution of ĉn(θ0) gives the best normal approximation

and converges to the asymptotic distribution in Lemma 3 when n increases. The sampling

distribution of ĉn(θ) can be highly biased and approach to the truth can be very slow

with increase in n. Fixing β at a larger value gives better empirical results than fixing

β at a small value. When the scale parameter is chosen to be its maximum likelihood

estimator, i.e., β = β̂n, the sampling distribution of ĉn(α, β̂n) converges to the asymptotic

distribution given in Theorem 5 as n increases. When α is small, e.g., α = 0.5, the sampling

distributions of ĉn(θ), with (α0,
√

0.5β0), (α0,
√

2β0), (α0, β̂n) and (α̂n, β̂n) substituted for

θ, has noticeable biases. As the tail decay parameter or the effective range increases, the

sampling distributions of ĉn(θ) have smaller biases. As ν becomes smaller, the sampling

distributions of ĉn(θ) approaches the truth better with increase in n. When ν = 0.5 and

α ∈ {2, 5}, these sampling distributions have negligible biases as n increases. When both α

and β are substituted by their maximum likelihood estimator, the sampling distribution of

ĉn(θ) has smaller bias and gives better approximation to the true asymptotic distribution

given in Theorem 5 as n increases for α > d/2 = 1.

When α is fixed at its true value and β is estimated by maximum likelihood method, the

MLE of the microergodic parameter, ĉn(α, β̂n), gives better finite sample performance than

the cases where β is misspecified. When both α and β are estimated by maximum likelihood

method, the MLE of the microergodic parameter, ĉn(α̂n, β̂n), also gives better finite sample

performance than the cases where β is misspecified and α is fixed at its true value. One would

also expect that this is true when either α or β is misspecified at incorrect values. In general,
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the MLE of the microergodic parameter has better finite sampler performance than those

with any individual parameter fixed at an incorrect value in the microergodic parameter.

Theorem 5 requires α > d/2 in order to derive asymptotic results for ĉn(α̂n, β̂n). However,

it is interesting to observe from these simulation results that ĉn(θ) seems to converge to

a normal distribution even when α < d/2, i.e., when α = 0.5. It is an open problem to

determine the exact distribution that the maximum likelihood estimator ĉn(α̂n, β̂n) of the

microergodic parameter converges to asymptotically when α and β are substituted with their

maximum likelihood estimators for true α0 ∈ (0, d/2].
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Table S.1. Percentiles of ξ and CVG, bias, and RMSE of ĉn(θ) when α0 = 0.5.

Settings 5% 25% 50% 75% 95% CVG bias RMSE

N (0, 1) -1.6449 -0.6749 0 0.6749 1.6449 0.95 0

ER = 0.6, ν = 0.5

θ

α = α0, β = β0

n = 4000 -1.449 -0.542 0.009 0.686 1.767 0.955 0.020 0.327

n = 5000 -1.469 -0.665 -0.077 0.696 1.573 0.965 -0.003 0.289

n = 6000 -1.705 -0.618 0.056 0.662 1.847 0.929 0.010 0.280

α = α0, β =
√

0.5β0

n = 4000 2.113 3.098 3.730 4.424 5.549 0.044 1.259 1.308

n = 5000 2.129 2.930 3.578 4.439 5.347 0.040 1.097 1.140

n = 6000 1.798 3.015 3.705 4.397 5.606 0.071 1.005 1.049

α = α0, β =
√

2β0

n = 4000 -3.471 -2.608 -2.073 -1.420 -0.394 0.415 -0.676 0.746

n = 5000 -3.480 -2.693 -2.114 -1.395 -0.519 0.404 -0.611 0.676

n = 6000 -3.688 -2.623 -1.967 -1.376 -0.214 0.462 -0.543 0.606

α = α0, β = β̂n

n = 4000 -1.871 -0.711 0.095 1.000 2.244 0.889 0.047 0.428

n = 5000 -1.912 -0.767 0.022 0.881 2.134 0.881 0.013 0.371

n = 6000 -2.016 -0.760 0.096 0.862 2.097 0.879 0.019 0.343

α = α̂n, β = β̂n

n = 4000 -1.778 -0.875 0.000 0.925 2.382 0.887 0.030 0.446

n = 5000 -2.129 -0.816 0.026 0.893 2.227 0.870 0.019 0.395

n = 6000 -2.268 -0.911 -0.015 0.865 2.117 0.875 -0.006 0.363

ER = 0.6, ν = 1.5

θ

α = α0, β = β0

n = 4000 -1.654 -0.604 -0.014 0.701 1.776 0.949 12.650 370.7

n = 5000 -1.430 -0.687 -0.046 0.672 1.576 0.969 0.283 312.0

n = 6000 -1.731 -0.649 0.070 0.710 1.740 0.929 7.182 307.5

α = α0, β =
√

0.5β0

n = 4000 26.20 27.77 28.82 30.03 31.76 0.000 10495 10513

n = 5000 27.09 28.35 29.37 30.55 31.99 0.000 9567 9581

n = 6000 27.22 28.79 29.85 30.89 32.68 0.000 8860 8874

α = α0, β =
√

2β0

n = 4000 -13.70 -12.93 -12.48 -11.99 -11.21 0.000 -4526 4534

n = 5000 -13.99 -13.35 -12.90 -12.36 -11.62 0.000 -4177 4184

n = 6000 -14.47 -13.61 -13.11 -12.58 -11.80 0.000 -3886 3893

α = α0, β = β̂n

n = 4000 -2.993 -1.121 0.172 1.515 3.505 0.670 72.52 732.5

n = 5000 -2.823 -1.155 0.146 1.452 3.398 0.700 49.49 624.8

n = 6000 -3.068 -1.090 0.235 1.433 3.093 0.733 44.59 543.1

α = α̂n, β = β̂n

n = 4000 -3.887 -1.656 0.061 1.681 4.142 0.565 9.059 895.5

n = 5000 -3.607 -1.643 0.055 1.497 4.142 0.592 16.27 772.1

n = 6000 -4.107 -1.678 -0.206 1.488 3.774 0.592 -70.59 832.3

ER = 0.9, ν = 0.5

θ

α = α0, β = β0

n = 4000 -1.589 -0.557 -0.013 0.669 1.748 0.955 0.007 0.220

n = 5000 -1.429 -0.654 0.065 0.759 1.683 0.978 0.012 0.190

n = 6000 -1.512 -0.591 0.004 0.702 1.768 0.943 0.009 0.179

α = α0, β =
√

0.5β0

n = 4000 0.628 1.679 2.278 2.967 4.052 0.399 0.513 0.563

n = 5000 0.727 1.546 2.306 2.994 3.958 0.420 0.454 0.496

n = 6000 0.548 1.543 2.200 2.888 4.013 0.445 0.403 0.444

α = α0, β =
√

2β0

n = 4000 -2.812 -1.808 -1.259 -0.595 0.440 0.769 -0.272 0.346

n = 5000 -2.620 -1.846 -1.170 -0.478 0.379 0.760 -0.229 0.295

n = 6000 -2.635 -1.756 -1.187 -0.477 0.586 0.799 -0.205 0.270

α = α0, β = β̂n

n = 4000 -1.856 -0.688 0.087 0.911 1.946 0.905 0.021 0.262

n = 5000 -1.587 -0.696 0.062 0.822 1.930 0.926 0.018 0.220

n = 6000 -1.646 -0.589 0.045 0.833 2.008 0.918 0.020 0.202

α = α̂n, β = β̂n

n = 4000 -1.876 -0.748 0.082 0.882 2.157 0.887 0.016 0.276

n = 5000 -1.865 -0.692 0.023 0.853 1.994 0.902 0.014 0.233

n = 6000 -1.884 -0.744 0.006 0.901 1.978 0.904 0.008 0.213

ER = 0.9, ν = 1.5

θ

α = α0, β = β0

n = 4000 -1.598 -0.618 -0.015 0.663 1.747 0.958 2.284 106.8

n = 5000 -1.426 -0.647 0.063 0.774 1.711 0.977 6.598 92.45

n = 6000 -1.660 -0.623 0.059 0.685 1.743 0.945 2.287 87.41

α = α0, β =
√

0.5β0

n = 4000 17.15 18.51 19.42 20.44 21.94 0.000 2096 2102

n = 5000 17.34 18.50 19.50 20.42 21.83 0.000 1877 1881

n = 6000 17.06 18.45 19.36 20.24 21.70 0.000 1699 1703

α = α0, β =
√

2β0

n = 4000 -10.02 -9.207 -8.722 -8.151 -7.284 0.000 -934.2 938.3

n = 5000 -9.964 -9.263 -8.691 -8.092 -7.331 0.000 -8.835 839.5

n = 6000 -10.13 -9.280 -8.717 -8.159 -7.26 0.000 -766.2 769.8

α = α0, β = β̂n

n = 4000 -2.455 -0.993 0.029 1.282 2.953 0.771 15.62 180.4

n = 5000 -2.224 -1.038 -0.031 1.140 2.706 0.789 8.661 151.8

n = 6000 -2.259 -0.918 0.082 1.152 2.586 0.803 11.20 131.2

α = α̂n, β = β̂n

n = 4000 -3.178 -1.316 -0.002 1.215 3.289 0.691 1.887 208.8

n = 5000 -3.055 -1.211 -0.003 1.229 3.129 0.708 2.440 178.3

n = 6000 -2.820 -1.285 0.006 1.236 3.051 0.710 0.875 156.7



Table S.2. Percentiles of ξ and CVG, bias, and RMSE of ĉn(θ) when α0 = 2.

Settings 5% 25% 50% 75% 95% CVG bias RMSE

N (0, 1) -1.6449 -0.6749 0 0.6749 1.6449 0.95 0

ER = 0.6, ν = 0.5

θ

α = α0, β = β0

n = 4000 -1.557 -0.604 -0.013 0.691 1.759 0.954 0.004 0.099

n = 5000 -1.442 -0.614 0.003 0.723 1.575 0.962 0.002 0.086

n = 6000 -1.689 -0.462 0.093 0.728 1.970 0.947 0.003 0.084

α = α0, β =
√

0.5β0

n = 4000 -1.072 -0.128 0.486 1.179 2.264 0.921 0.052 0.113

n = 5000 -0.999 -0.179 0.493 1.183 2.047 0.939 0.043 0.097

n = 6000 -1.315 -0.010 0.556 1.184 2.396 0.929 0.041 0.094

α = α0, β =
√

2β0

n = 4000 -1.801 -0.860 -0.258 0.440 1.505 0.949 -0.021 0.101

n = 5000 -1.680 -0.840 -0.232 0.479 1.347 0.946 -0.018 0.088

n = 6000 -1.880 -0.681 -0.136 0.517 1.756 0.931 -0.012 0.084

α = α0, β = β̂n

n = 4000 -1.616 -0.600 0.040 0.758 1.796 0.954 0.008 0.103

n = 5000 -1.443 -0.583 0.070 0.752 1.705 0.962 0.006 0.088

n = 6000 -1.564 -0.505 0.171 0.774 1.941 0.938 0.008 0.087

α = α̂n, β = β̂n

n = 4000 -1.576 -0.546 0.140 0.798 1.880 0.944 0.014 0.104

n = 5000 -1.426 -0.565 0.094 0.785 1.747 0.956 0.009 0.089

n = 6000 -1.595 -0.614 0.079 0.764 1.882 0.953 0.007 0.085

ER = 0.6, ν = 1.5

θ

α = α0, β = β0

n = 4000 -1.567 -0.624 -0.010 0.689 1.764 0.952 0.103 2.513

n = 5000 -1.469 -0.633 0.005 0.734 1.620 0.958 0.083 2.200

n = 6000 -1.729 -0.614 0.016 0.592 1.646 0.953 -0.013 2.027

α = α0, β =
√

0.5β0

n = 4000 1.226 2.227 2.885 3.622 4.748 0.215 7.351 7.840

n = 5000 1.056 2.005 2.772 3.469 4.427 0.257 6.145 6.586

n = 6000 0.725 1.861 2.602 3.180 4.350 0.296 5.225 5.657

α = α0, β =
√

2β0

n = 4000 -2.801 -1.876 -1.283 -0.593 0.433 0.749 -3.103 3.948

n = 5000 -2.590 -1.829 -1.185 -0.497 0.385 0.765 -2.612 3.379

n = 6000 -2.807 -1.771 -1.128 -0.565 0.493 0.779 -2.350 3.073

α = α0, β = β̂n

n = 4000 -1.613 -0.649 0.093 0.790 1.923 0.928 0.223 2.701

n = 5000 -1.417 -0.648 0.046 0.818 1.821 0.957 0.197 2.332

n = 6000 -1.623 -0.655 0.056 0.691 1.793 0.954 0.071 2.111

α = α̂n, β = β̂n

n = 4000 -1.558 -0.598 0.095 0.811 1.977 0.921 0.301 2.759

n = 5000 -1.543 -0.594 0.040 0.798 1.827 0.950 0.186 2.342

n = 6000 -1.604 -0.569 0.090 0.763 1.827 0.946 0.198 2.132

ER = 0.9, ν = 0.5

θ

α = α0, β = β0

n = 4000 -1.574 -0.594 -0.026 0.666 1.776 0.952 0.002 0.066

n = 5000 -1.458 -0.664 -0.052 0.638 1.547 0.962 -0.001 0.057

n = 6000 -1.742 -0.548 0.145 0.809 1.784 0.942 0.005 0.055

α = α0, β =
√

0.5β0

n = 4000 -1.319 -0.321 0.254 0.930 2.042 0.938 0.020 0.069

n = 5000 -1.220 -0.411 0.185 0.904 1.817 0.962 0.014 0.059

n = 6000 -1.567 -0.366 0.385 1.022 2.052 0.925 0.017 0.058

α = α0, β =
√

2β0

n = 4000 -1.704 -0.723 -0.158 0.524 1.635 0.950 -0.007 0.066

n = 5000 -1.579 -0.786 -0.173 0.517 1.424 0.963 -0.007 0.057

n = 6000 -1.862 -0.653 0.024 0.700 1.646 0.950 -0.001 0.054

α = α0, β = β̂n

n = 4000 -1.586 -0.578 0.022 0.695 1.799 0.948 0.005 0.068

n = 5000 -1.440 -0.615 -0.006 0.696 1.648 0.959 0.001 0.058

n = 6000 -1.653 -0.450 0.244 0.880 1.646 0.930 0.009 0.055

α = α̂n, β = β̂n

n = 4000 -1.572 -0.550 0.123 0.789 1.862 0.950 0.008 0.068

n = 5000 -1.378 -0.541 0.097 0.798 1.782 0.957 0.007 0.059

n = 6000 -1.659 -0.595 0.055 0.727 1.786 0.954 0.003 0.055

ER = 0.9, ν = 1.5

θ

α = α0, β = β0

n = 4000 -1.589 -0.595 -0.015 0.700 1.748 0.955 0.028 0.744

n = 5000 -1.454 -0.668 -0.029 0.673 1.531 0.966 -0.006 0.638

n = 6000 -1.701 -0.671 -0.098 0.572 1.747 0.940 -0.031 0.652

α = α0, β =
√

0.5β0

n = 4000 -0.026 0.961 1.579 2.307 3.369 0.675 1.205 1.434

n = 5000 -0.117 0.805 1.443 2.165 3.003 3.705 0.978 1.183

n = 6000 -0.371 0.705 1.327 1.957 3.189 0.764 0.813 1.037

α = α0, β =
√

2β0

n = 4000 -2.288 -1.288 -0.722 -0.002 1.009 0.886 -0.498 0.886

n = 5000 -2.098 -1.348 -0.706 -0.010 0.858 0.916 -0.447 0.771

n = 6000 -2.312 -1.309 -0.728 -0.050 1.071 0.887 -0.411 0.742

α = α0, β = β̂n

n = 4000 -1.684 -0.599 0.092 0.751 1.805 0.934 0.058 0.780

n = 5000 -1.468 -0.698 -0.003 0.696 1.641 0.966 0.007 0.658

n = 6000 -1.670 -0.725 -0.068 0.660 1.775 0.931 -0.023 0.644

α = α̂n, β = β̂n

n = 4000 -1.532 -0.611 0.100 0.820 1.903 0.934 0.080 0.781

n = 5000 -1.422 -0.584 0.050 0.746 1.745 0.959 0.049 0.664

n = 6000 -1.498 -0.544 0.068 0.810 1.843 0.950 0.042 0.618



Table S.3. Percentiles of ξ and CVG, bias, and RMSE of ĉn(θ) when α0 = 5.

Settings 5% 25% 50% 75% 95% CVG bias RMSE

N (0, 1) -1.6449 -0.6749 0 0.6749 1.6449 0.95 0

ER = 0.6, ν = 0.5

θ

α = α0, β = β0

n = 4000 -1.612 -0.659 -0.049 0.655 1.661 0.954 0.000 0.085

n = 5000 -1.468 -0.636 -0.027 0.685 1.683 0.961 0.002 0.074

n = 6000 -1.633 -0.560 0.079 0.723 1.751 0.940 0.003 0.070

α = α0, β =
√

0.5β0

n = 4000 -1.273 -0.289 0.319 1.010 2.038 0.942 0.030 0.091

n = 5000 -1.183 -0.311 0.298 1.033 2.054 0.942 0.027 0.079

n = 6000 -1.261 -0.245 0.401 1.023 2.070 0.932 0.025 0.074

α = α0, β =
√

2β0

n = 4000 -1.757 -0.829 -0.222 0.479 1.477 0.945 -0.015 0.086

n = 5000 -1.616 -0.793 -0.191 -0.500 -1.520 0.958 -0.011 0.074

n = 6000 -1.787 -0.709 -0.071 0.556 1.587 0.936 -0.007 0.070

α = α0, β = β̂n

n = 4000 -1.607 -0.633 0.000 0.690 1.705 0.951 0.003 0.087

n = 5000 -1.434 -0.591 0.030 0.719 1.766 0.953 0.005 0.075

n = 6000 -1.609 -0.564 0.094 0.758 1.822 0.930 0.006 0.071

α = α̂n, β = β̂n

n = 4000 -1.556 -0.538 0.142 0.813 1.884 0.948 0.012 0.089

n = 5000 -1.378 -0.514 0.116 0.835 1.762 0.958 0.010 0.076

n = 6000 -1.530 -0.557 0.100 0.758 1.832 0.950 0.008 0.070

ER = 0.6, ν = 1.5

θ

α = α0, β = β0

n = 4000 -1.611 -0.651 -0.015 0.676 1.748 0.957 0.026 1.179

n = 5000 -1.409 -0.606 0.052 0.727 1.705 0.958 0.069 1.031

n = 6000 -1.346 -0.495 0.146 0.763 1.660 0.950 0.114 0.930

α = α0, β =
√

0.5β0

n = 4000 0.153 1.146 1.783 2.469 3.601 0.618 2.132 2.463

n = 5000 0.109 1.070 1.720 2.432 3.475 0.628 1.818 2.113

n = 6000 0.053 1.018 1.675 2.311 3.351 0.653 1.623 1.886

α = α0, β =
√

2β0

n = 4000 -2.308 -1.383 -0.802 -0.088 0.934 0.875 -0.877 1.456

n = 5000 -2.093 -1.323 -0.675 0.004 0.964 0.909 -0.685 1.224

n = 6000 -1.985 -1.186 -0.521 0.083 0.993 0.929 -0.538 1.059

α = α0, β = β̂n

n = 4000 -1.664 -0.641 0.069 0.757 1.802 0.951 0.070 1.239

n = 5000 -1.362 -0.615 0.080 0.792 1.788 0.956 0.105 1.074

n = 6000 -1.368 -0.588 0.177 0.809 1.812 0.950 0.129 0.966

α = α̂n, β = β̂n

n = 4000 -1.528 -0569 0.138 0.845 1.937 0.929 0.181 1.263

n = 5000 -1.342 -0.522 0.105 0.838 1.822 0.956 0.150 1.065

n = 6000 -1.468 -0.518 0.102 0.842 1.920 0.937 0.142 1.003

ER = 0.9, ν = 0.5

θ

α = α0, β = β0

n = 4000 -1.567 -0.602 -0.013 0.681 1.759 0.955 0.002 0.057

n = 5000 -1.482 -0.664 -0.034 0.643 1.563 0.961 0.000 0.049

n = 6000 -1.513 -0.615 0.077 0.637 1.745 0.953 0.002 0.045

α = α0, β =
√

0.5β0

n = 4000 -1.377 -0.423 0.179 0.871 1.956 0.947 0.013 0.058

n = 5000 -1.333 -0.478 0.153 0.835 1.743 0.961 0.009 0.050

n = 6000 -1.357 -0.468 0.233 0.800 1.894 0.947 0.009 0.046

α = α0, β =
√

2β0

n = 4000 -1.663 -0.708 -0.109 0.587 1.646 0.957 -0.004 0.057

n = 5000 -1.554 -0.765 -0.121 0.556 1.465 0.958 -0.005 0.049

n = 6000 -1.605 -0.692 -0.006 0.559 1.655 0.942 -0.002 0.045

α = α0, β = β̂n

n = 4000 -1.571 -0.593 0.016 0.716 1.744 0.951 0.004 0.058

n = 5000 -1.424 -0.653 -0.007 0.669 1.638 0.962 0.001 0.049

n = 6000 -1.462 -0.572 0.095 0.704 1.803 0.949 0.003 0.045

α = α̂n, β = β̂n

n = 4000 -1.574 -0.539 0.106 0.803 1.853 0.952 0.007 0.059

n = 5000 -1.327 -0.537 0.134 0.810 1.778 0.960 0.007 0.049

n = 6000 -1.606 -0.601 0.058 0.713 1.756 0.956 0.003 0.046

ER = 0.9, ν = 1.5

θ

α = α0, β = β0

n = 4000 -1.574 -0.616 -0.015 0.661 1.764 0.955 0.009 0.345

n = 5000 -1.414 -0.617 0.015 0.741 1.612 0.974 0.017 0.298

n = 6000 -1.743 -0.591 0.066 0.677 1.795 0.933 0.008 0.292

α = α0, β =
√

0.5β0

n = 4000 -0.614 0.325 0.969 1.631 2.762 0.837 0.351 0.498

n = 5000 -0.587 0.274 0.936 1.652 2.593 0.857 0.299 0.428

n = 6000 -0.978 0.198 0.889 1.566 2.643 0.870 0.248 0.389

α = α0, β =
√

2β0

n = 4000 -1.988 -1.042 -0.448 0.234 1.285 0.933 -0.139 0.369

n = 5000 -1.784 -1.013 -0.373 0.330 1.207 0.956 -0.105 0.313

n = 6000 -2.094 -0.968 -0.301 0.312 1.420 0.925 -0.097 0.306

α = α0, β = β̂n

n = 4000 -1.590 -0.609 0.029 0.720 1.791 0.943 0.021 0.356

n = 5000 -1.364 -0.605 0.055 0.779 1.677 0.967 0.025 0.303

n = 6000 -1.648 -0.608 0.107 0.709 1.823 0.947 0.015 0.296

α = α̂n, β = β̂n

n = 4000 -1.533 -0.549 0.113 0.849 1.836 0.940 0.047 0.369

n = 5000 -1.387 -0.526 0.111 0.798 1.733 0.961 0.039 0.307

n = 6000 -1.352 -0.534 0.111 0.765 1.755 0.956 0.039 0.281



S.6 Additional Simulation Examples

The results in the three cases in Section 4 of the main manuscript are based n = 2000

observations. In Section S.6.1 of the Supplementary Material, we provide results on exactly

the same simulation settings with n = 500 and 1000. Similar conclusions can be drawn

there. In addition, we also investigate the predictive performance when the covariance of the

underlying true process is a product of individual covariance functions in Section S.6.2 of the

Supplementary Material. The examples there show significant improvement of the CH class

over the Matérn class and the GC class. In all these simulation examples, we found that the

CH class is quite flexible in terms of capturing both the smoothness and the tail behavior.

No matter which covariance structure (the Matérn class or the GC class) the true underlying

process is generated from, the CH class is able to capture the underlying true covariance

structure with satisfactory performance as implied by our theoretical developments. In

contrast, the Matérn class is not able to capture the underlying true covariance structure with

polynomially decaying dependence and the GC class is not able to capture the underlying

true covariance structure with different degrees of smoothness behaviors. Below are the

detailed results.

S.6.1 Predictive Performance with Different Sample Sizes

In this section, we use the same simulation settings as in Section 4 but with n = 500 and

1000 observations for parameter estimation. The simulation setup here is the same as the

one considered in Section 4. For n = 500 observations, the results are shown in Figure S.3

for Case 1, Figure S.4 for Case 2, and Figure S.5 for Case 3. For n = 1000 observations, the

results are shown in Figure S.6 for Case 1, Figure S.7 for Case 2, and Figure S.8 for Case 3.

To conclude, the CH class is very flexible since it can allow different smoothness behaviors

in the same way as the Matérn class and can allow different degrees of tail behaviors that
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can capture the one in the GC class.
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Fig. S.3. Case 1: Comparison of predictive performance and estimated covariance struc-
tures when the true covariance is the Matérn class with 500 observations. The predictive
performance is evaluated at 10-by-10 regular grids in the square domain. These figures
summarize the predictive measures based on RMSPE, CVG and ALCI under 30 simulated
realizations.
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Fig. S.4. Case 2: Comparison of predictive performance and estimated covariance structures
when the true covariance is the CH class with 500 observations. The predictive performance
is evaluated at 10-by-10 regular grids in the square domain. These figures summarize the
predictive measures based on RMSPE, CVG and ALCI under 30 simulated realizations.
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Fig. S.5. Case 3: Comparison of predictive performance and estimated covariance structures
when the true covariance is the GC class with 500 observations. The predictive performance
is evaluated at 10-by-10 regular grids in the square domain. These figures summarize the
predictive measures based on RMSPE, CVG and ALCI under 30 simulated realizations.
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Fig. S.6. Case 1: Comparison of predictive performance and estimated covariance struc-
tures when the true covariance is the Matérn class with 1000 observations. The predictive
performance is evaluated at 10-by-10 regular grids in the square domain. These figures
summarize the predictive measures based on RMSPE, CVG and ALCI under 30 simulated
realizations.
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Fig. S.7. Case 2: Comparison of predictive performance and estimated covariance structures
when the true covariance is the CH class with 1000 observations. The predictive performance
is evaluated at 10-by-10 regular grids in the square domain. These figures summarize the
predictive measures based on RMSPE, CVG and ALCI under 30 simulated realizations.
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Fig. S.8. Case 3: Comparison of predictive performance and estimated covariance structures
when the true covariance is the GC class with 1000 observations. The predictive performance
is evaluated at 10-by-10 regular grids in the square domain. These figures summarize the
predictive measures based on RMSPE, CVG and ALCI under 30 simulated realizations.
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S.6.2 Simulation with a Tensor Product of Covariance Functions

In this section, we study the predictive performance of the CH class with a product form,

i.e., r(‖s−u‖) =
∏d

i=1R(|si−ui|;θi), where R(·;θi) is an isotropic covariance function with

parameter θi. This product form of covariance functions allows different properties along

different coordinate directions (or input space) and has been widely used in uncertainty

quantification and machine learning.

We simulate the true processes under the Matérn class and the CH class with effective

range fixed at 200 and 500. For the smoothness parameter, we consider ν = 0.5, 2.5. The tail

decay parameter in the CH class is chosen to be 0.5. As each dimension has a different range

parameter or scale parameter, we choose these parameters in each dimension such that their

correlation will be 0.51/2 at distance 200 and 500. This will guarantee the overall effective

range will be 200 and 500, respectively. For each simulation setting, the true process is

simulated at n = 100, 500, 1000 locations. The GC class has a smoothness parameter that

is specified as in Section 4. The prediction locations are the same as those in Section 4.

In the first case where the true process has a product of Matérn covariance functions,

the prediction results under the Matérn class, the CH class and the GC class are shown in

panels from (a) to (f) of Figure S.9. As expected, the Matérn class and the CH class yield

indistinguishable predictive performance in terms of RMSPE, CVG, and ALCI. However, the

GC class has much worse performance than the other two covariance classes. In the second

case where the true process has a product of CH functions, the prediction results under these

three covariance classes are shown in panels from (g) to (l) of Figure S.9. As expected, the

CH class yields much better prediction results than the Matérn class, since the Matérn class

has an exponentially decaying tail that is not able to capture the tail behavior in the CH

class. It is worth noting that the GC class yields much worse predictive performance than

the other two covariance classes. This is quite different from the situation when the true

process does not have a product covariance form.

S.43



RMSPE CVG ALCI

Matern New Cauchy Matern New Cauchy Matern New Cauchy
2.0

2.5

3.0

3.5

0.6

0.7

0.8

0.9

0.8

1.0

1.2

1.4

(a) Matérn: ν = 0.5, n = 100

RMSPE CVG ALCI

Matern New Cauchy Matern New Cauchy Matern New Cauchy

2.5

2.7

2.9

0.7

0.8

0.9

0.6

0.8

1.0

1.2

(b) Matérn: ν = 0.5, n = 500

RMSPE CVG ALCI

Matern New Cauchy Matern New Cauchy Matern New Cauchy

2.0

2.4

2.8

3.2

0.7

0.8

0.9

1.0

0.50

0.75

1.00

1.25

(c) Matérn: ν = 0.5, n = 1000
RMSPE CVG ALCI

Matern New Cauchy Matern New Cauchy Matern New Cauchy

2.0

2.5

3.0

0.4

0.6

0.8

1.0

1.0

1.5

2.0

(d) Matérn: ν = 2.5, n = 100

RMSPE CVG ALCI

Matern New Cauchy Matern New Cauchy Matern New Cauchy

0.75

0.80

0.85

0.90

0.6

0.7

0.8

0.9

0.2

0.3

0.4

(e) Matérn: ν = 2.5, n = 500

RMSPE CVG ALCI

Matern New Cauchy Matern New Cauchy Matern New Cauchy

0.35

0.37

0.39

0.41

0.80

0.85

0.90

0.95

1.00

0.100

0.125

0.150

(f) Matérn: ν = 2.5, n = 1000
RMSPE CVG ALCI

Matern New Cauchy Matern New Cauchy Matern New Cauchy
2.0

2.5

3.0

3.5

4.0

0.6

0.7

0.8

0.9

1.0

0.8

1.0

1.2

1.4

(g) New: ν = 0.5, n = 100

RMSPE CVG ALCI

Matern New Cauchy Matern New Cauchy Matern New Cauchy

2.6

2.8

3.0

0.7

0.8

0.9

1.0

0.6

0.8

1.0

1.2

1.4

(h) New: ν = 0.5, n = 500

RMSPE CVG ALCI

Matern New Cauchy Matern New Cauchy Matern New Cauchy

2.4

2.5

2.6

2.7

2.8

0.7

0.8

0.9

0.6

0.8

1.0

1.2

(i) New: ν = 0.5, n = 1000
RMSPE CVG ALCI

Matern New Cauchy Matern New Cauchy Matern New Cauchy

1

2

3

0.2

0.4

0.6

0.8

1.0

0.75

1.00

1.25

1.50

1.75

(j) New: ν = 2.5, n = 100

RMSPE CVG ALCI

Matern New Cauchy Matern New Cauchy Matern New Cauchy

2.1

2.2

2.3

2.4

2.5

2.6

0.90

0.95

0.6

0.7

0.8

(k) New: ν = 2.5, n = 500

RMSPE CVG ALCI

Matern New Cauchy Matern New Cauchy Matern New Cauchy

1.7

1.8

1.9

2.0

2.1

0.90

0.95

0.40

0.45

0.50

0.55

0.60

(l) New: ν = 2.5, n = 1000

Fig. S.9. Predictive performance over 10-by-10 regular grids under three covariance classes
when the true process has a product form of covariance structures. The predictive per-
formance is studied under different smoothness parameters, effective ranges and number of
observation locations.
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S.7 Additional Numerical Results

This section contains parameter estimation results and figures referenced in Section 5. Fig-

ure S.10 shows the directional semivariograms for the OCO2 data. Table S.4 shows the

estimated parameters under the Matérn covariance model and the CH covariance in the

cross-validation study of Section 5. Figure S.11 compares kriging predictors and associ-

ated standard errors under the CH class and Matérn class in the cross-validation study of

Section 5.
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Fig. S.10. Graphical assessments of isotropy in the OCO2 data. The directional semivari-
ograms do not appear to exhibit differences, indicating that the assumption of an isotropic
covariance function is likely to be true.
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Table S.4. Cross-validation results based on the Matérn covariance model and the CH
covariance model.

Matérn class CH class

ν = 0.5 ν = 1.5 ν = 0.5 ν = 1.5

b 411.1 411.1 411.0 411.0

σ2 1.679 1.439 1.750 1.585

φ 160.5 104.1 — —

α — — 0.381 0.353

β — — 80.17 58.65

(a) Difference of kriging predictors (b) Ratio of kriging standard errors.

Fig. S.11. Comparison of kriging predictions under the Matérn class and the CH class.
The left panel shows the difference between kriging predictors under the CH class and those
under the Matérn class. The right panel shows the ratio of kriging standard errors under
the CH class to those under the Matérn class.
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