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SUPPLEMENTARY ONLINE MATERIAL FOR “RECONCILED
ESTIMATES OF MONTHLY GDP IN THE US”

This appendix comprises 4 parts: Appendix A is a technical appendix, Appendix B is the
data appendix, Appendix C contains additional empirical results, and Appendix D contains
supplementary tables.

A Technical Appendix

A.1 Model details and priors

A.1.1 ADNSS model in structural VAR form

The model of Sub-section 2.2 of Aruoba, Diebold, Nalewaik, Schorfheide, and Song (2016)
[ADNSS], sets Σ to be:  σ2

GG 0 0
0 σ2

EE σEI

0 σEI σ2
II

 .

Take an LDL decomposition of Σ, where D is diagonal and L is lower triangular. If we
then multiply both sides of equations (3) and (4) in ADNSS by L−1 and re-arrange so that
the LHS of each equation contains all variables with t subscripts and RHS variables are all
lags, we get the SVAR form with A being: 1 0 0

−1 1 0
−1− a32 a32 1

 , (A.1)

where a32, the 3,2-th element of A, is a function of the elements of Σ. The key property is
that the two off-diagonal elements in the bottom row of A sum to −1.

A.1.2 Prior for quarterly VAR containing only GDP variables

The following prior is bounded to ensure 0.55 < ξE, ξI < 1.15:

1. a21, a31, a32 ∼ N(0, 10).

2. µ ∼ N(0, 100), b11 ∼ N(0, 10).

3. σ2
GG, σ

2
EE, σ

2
II ∼ IG(3.8, 8.4). The inverse gamma prior mean is 3 and variance is 5.

A.1.3 Prior for quarterly VAR containing unemployment and GDP variables

The following prior is bounded to ensure 0.55 < ξE, ξI < 1.15:

1. Taa21 ∼ N(0.5, 1),a32, a42 ∼ N(−1, 0.1) and a43 ∼ N(0, 1).
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2. µ, µb ∼ N(0, 100), b11, b12, b21, b22 ∼ N(0, 10).

3. σ2
UU , σ

2
GG, σ

2
EE, σ

2
II ∼ IG(3.8, 8.4). The inverse gamma prior mean is 3 and variance is

5.

A.1.4 Choice for A and priors for MF-VAR containing GDP variables, unem-
ployment and other monthly variables

Our MF-VARs contain the GDP variables and the same eight monthly variables as in Schorfheide
and Song (2015). The monthly variables are a measure of hours worked (awht), inflation (πt),
industrial production (ipt), personal consumption expenditures (pcet), short-term interest
rates (rt), long-term interest rates (rGS10

t ), stock prices (stt), and the unemployment rate
(Ut). Exact definitions and data transformations are given below in the Data Appendix.

The part of B defining a VAR for true GDP and these monthly variables is unrestricted.
The part of B relating to the relationship between GDPE, GDPI and true GDP is restricted
as in Sub-section 4.2 of the main paper.

A.1.5 Model that imposes restriction that all monthly variables are instruments

The left-hand side of the MF-VAR for this model takes the following form:

1 0 0 0 0 0 0 0 0 0 0
a21 1 0 0 0 0 0 0 0 0 0
a31 a32 1 0 0 0 0 0 0 0 0
a41 a42 a43 1 0 0 0 0 0 0 0
a51 a52 a53 a54 1 0 0 0 0 0 0
a61 a62 a63 a64 a65 1 0 0 0 0 0
a71 a72 a73 a74 a75 a76 1 0 0 0 0
a81 a82 a83 a84 a85 a86 a87 1 0 0 0
a91 a92 a93 a94 a95 a96 a97 a98 1 0 0
0 0 0 0 0 0 0 0 a109 1 0
0 0 0 0 0 0 0 0 a119 a1110 1





awht

πt

ipt
pcet
rt

rGS10
t

stt
Ut

GDPt

GDPE,t

GDPI,t


We use notation where â = (a21, a31, . . . , a95, a98)

′ and ã are all the remaining coefficients
in A, all the free coefficients in B and the intercepts in the MF-VAR. σ2

ii denotes the error
variance in equation i. The prior is:

1. a109, a119 ∼ N(−1, 0.1) and a1110 ∼ N(0, 1).

2. ã ∼ DL(α) - α is the hyperparameter on the DL priors and is set to α = 0.5.

3. â ∼ DL(ᾱ)- ᾱ is the hyperparameter on the DL priors and is set to ᾱ = 0.5.

4. σ2
ii ∼ IG(5, .01).

The prior is bounded to ensure 0.55 < ξE, ξI < 1.15.
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Model that imposes noise restriction and the restriction that all monthly variables
are instruments

The left-hand side of the MF-VAR for this model takes the following form:



1 0 0 0 0 0 0 0 0 0 0
a21 1 0 0 0 0 0 0 0 0 0
a31 a32 1 0 0 0 0 0 0 0 0
a41 a42 a43 1 0 0 0 0 0 0 0
a51 a52 a53 a54 1 0 0 0 0 0 0
a61 a62 a63 a64 a65 1 0 0 0 0 0
a71 a72 a73 a74 a75 a76 1 0 0 0 0
a81 a82 a83 a84 a85 a86 a87 1 0 0 0
a91 a92 a93 a94 a95 a96 a97 a98 1 0 0
0 0 0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 0 −1− a1110 a1110 1





awht

πt
ipt
pcet
rt

rGS10
t

stt
Ut

GDPt

GDPE,t

GDPI,t


We use notation where â = (a21, a31, . . . , a95, a98)

′ and ã are all the remaining coefficients
in A, all the free coefficients in B and the intercepts in the MF-VAR. σ2

ii denotes the error
variance in equation i. The prior is:

1. a1110 ∼ N(0, 1).

2. ã ∼ DL(α) - α is the hyperparameter on the DL priors and is set to α = 0.5.

3. â ∼ DL(ᾱ)- ᾱ is the hyperparameter on the DL priors and is set to ᾱ = 0.5.

4. σ2
ii ∼ IG(5, .01).

The prior is bounded to ensure 0.55 < ξE, ξI < 1.15.

Model that only imposes the restriction that unemployment is an instrument

The left-hand side of the MF-VAR for this model takes the following form:

4





1 0 0 0 0 0 0 0 0 0 0
a21 1 0 0 0 0 0 0 0 0 0
a31 a32 1 0 0 0 0 0 0 0 0
a41 a42 a43 1 0 0 0 0 0 0 0
a51 a52 a53 a54 1 0 0 0 0 0 0
a61 a62 a63 a64 a65 1 0 0 0 0 0
a71 a72 a73 a74 a75 a76 1 0 0 0 0
a81 a82 a83 a84 a85 a86 a87 1 0 0 0
a91 a92 a93 a94 a95 a96 a97 a98 1 0 0
a101 a102 a103 a104 a105 a106 a107 0 a109 1 0
a111 a112 a113 a114 a115 a116 a117 0 a119 a1110 1





awht

πt
ipt
pcet
rt

rGS10
t

stt
Ut

GDPt

GDPE,t

GDPI,t


We use notation where â = (a21, a31, . . . , a116, a117)

′ and ã are all the remaining coefficients
in A, all the free coefficients in B and the intercepts in the MF-VAR. σ2

ii denotes the error
variance in equation i. The prior is:

1. a109, a119 ∼ N(−1, 0.1) and a1110 ∼ N(0, 1).

2. ã ∼ DL(α) - α is the hyperparameter on the DL priors and is set to α = 0.5.

3. â ∼ DL(ᾱ)- ᾱ is the hyperparameter on the DL priors and is set to ᾱ = 0.5.

4. σ2
ii ∼ IG(5, .01).

The prior is bounded to ensure 0.55 < ξE, ξI < 1.15.

Model that imposes the noise restriction and the restriction that unemployment
is an instrument

The left-hand side of the MF-VAR for this model takes the following form:

5





1 0 0 0 0 0 0 0 0 0 0
a21 1 0 0 0 0 0 0 0 0 0
a31 a32 1 0 0 0 0 0 0 0 0
a41 a42 a43 1 0 0 0 0 0 0 0
a51 a52 a53 a54 1 0 0 0 0 0 0
a61 a62 a63 a64 a65 1 0 0 0 0 0
a71 a72 a73 a74 a75 a76 1 0 0 0 0
a81 a82 a83 a84 a85 a86 a87 1 0 0 0
a91 a92 a93 a94 a95 a96 a97 a98 1 0 0
a101 a102 a103 a104 a105 a106 a107 0 −1 1 0
a111 a112 a113 a114 a115 a116 a117 0 −1− a1110 a1110 1





awht

πt
ipt
pcet
rt

rGS10
t

stt
Ut

GDPt

GDPE,t

GDPI,t


We use notation where â = (a21, a31, . . . , a116, a117)

′ and ã are all the remaining coefficients
in A, all the free coefficients in B and the intercepts in the MF-VAR. σ2

ii denotes the error
variance in equation i. The prior is:

1. a1110 ∼ N(0, 1).

2. ã ∼ DL(α) - α is the hyperparameter on the DL priors and is set to α = 0.5.

3. â ∼ DL(ᾱ)- ᾱ is the hyperparameter on the DL priors and is set to ᾱ = 0.5.

4. σ2
ii ∼ IG(5, .01).

The prior is bounded to ensure 0.55 < ξE, ξI < 1.15.

A.2 MCMC algorithm without mixed frequencies

In this section, we provide the details of the MCMC algorithm for the quarterly model with
a single quarterly predictor. This algorithm can be easily extended to the models with many
additional variables. Specifically, we can expand equation (1) of the main paper as:

1 0 0 0
a21 1 0 0
0 a32 1 0
0 a42 a43 1




Ut

GDPt

GDPE,t

GDPI,t

 =


µUE

µGDP

0
0

+


b11 b12 0 0
b21 b22 0 0
0 0 0 0
0 0 0 0




Ut−1

GDPt−1

GDPE,t−1

GDPI,t−1

+


ϵU,t
ϵG,t

ϵE,t

ϵI,t

 ,

(A.2)
where 

ϵU,t
ϵG,t

ϵE,t

ϵI,t

 ∼ N(


0
0
0
0

 ,


σ2
UU 0 0 0
0 σ2

GG 0 0
0 0 σ2

EE 0
0 0 0 σ2

II

). (A.3)
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The preceding sub-section described the priors for A and the error variances. For the
remaining parameters and initial conditions, we make relatively non-informative choices of:
µUE, µGDP ∼ N(0, V4), b11, b12, b21, b22 ∼ N(0, V5), GDP1 ∼ N(0, VGDP ) and σ2

ii ∼ IG(ν, S).
We set the following hyperparameters: V4 = 100, V5 = 10, VGDP = 10, ν = 3.8 and S = 8.4.
We can use the equation by equation method of Carriero et al. (2019) to sample all the pa-
rameters, and the Gibbs sampler is specified below. Note, for the models with more monthly
variables, we use Dirichlet–Laplace (DL) priors on the VAR coefficients and covariance terms.
Since this prior is conditionally Gaussian, the Gibbs sampler described below is mostly un-
changed. All that is required are the additional steps to draw the DL parameters and this is
carried out as detailed in the appendix of Koop et al. (2020).

A.3 Sample Ut equation

We can rewrite the first equation of the VAR in (A.2) as:

U = Xβ + ϵU , ϵU ∼ N(0, σ2
UUIT ), (A.4)

where

X =


1 U0 0
1 U1 GDP1
...

...
...

1 UT−1 GDPT−1

 .

Let U = (U1, . . . , UT )
′ and β = (µUE, b11, b12)

′. Combining (A.4) with the above specified
priors and using the simple Bayesian linear regression formula, the conditional posterior for
β is:

β|• ∼ N(β̂,Kβ), (A.5)

where S1 = diag(V4,V5,V5) and:

Kβ = (X
′X

σ2
UU

+ S−1
1 )−1, β̂ = Kβ(

X′U
σ2
UU

).

Finally, the conditional posterior for σ2
UU is:

σ2
UU |• ∼ IG(ν +

T

2
, S +

(U−Xβ)′(U−Xβ)

2
). (A.6)

A.4 Sample GDPt equation

We can rewrite the second equation of the VAR in (A.2) as:

GDP = Zθ + ϵG, ϵG ∼ N(0, σ2
GGIT ), (A.7)

where:

7



Z =


1 U1 GDP1 −U2

1 U2 GDP2 −U3
...

...
...
...

...
1 UT−1 GDPT−1 −UT

 ,

Let GDP = (GDP2, . . . , GDPT )
′ and θ = (µGDP , b21, b22, a21)

′. Combining (A.7) with the
above specified priors and using the simple Bayesian linear regression formula, the conditional
posterior for θ is:

θ|• ∼ N(θ̂,Kθ), (A.8)

where S2 = diag(V4,V5,V5, V1), δ = (0, 0, 0, â)′ and:

Kθ = ( Z′Z
σ2
GG

+ S−1
2 )−1, θ̂ = Kθ(

Z′GDP
σ2
GG

+ S−1
2 δ).

Finally, the conditional posterior for σ2
GG is:

σ2
GG|• ∼ IG(ν +

T − 1

2
, S +

(GDP − Zθ)′(GDP − Zθ)

2
). (A.9)

A.5 Sample GDPE,t equation

We can rewrite the third equation of the VAR in (A.2) as:

GDPE = Wa32 + ϵE, ϵE ∼ N(0, σ2
EEIT ), (A.10)

where:

W =


−GDP1

−GDP2
...

−GDPT

 ,

and GDPE = (GDPE,1, . . . , GDPE,T )
′. Combining (A.10) with the above specified priors and

using the simple Bayesian linear regression formula, the conditional posterior for a32 is:

a32|• ∼ N(â32,Ka32), (A.11)

where:

Ka32 = (W
′W

σ2
EE

+ V −1
2 )−1, θ̂ = Ka32(

W′GDPE

σ2
EE

+ V −1
2 ã).

Finally, the conditional posterior for σ2
EE is:

σ2
EE|• ∼ IG(ν +

T

2
, S +

(GDPE −Wa32)
′(GDPE −Wa32)

2
). (A.12)
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A.6 Sample GDPI,t equation

We can rewrite the fourth equation of the VAR in (A.2) as:

GDPI = Mγ + ϵI , ϵI ∼ N(0, σ2
IIIT ), (A.13)

where:

M =


−GDP1 −GDPE,1

−GDP2 −GDPE,2
...

...
−GDPT −GDPE,T

 ,

GDPI = (GDPI,1, . . . , GDPI,T )
′ and γ = (a42, a43)

′. Combining (A.13) with the above speci-
fied priors and using the simple Bayesian linear regression formula, the conditional posterior
for γ is:

γ|• ∼ N(γ̂,Kγ), (A.14)

where S4 = diag(V2, V3), δ̃ = (ã, 0)′ and:

Kγ = (M
′M

σ2
II

+ S−1
4 )−1, γ̂ = Kγ(

M′GDPI

σ2
II

+ S−1
4 δ̃).

Finally, the conditional posterior for σ2
II is:

σ2
II |• ∼ IG(ν +

T

2
, S +

(GDPI −Mγ)′(GDPI −Mγ)

2
). (A.15)

A.7 Sample GDPt

In our model, GDPt is an unobserved latent variable and here we provide details on sampling
this latent variable. First, we rewrite (A.2) as a combination of state and measurement
equations:

ỹ = X̃GDP + η, η ∼ N(0,Ω), (A.16)

where ỹ = (GDPE,1, GDPI,1 + a43GDPE,1, . . . , GDPE,T , GDPI,T + a43GDPE,T )
′, GDP =

(GDP1, . . . , GDPT )
′, X̃ = IT ⊗ [−a32, a42]

′, and Ω = IT ⊗
[
σ2
EE 0
0 σ2

EE

]
. The state equations

can be defined as:

HGDP = α̃ + ϵG, ϵG ∼ N(0,S5), (A.17)

where:

H =



1 0 0 · · · 0
−b22 1 0
0 −b22 1 0

0 0 −b22
. . . . . .

...
...

. . . . . . 1 0
0 0 · · · 0 −b22 1


, α̃ =



0
µGDP + b21U1 − a21U2

µGDP + b21U2 − a21U3
...
...

µGDP + b21UT−1 − a21UT


,
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and S5 = diag(VGDP , σ
2
GG, . . . , σ

2
GG).

Next let:

Ũ = H̃GDP + ϵU , ϵU ∼ N(0, σ2
UUIT ), (A.18)

where:

Ũ =


U1 − U0b11 − µUE

U2 − U1b11 − µUE
...
...

UT − UT−1b11 − µUE

 , H̃ =


0 · · · 0 0
b12 0

0 b12 0 0
...

...
. . . . . . 0

0 · · · 0 b12 0

 .

Therefore, combining (A.16), (A.17) and (A.18), the conditional posterior for GDP is:

GDP |• ∼ N( ˆGDP,KGDP ), (A.19)

where:

KGDP = (X̃′Ω−1X̃+H′S−1
5 H+ H̃′H̃

σ2
UU

)−1, ˆGDP = KGDP (X̃
′Ω−1ỹ +H′S−1

5 HH−1α̃ +
H̃′Ũ

σ2
UU

).

Since the precision matrix KGDP is a band matrix, one can sample this conditional posterior
efficiently using the algorithm proposed by Chan and Jeliazkov (2009).

A.8 MCMC for mixed frequency models

When model (A.2) is in mixed frequency, that is Ut is a monthly variable, and GDPE,t and
GDPI,t are quarterly variables, the Gibbs sampler is unchanged except for the blocks that
draw GDPt, GDPE,t and GDPI,t.

To draw the unobserved monthly GDPt variable, we reparameterize the VAR in (A.2) in
a state-space representation:

yt = c̃+ B̃yt−1 + ϵt, ϵt ∼ N(0,Σ), (A.20)

where c̃ = A−1c, B̃ = A−1B, Λ = diag(σ2
UU , σ

2
GG, σ

2
EE, σ

2
II), and Σ = A−1ΛA−1′ . Let m

denote the number of monthly variables and q denote the number of quarterly variables. For
example, in the ADNSS MF-VAR m = 1 and q = 3. We can further partition (A.20) into:

yt =

[
c̃m
c̃q

]
+

[
B̃mm B̃mq

B̃qm B̃qq

]
yt−1 + ϵt, ϵt ∼ N(0,

[
Σmm Σmq

Σqm Σqq

]
). (A.21)

Then our state-space representation is:

st = F0 + F1st−1 + Φqm + ζt, ζt ∼ N(0, Θ1), (A.22)
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where Φqm =

[
B̃qmy

m
t−1

0(s−q)×1

]
,ymt−1 = (U0, . . . , UT−1)

′ is a vector that consists of all the lagged

monthly variables, st = (GDPt, GDPE,t, GDPI,t, . . . , GDPt−4, GDPE,t−4, GDPI,t−4)
′ is s × 1

vector, Θ1 = blkdiag(Σqq,0(s−q)×(s−q)),
1 and:

F0 =

[
c̃q

0(s−q)×1

]
,F1 =


B̃qq 0 · · · 0

I(s−q)×1 0
...

0
. . . . . . 0

0 0 I(s−q)×1 0

 .

Then we have two measurement equations, when both the monthly and quarterly variables
are observed:

ŷt = M1st + Φmm + υt, υt ∼ N(0, Θ2), (A.23)

where Φqm =

[
B̃mmy

m
t−1 + c̃m

0(q−1)×1

]
, Θ2 = blkdiag(Σmm,0(q−1)×(q−1)),

ŷt =

 Ut

GDPE,t

GDPI,t

 ,

and:

M1 =

[
01×q B̃mq 0 0 · · · 0 0

01×(q−1)
1
3
I(q−1) 01×(q−1)

2
3
I(q−1) 01×(q−1) I(q−1) 01×(q−1)

2
3
I(q−1) 01×(q−1)

1
3
I(q−1)

]
.

However, when only the monthly variable is observed, the measurement equation becomes:

ŷt = M2st + Φmm + υt, υt ∼ N(0, Θ2), (A.24)

where:
M2 =

[
01×q B̃mq 0 0 · · · 0 0

]
.

Finally, we can run the standard Kalman filtering and Carter and Kohn smoothing al-
gorithm through (A.22), (A.23) and (A.24) to draw the monthly latent estimates for GDPt,
GDPE,t and GDPI,t.

A.9 ADNSS+SS model with revisions

Here we set out the ADNSS+SS model when modeling both the first and second releases of
GDPE and GDPI. The left-hand side of the MF-VAR for this model takes the following form:

1blkdiag denotes a block diagonal matrix.
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

1 0 0 0 0 0 0 0 0 0 0 0 0
a21 1 0 0 0 0 0 0 0 0 0 0 0
a31 a32 1 0 0 0 0 0 0 0 0 0 0
a41 a42 a43 1 0 0 0 0 0 0 0 0 0
a51 a52 a53 a54 1 0 0 0 0 0 0 0 0
a61 a62 a63 a64 a65 1 0 0 0 0 0 0 0
a71 a72 a73 a74 a75 a76 1 0 0 0 0 0 0
a81 a82 a83 a84 a85 a86 a87 1 0 0 0 0 0
a91 a92 a93 a94 a95 a96 a97 a98 1 0 0 0 0
a101 a102 a103 a104 a105 a106 a107 0 a109 1 0 0 0
a111 a112 a113 a114 a115 a116 a117 0 a119 a1110 1 0 0
a121 a122 a123 a124 a125 a126 a127 0 a129 a1210 a1211 1 0
a131 a132 a133 a134 a135 a136 a137 0 a139 a1310 a1311 a1312 1





awht

πt

ipt
pcet
rt

rGS10
t

stt
Ut

GDPt

GDP 1
E,t

GDP 2
E,t

GDP 1
I,t

GDP 2
I,t



.

In this model, we include both the first and the second release of GDPE and GDPI.
GDP 1

E,t and GDP 2
E,t are denoted as the first and second release of GDPE, respectively.

We denote the first and second estimates of GDPI similarly. We use notation where â =
(a21, a31, . . . , a116, a137)

′ and ã are all the remaining coefficients in A, all the free coefficients
in B and the intercepts in the MF-VAR. σ2

ii denotes the error variance in equation i.
The prior is:

1. a109, a119, a129, a139 ∼ N(−1, 0.1) and a1110, a1210, a1211, a1310, a1311, a1312 ∼ N(0, 1).

2. ã ∼ DL(α) - α is the hyperparameter on the DL priors and is set to α = 0.5.

3. â ∼ DL(ᾱ)- ᾱ is the hyperparameter on the DL priors and is set to ᾱ = 0.5.

4. σ2
ii ∼ IG(5, .01).

Since we have two releases of GDPE and GDPI in the model, we now have four ξ1E, ξ
2
E, ξ

1
I , ξ

2
I

and we accept each MCMC draw that satisfies the restriction:

0.55 <
ξ1E + ξ2E + ξ1I + ξ2I

4
< 2.
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B Data Appendix

B.1 Data set for models with 8 monthly variables

All data were gathered from the McCracken and Ng (2016) FRED-MD database. The real
time data were sourced from the FRED-MD and ALFRED databases.

Table B1: Data set for models with 8 monthly variables (plus the 2 quarterly variables)

Variables FRED mnemonic Frequency Transformation
Avg weekly hours:
Manufacturing

AWHMAN Monthly Level divided by 10

CPI: All Items CPIAUCSL Monthly △lnxt × 100
Industrial production INDPRO Monthly △lnxt × 100
Real personal con-
sumption expendi-
tures

DPCERA3M086SBEA Monthly △lnxt × 100

Effective federal funds
rate

FEDFUNDS Monthly Level

10-year Treasury rate GS10 Monthly Level
S&P’s Common stock
price index: Compos-
ite

S&P 500 Monthly △lnxt × 100

Civilian unemploy-
ment Rate

UNRATE Monthly △xt × 100

Real gross domestic
income

A261RX1Q020SBEA Quarterly △lnxt × 400

Real gross domestic
product

GDPC1 Quarterly △lnxt × 400

B.2 Data set for models with 48 monthly variables

All data were gathered from the McCracken and Ng (2016) FRED-MD database. In re-
gard to the real-time data, we sourced them from both the FRED-MD and the ALFRED
database. The 48 monthly variables were designed to span 6 categories: 1) industrial produc-
tion/economic activity indicators - 19 variables; 2) employments indicators - 10 variables; 3)
inflation indicators - 9 variables; 4) financial indicators - 5 variables; 5) stock market indica-
tors - 3 variables; 6) exchange rate - 2 variables. Along with the 2 quarterly GDP variables,
GDPE and GDPI, listed in Table B1, these 48 monthly variables comprise the 50-variable big
data VAR model.

13



Table B2: Data set for models with 48 monthly variables

Variables FRED mnemonic Transformation
Industrial Production INDPRO △lnxt × 100
Real personal consumption expendi-
tures

DPCERA3M086SBEA △lnxt × 100

Real Personal Income RPI △lnxt × 100
Real Manu. and Trade Industries Sales CMRMTSPLx △lnxt × 100
Retail and Food Services Sales RETAILx △lnxt × 100
IP: Final Products and Nonindustrial
Supplies

IPFPNSS △lnxt × 100

IP: Final Products (Market Group) IPFINAL △lnxt × 100
IP: Consumer Goods IPCONGD △lnxt × 100
IP: Durable Consumer Goods IPDCONGD △lnxt × 100
IP: Nondurable Consumer Goods IPNCONGD △lnxt × 100
IP: Business Equipment IPBUSEQ △lnxt × 100
IP: Materials IPMAT △lnxt × 100
IP: Durable Materials IPDMAT △lnxt × 100
IP: Nondurable Materials IPNMAT △lnxt × 100
IP: Manufacturing IPMANSICS △lnxt × 100
IP: Residential Utilities IPB51222S △lnxt × 100
IP: Fuels IPFUELS △lnxt × 100
Avg Weekly Hours : Manufacturing AWHMAN Level divided by 10
Capacity Utilization: Manufacturing CUMFNS △lnxt × 100
Civilian Labor Force CLF16OV △lnxt × 100
Civilian Employment CE16OV △lnxt × 100
Civilians Unemployed - Less Than 5
Weeks

UEMPLT5 △lnxt × 100

Civilians Unemployed for 5-14 Weeks UEMP5TO14 △lnxt × 100
Civilians Unemployed - 15 Weeks &
Over

UEMP15OV △lnxt × 100

Civilians Unemployed for 15-26 Weeks UEMP15T26 △lnxt × 100
Civilians Unemployed for 27 Weeks and
Over

UEMP27OV △lnxt × 100
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Table B2: Data set for models with 48 monthly variables (cont.)

Variables FRED mnemonic Transformation
Initial Claims CLAIMSx △lnxt × 100
PAYEMS PAYEMS △lnxt × 100
PPI: Metals and metal products: PPICMM △lnxt × 100
CPI : All Items CPIAUCSL △lnxt × 100
CPI : Apparel CPIAPPSL △lnxt × 100
CPI : Transportation CPITRNSL △lnxt × 100
CPI : Medical Care CPIMEDSL △lnxt × 100
CPI : Commodities CUSR0000SAC △lnxt × 100
CPI : Durables CUSR0000SAD △lnxt × 100
CPI : Services CUSR0000SAS △lnxt × 100
Personal Cons. Expend.: Chain Index PCEPI △lnxt × 100
Real M2 Money Stock M2REAL △lnxt × 100
Effective Federal Funds Rate FEDFUNDS Level
10-Year Treasury Rate GS10 Level
Moody’s Aaa Corporate Bond Minus
FEDFUNDS

AAAFFM Level

Moody’s Baa Corporate Bond Minus
FEDFUNDS

BAAFFM Level

US / UK Foreign Exchange Rate EXUSUKx △lnxt × 100
Canada / US Foreign Exchange Rate EXCAUSx △lnxt × 100
S&P’s Common Stock Price Index: In-
dustrials

S&P: indust △lnxt × 100

S&P’s Composite Common Stock:
Price-Earnings Ratio

S&P PE ratio △lnxt × 100

S&P’s Common Stock Price Index:
Composite

S&P 500 △lnxt × 100

Civilian Unemployment Rate UNRATE △xt × 100
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C Further Empirical Results

C.1 Model comparison and properties of monthly GDP

The main goal of the paper is to produce historical monthly estimates of true GDP growth.
Given that the BEA does not produce estimates of monthly true GDP, against which we might
evaluate our estimates, we compare the estimates produced by the seven models of Table 1
(in the main paper) in various ways. We begin by taking the posterior median of historical
monthly estimates of true GDP, GDPE and GDPI from each estimated model and calculate
various summary descriptive statistics. These are given in Table C1. The overall impression is
that the different models produce monthly GDP estimates that have very similar time-series
properties. This broadly holds true for all three of our monthly GDP estimates - true GDP,
GDPE and GDPI - when comparing across models.

One interesting difference between models can be seen in the means and medians they
produce. In models that impose the noise restriction, true GDP must lie between GDPE and
GDPI. However, without the noise restriction, this does not necessarily occur. We also see that
true GDP is always less volatile than both GDPE and GDPI, except in the ADNSS +SS+

model that includes 48 monthly indicators. The ADNSS+SS model, with just 8 monthly
indicators, also delivers true GDP estimates with volatility closer to GDPE and GDPI than the
ADNSS model that considers unemployment only. In other words, consideration of additional
monthly indicators does increase the relative volatility of the true GDP estimates. This is
what we should expect, if these monthly indicators provide information about within-quarter
economic dynamics.

In the ADNSS +SS+ model with 48 additional monthly predictors, it can also be seen
that true GDP, on average, is slightly higher than both GDPE and GDPI. In the ADNSS+SS
model, which is the same as ADNSS +SS+ except that these additional monthly predictors
are excluded, in contrast, true GDP on average lies between GDPE and GDPI. Clearly,
the additional monthly predictors are having an impact on our monthly GDP estimates.
Inspection of the posterior median estimates for σ2

GG also reveals the benefits of moving
beyond consideration of monthly unemployment data alone: the ADNSS models offer poorer
fit for the underlying monthly GDP equation than the SS models, with the exception of SS+.
This provides tentative evidence to suggest that, in-sample at least, consideration of 48 rather
than just 8 additional monthly indicators may not provide informational value-added for
underlying GDP. However, we re-emphasize the clear conclusion from Table C1 that inference
about historical GDP growth across the different models is very similar.

Comparing true GDP with GDPE and GDPI we see from Table C1 that, across models,
true GDP is always more negatively skewed than either GDPE or GDPI. The dynamics of
monthly GDP are also similar across models, with true GDP and GDPI exhibiting slightly
more persistence (as measured by the sample autocorrelations) than GDPE. True GDP and
GDPI have smaller AR(1) innovation variance and greater predictability as measured by the
R2 than GDPE. The final column of Table C1 reveals that our monthly estimates of true
GDP are more highly correlated with our estimates of monthly GDPI than with our estimates
of monthly GDPE. This is understood by Table 1 (in the main paper) confirming that GDPI

is more important than GDPE in explaining true GDP, explaining up to two-thirds of its
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variation.
Posterior evidence relating to the noise restriction can also be found in the models that do

not impose it. Table C2 shows, for ξE, there is virtually no probability that it is above one.
Thus, the noise restriction is found to hold for GDPE. However, for ξI in the unrestricted
model, there is an appreciable probability that it is greater than one. This evidence that the
measurement error in monthly GDPI is at least in part news is consistent with the quarterly
analysis in Fixler and Nalewaik (2010). Table C2 thus raises some doubts about whether it
is sensible to impose the noise restriction. Thus our preference is for a model that allows for
both news and noise.

Following Nalewaik (2010), we next calculate the correlations between our estimates of
monthly true GDP growth and various other monthly business cycle indicators that should
be correlated with true GDP but that are measured independently. These indicators are
the industrial production index (IPI), the change in the unemployment rate, the Institute
for Supply Management’s Purchasing Managers Index (PMI) for manufacturing, employment
growth, the S&P500 index and the Aruoba, Diebold, and Scotti (ADS) business conditions
index (aggregated to a monthly frequency from the underlying daily index data). Again, for
those indicators that are revised, we use June 2021 vintage data, and all monthly indicators
are converted to quarter-on-quarter annualized changes except the PMI, which is analyzed in
levels (as it is a balance statistic).

In addition, we consider the correlations against four alternative direct estimates of monthly
GDP computed by Stock and Watson (2014), IHS Markit, the OECD, and BBK’s estimates
published at the Federal Reserve Bank of Chicago. All four monthly estimates are con-
sidered, like yQt , as quarter-on-quarter annualized log changes. Stock and Watson’s (2014)
GDP estimates, available monthly through 2010m6, are computed as the geometric average of
their monthly estimates of GDPE and GDPI. As real-time estimates are unavailable, we use
the estimates accompanying their 2014 paper. IHS Markit, the global information provider,
produces monthly GDP estimates from 1992m4 designed to be “an indicator of real aggre-
gate output” and “whose variation at the quarterly frequency mimics that of official GDP”
(see https://ihsmarkit.com/products/us-monthly-gdp-index.html), although we are unaware
of the formal details of their methodology and any temporal aggregation constraints imposed.
The OECD’s monthly estimates of US real GDP are a leading indicator normalized to US
GDP.2 BBK uses a collapsed dynamic panel model of over 500 monthly indicators and quar-
terly GDPE and, just like equation (6) in the main paper, ensures that the monthly GDP
estimates temporally aggregate to the observed GDPE data.3

From Table C3 it can be seen that the historical correlations with a given indicator are
virtually identical across the seven models. This again points to the robustness of our historical
estimates of monthly GDP. Reassuringly, we find an especially high correlation of our estimates
of true GDP growth with the estimates produced by Stock and Watson (2014). While these
estimates are also highly correlated, we see a slight drop in the correlation of our estimates
with the monthly GDP estimates produced by BBK. This is understood when we recall that
BBK focuses on consideration of GDPE and neither exploits GDPI data nor seeks to provide

2The OECD’s monthly indicator for US GDP is available from FRED at https://fred.stlouisfed.org/series/
USALORSGPNOSTSAM.

3See Box 2 of https://www.chicagofed.org/publications/economic-perspectives/2019/1.
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Table C2: News versus noise by model: Posterior probabilities that ξE and ξI are greater than
one, implying news

p(ξE > 1) p(ξI > 1) p(ξE > 1 and ξI > 1)
ANDSS+SS(IV) 0.00 0.01 0.00

ADNSS+SS(IV+N) 0.00 0.00 0.00
ADNSS+SS 0.01 0.37 0.01

ADNSS+SS(N) 0.00 0.00 0.00
ADNSS +SS+ 0.00 0.51 0.00

ADNSS 0.00 0.01 0.00
ADNSS(N) 0.00 0.00 0.00

Table C3: Correlation by model of the posterior median of monthly GDPt growth with se-
lected business cycle indicators and alternative estimates of monthly GDP growth (1960m1-
2019m12)

OECD S&P500 IPI Unemployment PMI
ADNSS+SS(IV) 0.84 0.27 0.81 -0.68 0.68

ADNSS+SS(IV+N) 0.84 0.27 0.81 -0.68 0.68
ADNSS+SS 0.84 0.27 0.81 -0.68 0.68

ADNSS+SS(N) 0.84 0.27 0.81 -0.68 0.68
ADNSS 0.84 0.27 0.81 -0.68 0.68

ADNSS(N) 0.84 0.27 0.81 -0.68 0.68
ADNSS+SS+ 0.84 0.27 0.81 -0.68 0.68

Employment Stock Watson IHS Markit ADS Index BBK
ADNSS+SS(IV) 0.70 0.95 0.52 0.77 0.93

ADNSS+SS(IV+N) 0.70 0.96 0.52 0.77 0.95
ADNSS+SS 0.70 0.96 0.52 0.77 0.93

ADNSS+SS(N) 0.70 0.96 0.52 0.77 0.94
ADNSS 0.70 0.95 0.53 0.78 0.92

ADNSS(N) 0.71 0.96 0.53 0.77 0.95
ADNSS+SS+ 0.71 0.95 0.53 0.77 0.95

Notes: All monthly indicators except PMI are analyzed in quarterly (quarter-over-quarter) annualized percent changes. PMI

is analyzed in levels. Due to data availability, the correlations reported for Stock-Watson and IHS Markit are over the shorter

sample periods of 1960m1-2010m6 and 1992m4-2019m12, respectively.

reconciled GDP estimates. Tables D4 and D5 in online Appendix D demonstrate that our
models produce, reassuringly, monthly estimates of GDPE that are almost perfectly correlated
with those of BBK; and our monthly estimates of GDPI are less strongly correlated (around
0.84) with BBK’s estimates than our estimates of true GDP, which, as shown in Table C3,
are correlated at least 0.93 with BBK’s estimates.
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Supplementary Table D6 in Appendix D shows that our monthly estimates, when ag-
gregated to the quarterly frequency, correlate highly with the quarterly GDPplus estimates
published by the Federal Reserve Bank of Philadelphia. Interestingly, our reconciled estimates
of true GDP (when aggregated to a quarterly frequency to match GDPplus) are less corre-
lated at 0.93 with GDPplus than our estimates of GDPI. This suggests that consideration of
monthly indicators about the state of the economy is in effect lowering the weight on GDPI

in true GDP. Comparison of Table 1 (in the main paper) with ADNSS’s reported estimate
of λ = 0.29 on (quarterly) GDPE confirms the view that when measuring monthly GDP,
a higher weight should be placed on GDPE and expenditure-side components of economic
activity (as discussed in the main paper, this is when full-sample information is used - the
narrative changes when the ragged edge is accommodated).

Table C3 indicates that our estimates of true GDP growth are less strongly correlated
with the alternative estimates of monthly GDP produced by the OECD and IHS Markit,
suggesting that these latter estimates are not designed to be consistent with quarterly GDP
data. Turning to the correlations reported against the other macroeconomic indicators, we see
that our monthly GDP estimates are highly positively correlated with industrial production
and employment, and negatively correlated with unemployment. This is again reasonable and
supports the plausibility of our estimates and, in turn, of our identification strategy.

C.2 Empirics: Further perspectives on monthly GDP

Having established that historical inference about true GDP is fairly robust to which model we
consider, here we present additional results from our preferred model, the ADNSS+SS model,
which imposes neither the noise restriction nor the restriction that all the monthly variables
are instruments (but does impose the restriction that unemployment is an instrument). We
choose this as the preferred model to focus on, given the empirical findings noted above. That
is, the evidence in favor of the restrictions is not overwhelming. Since we are finding a high
degree of robustness in that our seven models are producing similar estimates, we choose not
to impose the restrictions. However, there is little evidence that moving from 8 to 48 monthly
predictors improves our estimates and it does increase the computational burden substantially
and, hence, we do not use the ADNSS+SS+ model.

Figures 4 and 5 (in the main paper) plot the monthly estimates of the three GDP variables.
It can be seen that the lines tend to follow each other, with true GDP tending to lie between
the estimates of GDPE and GDPI, but there are some exceptions to this pattern. Note also
that the credible intervals are quite narrow, indicating accurate estimation.

The ADNSS+SS model has a large number of parameters. For the sake of brevity, we
do not present posterior information about all of them. We are particularly interested in the
noise restriction and the restriction that all the monthly variables are instruments. Given the
way we have ordered the variables in the MF-VAR, these restrictions relate to its tenth and
eleventh equations. Thus, Table C4 presents results for these two rows in the A matrix. The
noise restriction implies a10,9 = −1 and a11,9 = −1 + a11,10. It can be seen that the point
estimates are not too far from both restrictions. But, particularly for the noise restriction,
the posterior allocates enough weight away from the restriction, which accounts for the small
differences between the restricted and unrestricted models noted in the preceding sub-section.
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Table C4: Posterior estimates of key parameters in A from the ADNSS+SS model

Parameter Median 16th quantile 84th quantile
a10,1 0.00 -0.01 0.01
a10,2 0.00 -0.07 0.04
a10,3 0.00 -0.03 0.03
a10,4 0.00 -0.06 0.03
a10,5 0.00 -0.01 0.00
a10,6 0.00 0.00 0.01
a10,7 0.00 -0.01 0.01
a11,1 0.00 0.00 0.00
a11,2 0.00 -0.01 0.01
a11,3 0.00 0.00 0.00
a11,4 0.00 0.00 0.00
a11,5 0.00 0.00 0.00
a11,6 0.00 0.00 0.00
a11,7 0.00 0.00 0.00
a10,9 -0.96 -1.08 -0.88
a11,9 -1.51 -1.74 -1.32
a11,10 0.56 0.42 0.71

The posterior medians of all coefficients on the monthly variables in these two equations
are zero to two decimal places, indicating that these variables are not strong instruments.
Many of them have been shrunk to be extremely close to zero by the Dirichlet-Laplace prior.
However, a small number of them have some posterior weight away from zero. Overall, these
findings indicate that it is sensible to work with a monthly VAR involving true GDP and the
monthly indicators. Adding GDPE and GDPI to this VAR will not improve its explanatory
power.

It is, of course, not possible to compare our estimates of true monthly GDP directly to
monthly GDP (or monthly GDPE or GDPI), since none of these concepts are measured by the
BEA. But it is informative to turn our monthly posterior density estimates for true GDP into
quarterly posteriors, and then see how well they match with (the observed) quarterly GDPE

and GDPI data from the BEA.4 This is achieved using the probability integral transform
(PIT) histograms shown in Figure C1. These PITs are computed by integrating the posterior
density for true GDP at time t up to the realized value of GDPEt and GDPIt. The PITs will
be uniformly distributed when the densities for true GDPt equal those of GDPEt or GDPIt.
It can be seen that for GDPE, the PITs depart from uniformity, placing extra weight in the
tails. This sheds some light on the dispersion of the posteriors for true GDP at each point in
time. Because observed GDPE is often found to be in the tails of the posterior density of true
GDP, this indicates its volatility is greater than that for true GDP (as supported by Table
C1 above). This is not true to the same extent for GDPI. This is again as we should expect,
given our findings relating to the noise restriction (seen in Table C2). That is, GDPE satisfies

4Again we continue to use recent vintage data for this historical analysis.
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the noise restriction, which implies that it should be more volatile than true GDP. However,
for GDPI there is less evidence in favor of the noise restriction. Hence the densities of true
GDP and GDPI are more similar.

Figure C1: Probability integral transforms (PIT) histograms at a quarterly frequency for the
true GDP density from the ADNSS+SS model, using quarterly GDPE (top panel) and GDPI

(bottom panel) data from the BEA as the realizations

C.3 ADNSS+SS model with stochastic volatility

In this appendix we present: i) graphical output from the ADNSS+SS model extended to
accommodate stochastic volatility (SV) and ii) tabular output summarizing the posterior
median estimates of p(ξE > 1) and p(ξI > 1) from the ADNSS+SS model. This output is
referenced in the main body of the paper.

First, we summarize how we extend the ADNSS+SS model to accommodate stochastic
volatility (SV). Then we report some graphical evidence supporting our claim in the main
paper that the historical properties of the monthly GDP estimates from the ADNSS+SS
model are little affected by the inclusion of SV (see, in particular, Figure C3). In turn, this
implies little time-variation in the relative importance of GDPE (top panel) and GDPI, as
shown in Figure C4. However, Figure C6 (building on Figure C5) shows that accommodating
SV does introduce time variation in the posterior estimates for p(ξE > 1) and p(ξI > 1).
Finally, in Table C5 we show that estimation of the ADNSS+SS model (without SV) over
more recent samples of data tends to increase the news component to GDPE, even though the
properties of true monthly GDP (our focus) are indistinguishable.

We preserve all model assumptions of the ADNSS+SS model, as stated above and in the
main paper, and extend to allow for SV as follows. The i− th equation of the VAR becomes:

yi,t = Xi,tβi + ϵi,t, ϵt ∼ N(0, ehi,t),
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hi,t = hi,t−1 + vt, vt ∼ N(0, σ2
hi
),

where yi,t is the i−th variable of the VAR and hi,t is the i−th variable log-volatility, which fol-
lows a standard random walk process. We impose an inverse-gamma prior for σ2

hi
∼ IG(5, .01)

across all the variables. We implement the precision-based auxiliary-mixture sampler algo-
rithm of Chan and Hsiao (2014) to draw the log-volatilities of each variable within the Gibbs
sampler. We do not impose SV in the errors of either the GDPE,t or the GDPI,t equations,
that is, we maintain the assumption that ϵGDPE,t

∼ N(0, σ2
EE) and ϵGDPI,t

∼ N(0, σ2
II). All

other variables, including true GDPt, in the model assume SV processes for their errors. As
a result, the variance of true GDPt, σ

2
GG,t, will be time varying, and this will result in both

ξE,t and ξI,t being time varying too. We achieve set identification by accepting each MCMC
draw that satisfies the restriction:

0.55 < ξ̄E, ξ̄I < 1.15,

where ξ̄E = 1
T

∑T
t=1 ξE,t and ξ̄I =

1
T

∑T
t=1 ξI,t.
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Figure C2: Posterior median (and 68 percent credible interval) estimates of SV for true GDP
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Figure C3: Posterior median estimates for monthly true GDP from the ADNSS+SS model
with (and without) SV
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Figure C4: Time-varying Kalman gains for GDPE and GDPI from the ADNSS+SS model
with SV: posterior medians (in blue) with 68 percent credible intervals (in yellow and red)
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Figure C5: Time-varying posterior medians in blue (with 68 percent credible intervals) of ζE
and ζI from the ADNSS+SS model with SV
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Figure C6: Time-varying probabilities p(ξE > 1), p(ξI > 1) and p(ξE > 1andξI > 1) from the
ADNSS+SS model with SV

C.4 Historical business cycles

To illustrate further the utility of our monthly estimates of true GDP, we consider their
ability to capture historical US business cycles as assessed by the NBER Business Cycle
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Table C5: Posterior median estimates of p(ξE > 1) and p(ξI > 1) from the ADNSS+SS model
when estimated over different sample periods

p(ξE > 1) p(ξI > 1)
1960-2019 0.01 0.37
1985-2007 0.30 0.07
2008-2019 0.25 0.02
1960-1999 0.00 0.29
2000-2019 0.52 0.00

Dating Committee. An attraction of our Bayesian modeling approach is that probabilities of
recession can be readily computed from our density estimates of monthly GDP. We proceed
as follows. For each MCMC draw, we focus on monthly predictive estimates for GDP growth,
yQt (expressed as a quarterly change via (6)) and use these draws for yQt to date business cycle
turning points. Specifically, we classify “recessions” and “expansions” non–parametrically
like Berge and Jordà (2011) and Brave et al. (2019). This involves relating our historical
estimates of monthly GDP, yQt , from 1960m1 through 2019q4, to the NBER recession dates
and finding the “optimal” threshold, c, such that a recession is declared for month t when
yQt < c. We define the optimal threshold value as that c that maximizes the area under the
receiver operating characteristic curve (AUC) giving equal weight to false positive and false
negative signals.5 By performing this exercise across MCMC draws for yQt , and computing the
fraction of draws where yQt < c, we produce full-sample recession probabilities acknowledging
the uncertainty about yQt . We do so using our monthly estimates for GDPEt and GDPIt as
well as true GDPt.

We plot these recession probabilities for the ADNSS+SS model in Figure C7. For expo-
sitional parsimony, and to reflect the empirical findings in favor of a model that allows for
noise and news, we focus here on the ADNSS+SS model. Alongside, for comparison, we plot
the recession probability estimates maintained by Jeremy Piger.6 For consistency with our
estimates, we use Piger’s end of March 2020 vintage estimates that date back to 1967m6.
Rather than using a non–parametric dating algorithm to define recessions and expansions,
Piger calculates probability estimates from a dynamic factor Markov-switching model devel-
oped by Chauvet (1998) applied to four monthly variables. Chauvet and Piger (2008) analyze
the performance of this model for dating recessions.

Figure C7 shows that the recession signals from the monthly ADNSS+SS model align well
with NBER recessions. While the probabilities of recession do rise during NBER recessions
(although they fall somewhat short of one in 1991 and 2001 and they also experience some
volatility, sometimes falling after rising), what is relevant for our purposes is that the strength
of the signal varies depending on whether one consults true GDP, GDPI, or GDPE. The
recessionary probabilities based on true GDP, GDPI, and GDPE often differ, with false signals
most evident when one consults GDPI or GDPE alone. This impression is confirmed when
in Table C6 we follow Berge and Jordà (2011) and Brave et al. (2019) and formally evaluate

5This corresponds to choosing c to maximize the Youden index.
6See https://pages.uoregon.edu/jpiger/us recession probs.htm/.
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the classification ability of the different recession probability estimates seen in Figure C7 by
reporting their AUC values.

Table C6 shows that dating NBER recessions using true GDP delivers 94 percent accuracy.
Only 6 percent of estimates of true monthly GDP are ambiguous, that is, consistent with
both a recessionary and an expansionary classification. But accuracy drops to 92 percent
when using GDPI or GDPE alone: reconciling the information in these two proxies of GDP
provides better classification ability. These improvements for true GDP in dating recessions
and expansions are statistically significant at the 2 percent and 8 percent levels against GDPI

and GDPE, respectively.
7 BBK’s monthly GDP estimates perform similarly to GDPI and

GDPE, with again true GDP providing superior classification performance. A comparison
in Table C6 against broader measures of economic activity as captured by BBK’s index and
the ADS index does show, as anticipated, that when focused exclusively on dating the NBER
business cycle, information beyond monthly GDP helps.8 Piger’s set of recession probabilities,
calibrated specifically to signal NBER recessions, provide near perfect classification.

Our conclusion from Table C6 is therefore not that information beyond headline GDP
growth does not provide additional value-added when dating business cycles; it is simply
that our reconciled measures of true GDP are the most informative single measure - with a
clear “economic interpretation.” As made in Mariano and Murasawa (2003), an argument for
producing measures of GDP itself, rather than construction of indices of economic activity, is
that the size of movements in GDP has a direct economic interpretation, in contrast to the
levels of indices. A further advantage is that, once a quarter when aggregated, measures of
monthly GDP, at least as measured by GDPI, or GDPE, can be evaluated through comparison
with the BEA’s own quarterly estimates.

C.4.1 Real-time recession probabilities: Looking back at the 2007-2009 recession

To showcase the use of our models in real time we revisit the 2007-2009 recession, as identified
by the NBER, and assess our models’ ability - when used monthly as if in real time - to date
this recession. The NBER classifies the recession, due to the global financial crisis, as starting
in January 2008 and ending in June 2009. As Nalewaik (2012) has emphasized, GDPI has a
track record of detecting recessions earlier than GDPE, although it is published more slowly.
This raises the possibility that a model exploiting and reconciling both GDPE and GDPI,
along with additional monthly indicator variables as they accrue in real time, may be better
able to anticipate recessions.

To mimic use of these models in real time, for all of these monthly variables and in all
of our models we make use of the real-time monthly data vintages. And we acknowledge the

7The AUC statistics are compared using DeLong et al.’s (1988) test as implemented in the R package,
https://cran.r-project.org/web/packages/pROC/pROC.pdf. This test is only illustrative, however, given it
does not accommodate serial dependence in the data. In Appendix D, Table D7, we show that true GDP
also yields higher AUC values when we date the business cycle not using the recession probability estimates
computed across MCMC draws but using the posterior mean estimates of GDP. Table D7 also shows this
result to be robust to which of the seven models of Table 1 we consider.

8As explained above, in Table C6 we analyze the ADS index when aggregated to represent quarter-on-
quarter annualized growth rates. When analyzed in its underlying and original form, the ADS index achieves
an AUC statistic of 0.99 (standard error of 0.007).
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Table C6: Business cycles features

Variables ADNSS+SS BBK: MGDP Piger BBK: Index ADS
AUC estimates

True GDP 0.94
(0.018)

GDPE 0.92
(0.020)

0.92
(0.020)

0.99
(0.003)

0.99
(0.008)

0.96
(0.014)

GDPI 0.92
(0.020)

Optimal threshold parameter
True GDP 40%
GDPE 76% -1.24 91% -0.76 -2.05
GDPI 63%

Notes: Classification ability of the monthly GDP estimates from the ADNSS+SS MF-VAR model compared with the Brave,

Butters, and Kelley (BBK) coincident index and monthly GDP (MGDP) estimates, estimates maintained by Jeremy Piger and

a monthly aggregation of the Aruoba, Diebold, and Scotti (ADS) index. Area under the receiver operating characteristic curve

(AUC) values and threshold estimates that optimize classification ability when hits and misses are given equal weight. Sample:

1960m1-2019m12, except for Piger, which is only available from 1967m6. Standard errors reported in parentheses. The BBK

index and the ADS index are not to be interpreted as direct estimates of monthly GDP as they are broader indices of economic

activity.

staggered release of data in real time (the so-called ragged edge) due to differing publication
lags. These monthly variables are aligned with real-time monthly data vintages of quarterly
GDPI and GDPE. Data vintages are organized so that our recession probability estimates for
month t are produced near the end of month t + 1, using monthly and quarterly indicator
data available at this point in time. Given GDPI data are published more slowly than GDPE,
this means that in the first month of each calendar quarter while the last quarter’s GDPE

estimate is known, the BEA has yet to publish GDPI.
We estimate the seven models of Table 1 (in the main paper) recursively from January 2007

through December 2009 and produce estimates of true monthly GDP, yQt . For each MCMC
draw, as in the historical business cycle analysis but now focusing on true GDP to again
facilitate cross-model comparisons, we compute recession probabilities by comparing yQt with
the optimal estimates c. To acknowledge the fact that the NBER announces recessions with
at least a 12-month lag, when using this strategy to classify in real time whether yQt is a
recession or not, we only use NBER data up to month t− 12 to estimate c. We note how the
estimates for c are recursively updated through our out–of-sample window.

Figure C8 plots the recursively computed estimates of a recession in month t from each
of the seven models from January 2007 through December 2009. Alongside, for comparison,
we plot the real time recession probability estimates maintained by Jeremy Piger.9 These
estimates are real-time and exploit the vintage data maintained by Piger. We note that, over
this period, Piger’s recessionary estimates for month t are produced not near the end of month
t + 1, but a month later and so have an informational advantage (or timing disadvantage)

9See https://pages.uoregon.edu/jpiger/us recession probs.htm/.
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relative to our estimates.
Figure C8 reveals that all of our models identify increasing recessionary risks from the

beginning of 2008, well ahead of the NBER announcing in December 2008 that the recession
did begin in January 2008. But, especially for the smaller SS models, there are (according to
the NBER) false recessionary signals in mid-2007, with a local spike in the recession proba-
bilities. This spike is driven by the negative estimates for true monthly GDP growth seen in
Figure 4 (for the ADNSS+SS model) in May 2007, explained by larger negative estimates for
GDPI. Interestingly, the big data model (ADNSS+SS+) down weights the odds of a recession
in mid-2007. The recessionary probabilities from all of the models do not approach unity until
almost a year later, when the NBER does classify a recession. And they decline sharply from
June 2009, well ahead of the NBER (in late September 2010) classifying June 2009 as the
final month of the recession.

Again we conclude from this real-time exercise that our monthly estimates of true GDP
do a good job of tracking NBER business cycles out-of-sample, as well as in-sample. Indeed,
visually Figure C8 provides some evidence that these estimates of true GDP provide a sharper
signal of the recession than Piger’s real-time recession probabilities. Piger’s estimates spike
before the beginning of the recession and then fall more slowly at its conclusion. We also
appear to find more variation across our models out-of-sample than in-sample. Conditioning
on the published quarterly estimates of GDPI and GDPE from the BEA disciplines our models’
monthly GDP estimates in-sample and helps explain their similarities. But out-of-sample,
absent knowledge of these quarterly realizations, the monthly indicator variables appear to
play a heightened role in shaping the probabilistic path of true GDP.

We emphasize that Figure C8 shows the real-time recession probabilities from our models.
Arguably these are of most interest to policymakers, making decisions without the benefit of
hindsight or revised data. But comparison against the full-sample (final vintage) recession
probability estimates (cf. Figure C7) indicates the unreliability (in the sense of Orphanides
and van Norden (2002)) of these real-time estimates. Data revisions explain much of this; for
example, as we move across data vintages, the 2007q4 estimate of GDPE switches from being
a positive, to a negative, and back to a positive growth rate relative to 2007q3. Indeed, the
April 30, 2020 vintage data show that while the 2007q4 value of real GDPE is higher than the
2007q3 value, the reverse holds for GDPI.

10 This is an additional reason why we might be
uncertain as to whether “true” GDP was expanding during 2007q4: the two BEA estimates
of GDP disagree.

10Available at https://apps.bea.gov/histdata/fileStructDisplay.cfm?HMI=7&DY=2020&DQ=Q1&DV=
Advance&dNRD=April-30-2020.

30

https://apps.bea.gov/histdata/fileStructDisplay.cfm?HMI=7&DY=2020&DQ=Q1&DV=Advance&dNRD=April-30-2020
https://apps.bea.gov/histdata/fileStructDisplay.cfm?HMI=7&DY=2020&DQ=Q1&DV=Advance&dNRD=April-30-2020


Figure C8: Real-time recession probabilities over the period of the global financial crisis from
the seven models of Table 1 compared against Piger’s real-time estimates
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D Supplementary Tables

Table D1: Parameters from quarterly VAR, (1), estimated in only GDPE and GDPI

Parameters Median 16th quantile 84th quantile
b11 0.56 0.48 0.65
µ 1.32 1.06 1.59
a21 -0.96 -1.08 -0.83
a31 -0.72 -1.03 -0.49
a32 -0.27 -0.44 -0.04
σ2
GG 5.30 4.64 6.51

σ2
EE 3.21 2.32 4.25
σ2
II 1.96 1.44 2.42
ξE 0.63 0.57 0.77
ξI 0.71 0.62 0.86

Notes: µ is the intercept.

Table D2: Parameters from quarterly VAR, (1), estimated in GDPE, GDPI with U as an
instrument

Parameters Median 16th quantile 84th quantile
µ1 2.26 1.91 2.67
µ2 0.39 0.28 0.50
b11 0.46 0.40 0.53
b12 -0.14 -0.17 -0.10
b21 0.48 0.27 0.70
b22 0.22 0.12 0.32
a21 0.22 0.12 0.32
a32 -1.00 -1.11 -0.90
a42 -1.01 -1.21 -0.81
a43 0.00 -0.17 0.17
σ2
UU 0.91 0.83 1.00

σ2
GG 7.00 5.52 9.04

σ2
EE 2.24 1.72 2.90
σ2
II 1.47 1.09 1.92
ξE 0.75 0.61 0.94
ξI 0.81 0.66 1.01

Notes: Following ADNSS we put an intercept only in the equations for Ut and GDPt and these are labeled µ1 and µ2 in this

table. The error variance in the equation for unemployment is labelled σ2
UU .
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Table D3: Properties of quarterly GDP estimates

Mean Median σ̂ Skewness ρ̂1 ρ̂2 ρ̂3 ρ̂4 Q4 corr.
GDPplus

GDPE 2.96 2.98 3.24 -0.26 0.32 0.28 0.11 0.11 57.02 0.78
GDPI 2.95 3.15 3.15 -0.36 0.45 0.29 0.23 0.11 98.07 0.96
GDPplus 2.98 3.13 2.47 -0.46 0.74 0.50 0.34 0.18 239.57 1.00
ADNSS B1 3.05 3.16 2.60 -0.44 0.64 0.42 0.27 0.14 169.41 0.97
ADNSS B2 2.96 3.04 2.72 -0.45 0.53 0.34 0.22 0.10 119.93 0.94

Notes: The sample period is 1960q1-2019q4. σ̂ is the sample standard deviation. ρ̂1 − ρ̂4 are the sample autocorrelations at

displacements of 1 to 4 quarters. Q4 is the Ljung-Box serial correlation test statistic calculated using ρ̂1, . . . , ρ̂4. corr. is the

correlation coefficient against GDPplus as maintained by the Federal Reserve Bank of Philadelphia. ADNSS B1 and ADNSS B2

are the posterior median estimates of true GDP from the two Bayesian quarterly econometric models considered in Sections 4.1

and 4.2, respectively.

Table D4: Correlation by model of the posterior median of monthly GDPE growth with
selected business cycle indicators and alternative estimates of monthly GDP growth (1960m1-
2019m12)

OECD S&P500 IPI Unemp. PMI
ADNSS+SS(IV) 0.84 0.26 0.76 -0.63 0.64
ADNSS+SS(IV+N) 0.84 0.26 0.76 -0.63 0.64
ADNSS+SS 0.84 0.26 0.76 -0.63 0.64
ADNSS+SS(N) 0.84 0.26 0.76 -0.63 0.64
ADNSS 0.84 0.26 0.77 -0.64 0.65
ANDSS(N) 0.84 0.26 0.77 -0.64 0.65
ADNSS+SS+ 0.84 0.25 0.77 -0.63 0.64

Employ. Stock Watson IHS Markit ADS Index BBK
ADNSS+SS(IV) 0.67 0.93 0.45 0.71 1.00
ADNSS+SS(IV+N) 0.67 0.93 0.45 0.71 1.00
ADNSS+SS 0.67 0.93 0.45 0.71 1.00
ADNSS+SS(N) 0.67 0.93 0.45 0.71 1.00
ADNSS 0.67 0.93 0.46 0.72 1.00
ADNSS(N) 0.67 0.93 0.46 0.72 1.00
ADNSS+SS+ 0.67 0.93 0.47 0.72 0.99

Notes: The models are summarized in Table 1. All monthly indicators except PMI are analyzed in quarterly (quarter-over-quarter)

annualized percent changes. PMI is analyzed in levels. Due to data availability, the correlations reported for Stock-Watson and

IHS Markit are over the shorter sample periods of 1960m1-2010m6 and 1992m4-2019m12, respectively.
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Table D5: Correlation by model of the posterior median of monthly GDPI growth with selected
business cycle indicators and alternative estimates of monthly GDP growth (1960m1-2019m12)

OECD S&P500 IPI Unemp. PMI
ADNSS+SS(IV) 0.77 0.26 0.79 -0.66 0.67
ADNSS+SS(IV+N) 0.77 0.26 0.79 -0.66 0.67
ADNSS+SS 0.77 0.26 0.79 -0.66 0.67
ADNSS+SS(N) 0.77 0.26 0.79 -0.66 0.67
ADNSS 0.77 0.27 0.79 -0.67 0.67
ANDSS(N) 0.77 0.27 0.79 -0.67 0.67
ADNSS+ SS+ 0.77 0.26 0.79 -0.66 0.67

Employ. Stock Watson IHS Markit ADS Index BBK
ADNSS+SS(IV) 0.68 0.92 0.50 0.76 0.84
ADNSS+SS(IV+N) 0.68 0.92 0.50 0.76 0.84
ADNSS+SS 0.68 0.92 0.50 0.76 0.84
ADNSS+SS(N) 0.68 0.92 0.50 0.76 0.84
ADNSS 0.68 0.92 0.51 0.76 0.84
ANDSS(N) 0.68 0.92 0.51 0.76 0.84
ADNSS+ SS+ 0.68 0.92 0.52 0.76 0.84

Notes: The models are summarized in Table 1. All monthly indicators except PMI are analyzed in quarterly (quarter-over-quarter)

annualized percent changes. PMI is analyzed in levels. Due to data availability, the correlations reported for Stock-Watson and

IHS Markit are over the shorter sample periods of 1960m1-2010m6 and 1992m4-2019m12, respectively.
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Table D6: Properties of monthly GDP estimates, by model, when aggregated to a quarterly
frequency

Mean Median σ̂ Skew ρ̂1 ρ̂2 ρ̂3 ρ̂4 Q4 corr.
GDP-
plus

ADNSS+SS(IV)
GDP 2.86 2.89 2.94 -0.38 0.47 0.31 0.22 0.11 100.95 0.93
GDPE 2.96 3.01 3.23 -0.26 0.33 0.28 0.11 0.11 58.08 0.78
GDPI 2.95 3.11 3.15 -0.36 0.46 0.30 0.24 0.11 99.43 0.96

ADNSS+SS(IV+N)
GDP 2.96 3.06 3.04 -0.37 0.46 0.31 0.21 0.11 98.10 0.92
GDPE 2.96 3.01 3.23 -0.26 0.33 0.28 0.11 0.11 58.10 0.78
GDPI 2.95 3.11 3.15 -0.36 0.46 0.30 0.24 0.11 99.48 0.96

ADNSS+SS
GDP 3.03 3.05 3.12 -0.37 0.47 0.31 0.22 0.11 101.12 0.93
GDPE 2.96 3.01 3.23 -0.26 0.33 0.28 0.11 0.11 58.09 0.78
GDPI 2.95 3.11 3.15 -0.36 0.46 0.30 0.24 0.11 99.48 0.96

ADNSS+SS(N)
GDP 2.96 3.01 3.04 -0.37 0.47 0.31 0.21 0.11 100.03 0.93
GDPE 2.96 3.01 3.23 -0.26 0.33 0.28 0.11 0.11 58.08 0.78
GDPI 2.95 3.11 3.15 -0.36 0.46 0.30 0.24 0.11 99.46 0.96

ADNSS
GDP 2.75 2.81 2.83 -0.38 0.47 0.31 0.22 0.11 102.61 0.94
GDPE 2.96 3.01 3.23 -0.26 0.33 0.28 0.11 0.11 58.55 0.78
GDPI 2.95 3.14 3.15 -0.36 0.46 0.30 0.24 0.11 99.92 0.96

ADNSS(N)
GDP 2.96 3.06 3.04 -0.37 0.46 0.31 0.21 0.11 98.76 0.92
GDPE 2.96 3.01 3.23 -0.26 0.33 0.28 0.11 0.11 58.53 0.78
GDPI 2.95 3.14 3.15 -0.36 0.46 0.30 0.24 0.11 99.94 0.96

ADNSS+SS+

GDP 3.08 3.22 3.18 -0.38 0.47 0.31 0.23 0.11 103.29 0.94
GDPE 2.96 3.01 3.23 -0.26 0.33 0.28 0.11 0.11 58.07 0.78
GDPI 2.95 3.11 3.15 -0.36 0.46 0.30 0.24 0.11 99.41 0.96

Notes: The models are summarized in Table 1. The sample period is 1960q1-2019q4. σ̂ is the sample standard deviation.

ρ̂1 − ρ̂4 are the sample autocorrelations at displacements of 1 to 4 quarters. Q4 is the Ljung-Box serial correlation test statistic

calculated using ρ̂1, . . . , ρ̂4. corr. is the correlation coefficient against GDPplus as maintained by the Federal Reserve Bank of

Philadelphia.
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