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S1. Proof of Theorem 1

Proof. Because T (x, ρ) = m − T1(x, ρ) − T2(x, ρ), we investigate the derivatives T1 and T2 with
respect to ρ. For T1,

T1(x, ρ) = ρx>Wx,

∂T1(x, ρ)

∂ρ
= x>Wx,

∂2T1(x, ρ)

∂ρ2
= 0.

To derive the derivatives for T2, we first introduce some notation to shorten the formulas. Let
A := F>(D − ρW )F , A1 := ∂A−1

∂ρ , and A2 := ∂2A−1

∂ρ2
. Following the calculus of matrix,

A1 = −A−1∂A
∂ρ
A−1 = −A−1∂F

>DF − ρF>WF

∂ρ
A−1 = A−1F>WFA−1,

A2 =
∂A1

∂ρ
=
∂A−1

∂ρ
F>WFA−1 +A−1F>WF

∂A−1

∂ρ
= 2A−1F>WFA−1F>WFA−1.

Using the new notation,

T2(x, ρ) = x>(D − ρW )FA−1F>(D − ρW )x

= x>DFA−1F>Dx︸ ︷︷ ︸
Term 1

−2 ρx>WFA−1F>Dx︸ ︷︷ ︸
Term 2

+ ρ2x>WFA−1F>Wx︸ ︷︷ ︸
Term 3

.

The first order derivative of the three terms with respect to ρ are

∂Term 1

∂ρ
= x>DF

∂A−1

∂ρ
F>Dx = x>DFA1F

>Dx

∂Term 2

∂ρ
= x>WFA−1F>Dx+ ρx>WF

∂A−1

∂ρ
F>Dx

= x>WFA−1F>Dx+ ρx>WFA1F
>Dx

∂Term 3

∂ρ
= 2ρx>WFA−1F>Wx+ ρ2x>WF

∂A−1

∂ρ
F>Wx

= 2ρx>WFA−1F>Wx+ ρ2x>WFA1F
>Wx.
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To combine the three derivatives,

∂T2(x, ρ)

∂ρ
= x>(D − ρW )FA1F

>(D − ρW )x− 2x>WFA−1F>(D − ρW )x

The derivative of T (x, ρ) is,

∂T (x, ρ)

∂ρ
= −x>Wx− x>(D − ρW )FA1F

>(D − ρW )x+ 2x>WFA−1F>(D − ρW )x

= −x>W
[
In − FA−1F>(D − ρW )

]
x

− x>
[
(D − ρW )FA−1F> − In

]
WFA−1F>(D − ρW )x

= −x>
[
In − FA−1F>(D − ρW )

]>
W
[
In − FA−1F>(D − ρW )

]
x.

It is interesting to notice that s :=
[
In − FA−1F>(D − ρW )

]
x can be considered as the residuals

of regression model x = Fβ+v, where v is the vector with mean equal to 0 and covariance matrix
D − ρW . By the definition of the adjacency matrix,

∂T (x, ρ)

∂ρ
= −

∑
wi,j=1

sisj .

Thus, the sign of ∂T (x, ρ)/∂ρ is uncertain and is possible to be either positive or negative.
Next, we compute the second order derivative of T2(x, ρ) with respect to ρ.

∂2Term 1

∂ρ2
= x>DF

∂A1

∂ρ
F>Dx = x>DFA2F

>Dx,

∂2Term 2

∂ρ2
= x>WF

∂A−1

∂ρ
F>Dx+ x>WFA1F

>Dx+ ρx>WF
∂A1

∂ρ
F>Dx

= 2x>WFA1F
>Dx+ ρx>WFA2F

>Dx,

∂2Term 3

∂ρ2
= 2x>WFA−1F>Wx+ 2ρx>WF

∂A−1

∂ρ
F>Wx+ 2ρx>WFA1F

>Wx

+ ρ2x>WF
∂A1

∂ρ
F>Wx

= 2x>WFA−1F>Wx+ 4ρx>WFA1F
>Wx+ ρ2x>WFA2F

>Wx.

Let C := FA−1F>WF . Then

∂2T2(x, ρ)

∂ρ2
= 2x>(D − ρW )CA−1C>(D − ρW )x− 4x>WFA−1C>(D − ρW )x

+ 2x>WFA−1F>Wx

= 2x> [(D − ρW )C −WF ]A−1
[
C>(D − ρW )− F>W

]
x.

For any ρ ∈ (0, 1), it is apparent that D− ρW is the Laplacian matrix of the weighted undirected
graph with the constant weight ρ for each edge, and it is also clear that D − ρW is a positive
definite matrix. We assume F is a full rank matrix so that the regression model is valid. So A and

A−1 are both positive definite. Thus, ∂2T2(x,ρ)
∂ρ2

≥ 0 and ∂2T (x,ρ)
∂ρ2

≤ 0 for any ρ ∈ (0, 1). The design

criterion T (x, ρ), which is to be maximized, is concave.
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S2. The Gap between E[T (x, ρ)] and T (x, ρ0)

We randomly generate a network of size n = 50. For each pair of nodes, an edge will connect the
two with a probability of 1/4 and the existence of the edge is independent of any other random
variables. The covariate zi is generated from a one-dimensional normal distribution N(0, 102) and
zi’s are independent of each other and the network structure. The prior distribution of ρ is uniform
distribution in [0, 1] and ρ0 = E(ρ) = 1/2. We randomly generate 400 completely randomized
designs xl for l = 1, . . . , 400 and calculate T (xl, ρ0), whose histogram is plotted in the left panel
of Figure S1. For any given design xl, we randomly samples ρi for i = 1, . . . , 200 and calculate
T (xl, ρi). The mean E[T (xl, ρ)] is approximated by the sample mean of T (xl, ρi)’s. The histogram
of the gap T (xl, ρ0)− E[T (xl, ρ)] for all the random designs is plotted in the right panel of Figure
S1. Based on the two histograms, the gap T (x, ρ0) − E[T (x, ρ)] is relatively small compared to
the range of T (x, ρ0). Thus, it is reasonable to use the surrogate local design criterion T (xl, ρ0) to
replace E[T (x, ρ)] for this simple example.

Figure S1: Histogram of T (x, ρ0) and the gap T (x, ρ0)− E[T (x, ρ)]

In more general case, Proposition S1 provides the analytic gap between T (x, ρ0) and E[T (x, ρ)].
Its proof is provided in the Supplement. Proposition S1 also provides two different upper bounds
of the gap. Which one of the two upper bounds is larger depends on the adjacency matrix W and
ρ0. Regrettably, since both the upper bounds are independent of the design x, they are too large to
have any practical guidance, even though they might still be attainable for certain extreme design
x. For the above simulation example, since the skewness of uniform distribution is 0, the two upper
bounds of (4) and (5) are calculated as 902.4 and 650.1, respectively. They are much larger than
the range shown in the histogram in Figure S1. On the other hand, the two upper bounds increase
as the size and density of the network become larger. Therefore, for large and dense networks we
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should be more careful applying the locally optimal design.

Proposition S1. The difference between T (x, ρ0) and E(T (x, ρ)) is

T (x, ρ0)− E(T (x, ρ)) =
1

2

∂2T2(x, ρ)

∂ρ2

∣∣∣∣
ρ=ρ0

var(ρ)− E(O(ρ− ρ0)3), (1)

where

1

2

∂2T2(x, ρ)

∂ρ2

∣∣∣∣
ρ=ρ0

= s>WF
[
F>(D − ρ0W )F

]−1
F>Ws, (2)

and s :=
[
In − F (F>(D − ρ0W )F )−1F>(D − ρ0W )

]
x. (3)

An upper bound of the gap T (x, ρ0)− E(T (x, ρ)) is

T (x, ρ0)− E(T (x, ρ)) ≤ min {nλmax(D − ρ0W ), (1 + ρ0)m}
|λ(W )|2maxvar(ρ)

λ2min(D − ρ0W )
− E

[
O(ρ− ρ0)3

]
,

(4)
where λmin(D − ρ0W ) and λmax(D − ρ0W ) are the minimum and maximum eigenvalues of the
Laplacian matrix D − ρ0W , which is positive definite for ρ0 ∈ (0, 1), |λ(W )|max is the spectrum
radius of W , and m =

∑n
i=1mi. Based on Theorem 2, an alternative upper bound (5) holds

asymptotically with probability of 100(1− α)% and α ∈ (0, 1),

T (x, ρ0)− E(T (x, ρ)) ≤ (m+ zα
√
m)
|λ(W )|2maxvar(ρ)

λ2min(D − ρ0W )
− E

[
O(ρ− ρ0)3

]
, (5)

where zα = Φ−1(α) is the upper α quantile of the standard normal distribution.

Lemma S1. Let A be an n × n real symmetric positive definite matrix. For any vector x ∈ Rn,
λmin(A)||x||22 ≤ x>Ax ≤ λmax(A)||x||22. The equality holds if x = 0 or A = aIn for a ≥ 0.

Proof. Because A is a real symmetric positive definite matrix, via eigendecomposition, A =
QΛQ−1, where Λ = diag{λ1, . . . , λn} is a diagonal matrix of the eigenvalues of A, Q is the
square n × n matrix whose ith column is the eigenvector corresponding to eigenvalue λi. Also,
Q> = Q−1. Denote l := Q>x.

x>Ax = x>QΛQ>x = l>Λl =
n∑
i=1

λil
2
i ,

λmin(A)||l||22 = λmin(A)
n∑
i=1

l2i ≤
n∑
i=1

λil
2
i ≤ λmax(A)

n∑
i=1

l2i = λmax(A)||l||22.

Here λmax(A) and λmin(A) are the maximum and minimum eigenvalues of A, and since A is
positive definite, λmin(A) > 0. The norm || · ||2 is the l2-norm of a vector, and ||l||22 = l>l =
x>QQ>x = ||x||22. Thus the lemma is proved.

Lemma S2. Let A be an n × n real symmetric matrix. For any vector x ∈ Rn, |x>Ax| ≤
|λ(A)|max||x||22.
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Proof. For any real symmetric matrix, based on eigenvalue decomposition, A = QΛQ>, where
Λ = diag{λ1, . . . , λn} is a diagonal matrix of the eigenvalues of A, and Q is the n× n orthogonal
matrix as above. Denote l := Q>x.

|x>Ax| = |x>QΛQ>x| = |l>Λl| = |
n∑
i=1

λil
2
i | ≤

n∑
i=1

|λi|l2i ≤ |λ(A)|max||l||22 = |λ(A)|max||x||22.

Here |λ(A)|max = maxi=1,...,n |λ|i.

Proof of Proposition S1

Proof. Using Taylor expansion, we have

T (x, ρ) = T (x, ρ0) +
∂T (x, ρ)

∂ρ

∣∣∣∣
ρ=ρ0

(ρ− ρ0) +
1

2

∂2T (x, ρ)

∂ρ2

∣∣∣∣
ρ=ρ0

(ρ− ρ0)2 +O((ρ− ρ0)3).

Apply expectation on both side of the equaiton with respet the priori p(ρ), we have

E [T (x, ρ)] = T (x, ρ0) +
∂T (x, ρ)

∂ρ

∣∣∣∣
ρ=ρ0

E [ρ− ρ0] +
1

2

∂2T (x, ρ)

∂ρ2

∣∣∣∣
ρ=ρ0

E
[
(ρ− ρ0)2

]
+ E

[
O((ρ− ρ0)3)

]
= T (x, ρ0) +

1

2

∂2T (x, ρ)

∂ρ2

∣∣∣∣
ρ=ρ0

var(ρ) + E
[
O((ρ− ρ0)3)

]
.

From the proof of Theorem 1, we have that

∂2T (x, ρ)

∂ρ2
= −∂

2T2(x, ρ)

∂ρ2
.

Thus we obtain the gap between T (x, ρ0) and E [T (x, ρ)] in (1). Also in proof of Theorem 1,

1

2

∂2T2(x, ρ)

∂ρ2

∣∣∣∣
ρ=ρ0

= s>WFA−1F>Ws,

where

A = F>(D − ρ0W )F ,

s =
[
In − FA−1F>(D − ρ0W )

]
x.

From the definition of s, we can see that

s>(D − ρ0W )s = x>
[
(D − ρ0W )− (D − ρ0W )FA−1F>(D − ρ0W )

]
x

≤ x>(D − ρ0W )x.

From Lemma S1, since D − ρ0W is a real symmetric positive definite matrix as ρ0 ∈ (0, 1),

λmin(D − ρ0W )||s||22 ≤ λmax(D − ρ0W )||x||22 = λmax(D − ρ0W )n.

On the other hand, x>(D − ρ0W )x ≤ (1 + ρ0)m. Thus,

||s||22 ≤
1

λmin(D − ρ0W )
min{nλmax(D − ρ0W ), (1 + ρ0)m}.
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According to Theorem 2, x>Wx/
√
m converges in distribution to the standard normal distribution.

Therefore, with probability of 100(1 − α)%, x>Wx ≥ −zα
√
m, asymptotically. Here zα is the

upper α quantile of the standard normal distribution, i.e., zα = Φ−1(1− α). So we can obtain an
asymptotic upper bound,

s>(D − ρ0W )s ≤ x>(D − ρ0W )x = x>Dx− ρ0x>Wx = m− ρ0x>Wx ≤ m+ zα
√
m,

which holds with probability of 100(1 − α)%. Consequently, an asymptotic upper bound for ||s||22
is

||s||22 ≤
1

λmin(D − ρ0W )
(m+ zα

√
m)

with probability of 100(1− α)%.
It is easy to see that the matrix

In − (D − ρ0W )1/2FA−1F>(D − ρ0W )1/2

is a projection matrix, and thus

s>WFA−1F>Ws

=s>W (D − ρ0W )−1/2(D − ρ0W )1/2FA−1F>(D − ρ0W )−1/2(D − ρ0W )1/2Ws

≤s>W (D − ρ0W )−1Ws ≤ λ−1min(D − ρ0W )||Ws||22
≤λ−1min(D − ρ0W )||W ||22||s||22 = λ−1min(D − ρ0W )|λ(W )|2max||s||22

The first inequality is due to Lemma S2. Here |λ(W )|max = ||W ||2 is the spetrum radius of W .
Combining the previous steps we obtain the upper bound of the gap in (4).

S3. Proposition S2 and Its Proof

Proposition S2. Let x1, . . . , xn of x are independent and identically distributed random variables
from the discrete distribution with Pr(xi = 1) = Pr(xi = −1) = 0.5. For any two symmetric and
non-zero n× n matrices A and B, we have that

corx(x>Ax,x>Bx) =

∑
i<j aijbij√∑

i<j a
2
ij

√∑
i<j b

2
ij

, (6)

where aij and bij are the (i, j)-th entries of matrices A and B respectively.

Consider two n×n symmetric matrices A and B. For random designs, we have that E(xi) = 0,
var(xi) = 1, and cov(xi, xj) = 0 for i 6= j. Therefore, cov(x) = In and

cov(x>Ax,x>Bx) = E(x>Axx>Bx)− E(x>Ax)E(x>Bx)

= E
(
x>Axx>Bx

)
− tr(A)tr(B)

Note that
x>Axx>Bx = (x>Ax)⊗ (x>Bx) = (x> ⊗ x>)(A⊗B)(x⊗ x).

Then

x>Axx>Bx = tr(x>Axx>Bx) = tr((x> ⊗ x>)(A⊗B)(x⊗ x))

= tr((A⊗B)(x⊗ x)(x> ⊗ x>)),
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and thus

E(x>Axx>Bx) = E(tr(x>Axx>Bx)) = tr((A⊗B)E((x⊗ x)(x> ⊗ x>)))

We need to derive E((x ⊗ x)(x> ⊗ x>)). Note that (x ⊗ x)(x> ⊗ x>) = (xx>) ⊗ (xx>) is an
n × n block matrix, and the i, j-th block is xixjxx

>. The diagonal blocks are E(x2ixx
>) = In

(E(x4i ) = 1). If i 6= j, E(xixjxx
>) = eie

>
j + eje

>
i , where ei is the element vector with i-th entry

equal to 1 others 0 and eie
>
j + eje

>
i is a matrix with (i, j)th and (j, i)th entries equal to 1 and

the rest entries 0. Therefore, the resulting n × n block matrix should have diagonal blocks be an
n × n identity matrix, and the (i, j)-th off-diagonal block be eie

>
j + eje

>
i . So we can decompose

the block matrix to be

E((x⊗ x)(x> ⊗ x>)) = In ⊗ In +
∑
i 6=j

(eie
>
j )⊗ (eie

>
j + eje

>
i )

=In ⊗ In +
∑
i 6=j

(eie
>
j )⊗ (eie

>
j ) +

∑
i 6=j

(eie
>
j )⊗ (eje

>
i )

Then

tr
[
(A⊗B)E[(x⊗ x)(x> ⊗ x>)]

]
=tr [(A⊗B)(In ⊗ In)] + tr

∑
i 6=j

(A⊗B)[(eie
>
j )⊗ (eie

>
j )]

+ tr

∑
i 6=j

(A⊗B)[(eie
>
j )⊗ (eje

>
i )]


=tr [A⊗B] +

∑
i 6=j

tr
[
(A⊗B)[(eie

>
j )⊗ (eie

>
j )]
]

+
∑
i 6=j

tr
[
(A⊗B)[(eie

>
j )⊗ (eje

>
i )]
]

=tr(A)tr(B) +
∑
i 6=j

tr
[
(Aeie

>
j )⊗ (Beie

>
j )
]

+
∑
i 6=j

tr
[
(Aeie

>
j )⊗ (Beje

>
i )
]

=tr(A)tr(B) + 2
∑
i 6=j

tr
[
(Aeie

>
j )
]

tr
[
(Beie

>
j )
]

=tr(A)tr(B) + 4
∑
i<j

AijBij ,

where Aij is the ij-th entry of matrix A. Then

cov(x>Ax,x>Bx) = 4
∑
i<j

AijBij

Accordingly,

cor(x>Ax,x>Bx) =

∑
i<jAijBij√∑

i<jA
2
ij

√∑
i<jB

2
ij

S4. Proof of Theorem 2

We first provide a useful Lemma.

Lemma S3. Let X and Y be two random variables taking values from {−1, 1}. If cov(X,Y ) = 0,
then X and Y are independent.
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Proof. Let U and V be two Bernoulli random variables. We first show that if cov(U, V ) = 0, then
U and V are independent.

Notice that
Pr({U = 1}and{V = 1}) = Pr(UV = 1) = E(UV )

E(U) = Pr(U = 1)

and
E(V ) = Pr(V = 1).

If cov(U, V ) = 0,

Pr({U = 1}and{V = 1})− Pr(U = 1) Pr(V = 1) = E(UV )− E(U)E(V ) = 0.

Similarly, we can show that

Pr({U = 0}and{V = 1})− Pr(U = 0) Pr(V = 1) = 0,

Pr({U = 0}and{V = 0})− Pr(U = 0) Pr(V = 0) = 0,

and
Pr({U = 1}and{V = 0})− Pr(U = 1) Pr(V = 0) = 0,

which demonstrate that U and V are independent.
For X and Y , we have that X = 2U − 1 and Y = 2V − 1. The independence of U and V

indicates the independence of X and Y . Also,

cov(X,Y ) = 4cov(U, V ).

Thus, the conclusion holds.

Proof. Recall that wii = 0 for i = 1, . . . , n. Therefore, we only need to consider the terms wijxixj
with i 6= j. Notice that

cov(xixj , xi′xj′) = E(xixjxi′xj′)− E(xixj)E(xi′xj′) = 0

for i 6= i′ and j 6= j′. Also,

cov(xixj , xixj′) = E(x2ixjxj′)− E(xixj)E(xixj′) = 0

for j 6= j′. According to Lemma S3, we have that xixj and xixj′ are independent, and xixj and
xi′xj′ are independent. Thus, wijxixj ’s with wij 6= 0 are i.i.d random variables with mean

E(wijxixj) = E(xi)E(xj) = 0,

and variance
var(wijxixj) = E(x2ix

2
j )− (E(xixj))

2 = 1.

According to the central limit theorem, the conclusion holds.
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S5. Proof of Proposition 1

Proof. Notice that

E
(
x>Kx

)
= tr

[
E
(
x>Kx

)]
= E

[
tr(x>Kx)

]
= E

[
tr(Kxx>)

]
= tr

[
KE(xx>)

]
.

For completely random design, under the same assumption as in Theorem 2, we have that

E(xixj) = E(xi)E(xj) = 0 for i 6= j

and E(x2i ) = 1 for i = 1, . . . , n. Thus, E(xx>) = In.
Now we consider the case where x is a random balanced design. If n is even, we have that

E

xi n∑
j=1

xj

 = 0

since the balanced constraint gives
∑n

j=1 xj = 0 directly. If n is odd, n = 2h + 1 with h be a
positive integer. Due to the balance constraint,

∑n
i=1 xi = 1 or −1. We have that

E

xi n∑
j=1

xj

 = Pr

(
n∑
i=1

xi = 1

)
E

xi n∑
j=1

xj

∣∣∣∣ n∑
i=1

xi = 1

+ Pr

(
n∑
i=1

xi = −1

)
E

xi n∑
j=1

xj

∣∣∣∣ n∑
i=1

xi = −1


=

1

2
E

xi∣∣∣∣ n∑
j=1

xj = 1

− 1

2
E

xi∣∣∣∣ n∑
j=1

xj = −1

 .

Note that

E

(
xi

∣∣∣∣ n∑
i=1

xi = 1

)
= Pr

(
xi = 1

∣∣∣∣ n∑
i=1

xi = 1

)
− Pr

(
xi = −1

∣∣∣∣ n∑
i=1

xi = 1

)
=

h+ 1

2h+ 1
− h

2h+ 1
=

1

n
,

E

xi∣∣∣∣ n∑
j=1

xj = −1

 = Pr

xi = 1

∣∣∣∣ n∑
j=1

xj = −1

− Pr

xi = −1

∣∣∣∣ n∑
j=1

xj = −1

 =
h

2h+ 1
− h+ 1

2h+ 1
= − 1

n
.

Thus, E
(
xi
∑n

j=1 xj

)
= 1/n.

Therefore,

E

x1 n∑
j=1

xj

 = 1 + (n− 1)E(x1x2)

which gives that

E(x1x2) =

{
− 1
n−1 if n is even

− 1
n if if n is odd

.

This conclusion holds for E(xixj) with any i 6= j.
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