
Appendix

Phonotactic probability

Vitevitch and Luce (2004) define phonotactic probability positionally, giving

options for both uniphone- and diphone-based measures. The lexical frequency

information comes from Kučera and Francis (1967), while drawing the phonetic

transcriptions and words from an online version of the Merriam-Webster Pocket

Dictionary. For the uniphone positional measure, and for each particular phone

and position pairing possible in the lexicon, the sum of the logged frequency

counts of all the words containing that pairing was divided by the sum of the

logged frequency counts of all words with that position available for a phone.

Formally, this is given in Equation 1:

p(s, i) =

∑
σ∈Si

log10 fσ∑
ω∈Wi

log10 fω
, (1)

where p(s, i) is the probability of segment s at position i, Si is the set of all words

containing s at position i and Wi is the set of all words containing any segment

at position i (that is, all words that have at least i segments). For a given item,

then, its phonotactic probability is taken as the sum of this calculation for each

of its segments, accounting for their positions. The function for calculating the

phonotactic probability of a word, pp(w) is given formally in Equation 2:

pp(w) =
∑

(s,i)∈w

p(s, i) , (2)

where (s, i) is a pair containing a segment s of word w and the position i where

s occurs in w. The diphone version was calculated analogously, only they used

diphones instead of single phones.
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Vitevitch and Luce (2004) claimed that the use of the log function helps the

measure better represent human sensitivity to log frequency effects. However,

some characteristics of this definition of phonotactic probability are undesirable.

Principally, taking the log transform of count data before performing the division

operation, as in Equation 1, makes it more difficult to interpret the output in

a well-defined manner. This is perhaps easier to see when expressed in an

equivalent manner, as in Equation 3, which is clearly not recognisable as a

traditional probability value. It may well be that the result is a good predictor

of participant behaviour, but it can’t reasonably be conceived of as a probability

value to represent phonotactic probability.

p(s, i) = log10


(∏

σ∈Si

fσ

) 1∏
ω∈Wi

fω

 (3)

There are other methods that can be used to account for the concern that

logged values better reflect human perception. One example is to calculate the

probability based on count data first and then log that probability value. This

is what is known as “log probability”, and it can be easily mapped back to a

standard probability value between 0 and 1. It is also more transparent in terms

of what it represents about the count data.

An additional concern is that words that have a frequency count of 1 will

not come to affect the probability values for any sequence because log(1) = 0.

Vitevitch and Luce (2004) also do not state how they account for items with a

frequency of 0, for which the log function is undefined. Finally, while 0 is the

lower bound for their method of calculating phonotactic probability for a word,

there is no theoretical upper bound. As such, a word or pseudoword could be

assigned a phonotactic probability value greater than 1, violating the definition

of classical probability. Consider counting the beginning of a word as a phone as

a simple example demonstrating this property. For example, the word cat would

be represented as /#kæt/ with the “#” representing the beginning or onset of

a word. All words would have such a beginning symbol, so the numerator and

denominator in the fraction defining phonotactic probability are equal when

considering /#/ in the first position, thus its calculated value of occurring at

the first position is 1. Having even one phone following the /#/ with a non-zero

value will yield an overall value greater than 1. Whether in practice such values
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are often observed remains to be seen. But, it is nevertheless difficult to argue

that these values can be interpreted as a proper probability if it is even possible

for values greater than 1 to be obtained.

Bailey and Hahn (2001) used a similar approach to Vitevitch and Luce (2004)

without the log functions to calculate transitional probabilities for diphones and

triphones, though the source of the frequency counts for this metric does not

seem to be mentioned in their paper. For the composite word scores, they

took the geometric mean of the conditional probability scores of the segments

that make up the word to calculate the score for the word. By calculating

the geometric mean instead of the arithmetic mean, a true probability value is

initially calculated, but it becomes less clear what the value is once it is raised

to the power of 1
n to finish calculating the geometric mean. Janse and Newman

(2013) used a similar method involving a mean, though CELEX (Baayen et al.,

1995) was used for frequency counts. This manner of calculating phonotactic

probability will converge toward a value for the word or item in question, though

it is unclear what this value would be or represent. Adding subsequent segments

would not necessarily drive the probability of the sequence down, which does not

match the intuition that a word or pseudoword consisting of, say, 500 segments

is improbable.

For the purposes of this study, we operationalised phonotactic probability

as the probability that a particular sequence of diphones would co-occur, based

on the relative frequency counts of each diphone in the language. We made this

decision based on the results from Bailey and Hahn (2001), in that diphones

seemed the least complex unit to achieve the greatest predictive power. They

also stated that diphone treatments of phonotactic probability are the most

common. As well, Pierrehumbert (2003) claimed that triphones are difficult to

learn in comparison to diphones, so diphones seem the best choice for predictive

power and closeness to speaker knowledge. The idea of using a co-occurrence

probability, which is calculated with a product like Coleman and Pierrehumbert

(1997) do, is not new. Yet, because previous and popular methods of calculating

and defining phonotactic probability have not done this, we believe it worth

being explicit about this choice.

We used the same augmented CMU Pronouncing Dictionary version 0.6

(Weide, 2005) used by Tucker et al. (2019), as well as COCA in our calculations.

We began by finding the overall frequency-based probability of occurrence for

each diphone found in the CMU Pronouncing dictionary. The frequency of each

diphone was calculated by taking each occurrence of it in the CMU Pronouncing
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Dictionary, multiplying it by the frequency of the word in COCA, and adding

the resulting product to the tally of occurrences of the diphone in question.

This results in a token frequency instead of a type frequency. Richtsmeier

(2011) suggested using type frequencies instead, but they correlated at a value

of approximately 0.99, so we don’t believe there would be much of a difference.

Word onset and word offset were considered phones, such that cat, for example,

would be processed as onset+k, kæ, æt, t+offset. Words that did not occur in

both datasets were dropped. The probability of occurrence of each diphone was

calculated as the diphone’s frequency divided by the total count of all diphones

observed. This process is given formally in Equation 4

p(s) =

∑
σ∈S

fσ

F
, (4)

where S is the set of all words containing the diphone s, fσ is the frequency of a

word σ containing diphone s, and F is the number of diphones in a word times

the word’s frequency, summed over all words occurring in both the CMU Pro-

nouncing Dictionary and COCA. Effectively, F is the total number of diphones

observed in the subset of COCA words that have pronunciations in the CMU

Pronouncing Dictionary.

We then took the phonotactic probability of a pseudoword to be the product

of the probabilities of occurrence of each diphone in the pseudoword, which is

what Vitevitch and Luce (2004) and Bailey and Hahn (2001) refer to as the co-

occurrence probability. Formally, our function for calculating the phonotactic

probability of a word pp(w) is given in Equation 5:

pp(w) =
∏
s∈w

p(s) . (5)

Note that defining phonotactic probability as a product instead of a mean

or summation of pseudo-probabilities has a few important properties. The first

among them is that it concentrates the information revealed about the phono-

tactic probability of a sequence at the beginning. While multiplication is often

commutative and associative, there is a natural given order in which to carry

out the operations here, that being the order in which the diphones occur in

the pseudoword. And, the rate at which the probability converges toward 0

will slow down as later and later terms are encountered. Analogously, the first

few segments in a word or pseudoword are likely where the most discrimina-

tive information would be contained. This is due to the fact that the number
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of good possible matches for what’s being heard decreases quickly at the start

of the sequence and slowly at the end of the sequence, with the largest de-

creases happening upon hearing the first few phones. Second, the probability

converges asymptotically toward 0 for sufficiently long sequences of segments,

matching the linguistic intuition that a sequence of, for example, 500 phones is

an improbable occurrence for a word in a language. The implementation of this

method of calculating phonotactic probability used in this study is available in

the Phonetics.jl package (Kelley, 2020) for the Julia programming language

(Bezanson et al., 2017).
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Kučera, H. and Francis, W. N. (1967). Computational analysis of present-day

American English. Dartmouth Publishing Group.

Pierrehumbert, J. (2003). Probabilistic phonology: Discrimination and robust-

ness. In Bod, R., Hay, J., and Jannedy, S., editors, Probabilistic Linguistics,

pages 177–228. MIT Press.

Richtsmeier, P. T. (2011). Word-types, not word-tokens, facilitate extraction of

phonotactic sequences by adults. Laboratory Phonology, 2(1):157–183. Pub-

lisher: De Gruyter Mouton Section: Laboratory Phonology.

5



Tucker, B. V., Brenner, D., Danielson, D. K., Kelley, M. C., Nenadić, F., and
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