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A Proof of Properties and Theory

Proof of Property 1

We have Vc =
Xc°µXc
æXc
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Ωcc decreases and vice versa.
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When Wc > 0,Vc < 0 or Vc > 0,Wc < 0, the segment intersects the horizontal axis. A segment will ei-

ther intersect the horizontal axis or not with the probability of intersecting P (Wc > 0,Vc < 0)+P (Vc >

0,Wc < 0), which is a Bernoulli distribution. Hence the number of segments that intersect the hori-

zontal axis follows Binomial distribution with P (Wc > 0,Vc < 0)+P (Vc > 0,Wc < 0).

Let Z1, Z2 be two independent standard normal random variables.

By Cholesky Decomposition, let X1 = Z1, X2 = ΩZ1 +
p

1°Ω2Z2,

then
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So,

P (X1 > 0, X2 < 0)+P (X1 < 0, X2 > 0) = 1
2
° 1
º

si n°1(Ω)

= 1
2
° 1
º

(
º

2
° cos°1(Ω))

= cos°1(Ω)/º

Hence we have E(Zc ) = n § (P (Vc < 0,Wc > 0)+P (Vc > 0,Wc < 0)) = n § cos°1Ωcc
º .

Proof related to Folded Normal Distribution

We know that Vc ,Wc ,Vr and Wr follow standard normal distribution independently.

Hence E(Vc °Wc ) = E(Vc )°E(Wc ) = 0 and V ar (Vc °Wc ) =V ar (Vc )+V ar (Wc ) = 2.

And since Vc °Wc is a linear combination of two independent normal distribution,

Vc °Wc ª N (0,2).

Similarly, we have Vc °Wr +Vr °Wc ª N (0,4) and Vc °Wr °Vr +Wc ª N (0,4).

So Vc °Wc , Vc °Wr +Vr °Wc and Vc °Wr °Vr +Wc all follow folded normal distribution.

Let X be a random variable follow normal distribution with mean µ and varianceæ2. Then Y = |X |

follow folded normal distribution.

Let Z be a standard normal distribution, then Y = |µ+æZ |.
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So

E(Y ) = E(|µ+æZ |)
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B Blood Pressure Data

Pulse Rate Systolic Pressure

1 [44,68] [90,100]

2 [60,72] [90,130]

3 [56,90] [140,180]

4 [70,112] [110,142]

5 [54,72] [90,100]

6 [70,100] [130,160]

7 [72,100] [130,160]

8 [76,98] [110,190]

9 [86,96] [138,180]

10 [86,100] [110,150]

11 [63,75] [60,100]

Table B.1: Blood pressure data of 11 patients. Here each column is in interval format. (Bil-

lard and Diday, 2000)
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C Comparison of Rectangle Plots (when range correlation varies

from -1 to 1)
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Figure C.1: Rectangle plot for 9 different range correlations change from -1 to 1 with the

exact same center correlation Ωcc = 0.8.
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D Comparison of Cross Plots (when range correlation varies from

-1 to 1)
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Figure D.1: Cross plots for the case where center correlations remain as 0.8 and range cor-

relations change from -1 to 1
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E Comparison of Segment Plots (when range correlation varies from

-1 to 1)
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Figure E.1: Segment plots for 9 different range correlations change from -1 to 1 with the

exact same center correlation Ωcc = 0.8. The solid circle points correspond to the variable

X ; and the hollow triangle points correspond to the variable Y .
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F Comparison of Guided Dandelion Plots with guiding polygon (when

range correlation varies from -1 to 1)
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Figure F.1: Guided dandelion plot for 9 different range correlations change from -1 to 1

with the exact same center correlation Ωcc = 0.8. The solid circle points correspond to the

variable X ; and the hollow triangle points correspond to the variable Y .
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G Comparison of the rectangle plots (when center correlation is -1

and range correlation varies as -1,-0.9,-0.5,0.5,0.9,1)
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Figure G.1: Rectangle plots with Ωcc =°1 and Ωr r =°1,°0.9,°0.5,0.5,0.9,1
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H Comparison of the segment plots (when center correlation is -1

and range correlation varies as -1,-0.9,-0.5,0.5,0.9,1)
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Figure H.1: Segment plots with Ωcc = °1 and Ωr r = °1,°0.9,°0.5,0.5,0.9,1. The solid cir-

cle points correspond to the variable X ; and the hollow triangle points correspond to the

variable Y .
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I Comparison of the guided dandelion plots (when center correla-

tion is -1 and range correlation varies as -1,-0.9,-0.5,0.5,0.9,1)
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Figure I.1: Guided Dandelion plots with Ωcc = °1 and Ωr r = °1,°0.9,°0.5,0.5,0.9,1. The

solid circle points correspond to the variable X ; and the hollow triangle points correspond

to the variable Y .
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J Outlier Example

Here we provide two examples for outlier detection. Figure J.1 displays a rectangle plot, a segment

plot and a dandelion plot for a dataset with one extreme value in Xr . In the segment plot, there is a

solid circle point that has a longer projection on the vertical axis. This implies that there is an outlier

in Xr . Meanwhile, it is difficult to detect the extreme value in the rectangle plot.

In the second example, we consider the case where a highly positive linear relationship exists

between Xr and Yr and one pair of intervals departs from the relationship. Figure J.2 displays the

rectangle plot, segment plot and dandelion plot. From Figure J.2, the rectangle plot cannot clearly

detect such pair of intervals. In the segment plot, because the values of the intervals are not extreme,

no obvious outliers can be detected. In the dandelion plot, one point has extremely long length of

projection on the vertical axis. This point represents the outlier as circled in the plot.
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Figure J.1: Scenario where there is an extreme value in Xr . The circled point in the segment

plot and dandelion plot indicates the outlier.
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Figure J.2: From the left to the right are the rectangle plot, segment plot and dandelion plot

respectively. This is corresponding to the example where Xr and Yr has 0.8 correlation and

there is one pair of intervals departing from the relationship.
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