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A Proof of Properties and Theory

Proof of Property 1
We have V, = C(T;X” and W, = YCU;LY”.
Xe—pix,) (YVe—piy,
Thus pee = cor (X, Ye) = B[220 = BV, W),

E[(V.-W.)? = E(V2+ W2 -2V,W,) = E(V?) + EWW?) = 2E(V;W,) =2 - 2E(V,W,) =2 —2pc.
Thus, the length of the projection on the horizontal axis |V, — W, | increases as the center correlation

pcc decreases and vice versa.

Proof of Theorem 1
2

. o pCCUXcUYc
Since (X, Y)T ~ N(u, %), where p = (ux,, py,) ', = = Xe
2
PccOx, 0Oy, Oy,
1 | Fe T BXe
=5 (Xe—MxpYe— MY )Z
yC - l’l'Yc

ch,Yc(xC)yC) Zﬂ\/lf
Let V, = Xty = Yeol¥e then X, = px. + 0x, Ve, Ye = py, + 0y, We.

X, gy,
Ox.V
~Loxveovwozt| 7F ¢
_ 1 Oy We
fVc,WC(Vc, we) = 27:—\/@6 ¢ |J]
0x
Here |]J| = | ¢ |=0x.0Yv,
0 Oy,
Ox 0 Ox 0 v
_%(Vmwc) ¢ >-1 ¢ ¢
0 o 0 o w
_ 1 Y, Y, c
SO fVc,WC(vC! w(,‘) - Zﬂ\/EO-XCO-YCe ¢ ¢
v
LwewaEh |
_ We
= IZ’IO-XCUYCe
(7= o - 0 o |ox. 0l [ox. O
where X/ = | 9% > e ,(Eh~t= b and |2'| = —=|2|
0 5 0 - 0 oy, 0 oy, Tx:TVe
0y s/ 1 pec
Hence (Vo, W) ~ N | (), 2’ =
Pec 1
0y s 1 pec
We have shown that (V;, W) ~ N | (), 2’ =
Pec 1
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When W, >0,V, <0or V, >0,W, <0, the segment intersects the horizontal axis. A segment will ei-
ther intersect the horizontal axis or not with the probability of intersecting P(W, >0, V., <0) + P(V, >
0, W, < 0), which is a Bernoulli distribution. Hence the number of segments that intersect the hori-
zontal axis follows Binomial distribution with P(W, >0,V <0) + P(V, >0, W, <0).

Let Z1, Z» be two independent standard normal random variables.
By Cholesky Decomposition, let X; = Z;, Xo = pZy ++/1— p2 2,

1
then (3!) ~ N((g), £), where X = P 1 We know that P(X; > 0, X, < 0) = P(X; <0, X > 0).
p 1

P(Xl > O,Xg <0) = P(Zl > O,Zz < \/_—p_zzl)
1-p
[o.@] 7p11 Z2 Z2
= Vi L e L e % dzd
= 20 2]
](; j;m Van Van
-pz)

o0
:f fmie_%(z%”%)dzldzz
0 —00 2m

Let Z; = rcos(0) and Z, = rsin6. Then ZZ + ZZ = r* and % = tano.

By switching to the polar system, we have the following.

P(X;>0,X,<0)=P(Z >0, % < —P—

Letp € [~-m/2,7m/2], and ¢ = tan‘l(\/lp_z). Then tan(¢) = \/lp_z and sin(p) = p and ¢ = sin"'(p)
-p -p

Hence



So,

P(X1>0,X2<0)+P(X1<0,X2>0):%—%sin_l(p)
LI Z o (o))
2 72
:cos_l(p)/n

-1
Hence we have E(Z;) = nx (P(V, <0, W, > 0) + P(V, >0, W, <0)) = n» <Lee.
Proof related to Folded Normal Distribution
We know that V,, W,, V; and W, follow standard normal distribution independently.
Hence E(V,—W,) = E(V,)—E(W_,) =0and Var(V, — W,) = Var(V,) + Var(W,) = 2.

And since V, — W, is a linear combination of two independent normal distribution,

Ve — W, ~ N(0,2).

Similarly, we have V, - W, + V, —= W, ~ N(0,4) and V. — W, — V. + W, ~ N(0,4).

SoV,—-W,, V.- W, +V,—W,and V, - W, — V, + W, all follow folded normal distribution.

Let X be a random variable follow normal distribution with mean p and variance o%. Then Y = |X|

follow folded normal distribution.

Let Z be a standard normal distribution, then Y = |u+ o Z|.
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So

E(Y)=E(lu+aoZl)
=Eu+oZ;u+0Z2=2z0-E(u+oZ;,u+0c2<0)
=Eu+oZu+0Z=z0+Eu+oZ;u+02Z<0)-2E(u+oZ;u+0Z<0)
=E(u+02)-2E(u+02;Z<—-ulo)
=u—-2E(u;,Z<—-pulo)-2E(0Z;Z < —-ulo)

=u—-2ud(-ulo)-20E(Z; Z < —ulo)

Here
—ulo 1
z———dz
—00 V2me 712

Let u=2z?/2and d, = zdz

E(Z;Z<—-ulo) =

So E(Y) = u—2ud(—u/o) +2\/%e_m

When p=0ando?=2, E(|V, - W,|) = %

And when p=0and 02 =4, E(V, — W, + V, - W,|) = % E(Ve =W, -V, + W,|) = %
Also

E(Y®) = E(IX|*) = E(X?) = Var(X) + (E(X))? = 0% + 1/
So

2
Var(Y) = E(Y2) — (B(Y))? = 0% 4 1% — (- 21®(— i) @) + 2—— 03072
V2

When p=0and 0% =2, Var(|[V,- W|) =2-2.
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B Blood Pressure Data

Pulse Rate Systolic Pressure

1 [44,68] [90,100]
2 [60,72] [90,130]
3 [56,90] (140,180]
4 (70,112] (110,142]
5 [54,72] [90,100]
6 [70,100] (130,160]
7 [72,100] (130,160]
8 [76,98] (110,190]
9 [86,96] (138,180]
10  [86,100] (110,150]
11 [63,75] (60,100]

Table B.1: Blood pressure data of 11 patients. Here each column is in interval format. (Bil-

lard and Diday, |2000)
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C Comparison of Rectangle Plots (when range correlation varies

from-1to1)
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Figure C.1: Rectangle plot for 9 different range correlations change from -1 to 1 with the

exact same center correlation p.. = 0.8.
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D Comparison of Cross Plots (when range correlation varies from

-1to1)
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Figure D.1: Cross plots for the case where center correlations remain as 0.8 and range cor-

relations change from -1 to 1
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E Comparison of Segment Plots (when range correlation varies from

-1to1)
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Figure E.1: Segment plots for 9 different range correlations change from -1 to 1 with the

exact same center correlation p.. = 0.8. The solid circle points correspond to the variable
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X; and the hollow triangle points correspond to the variable Y.

43

Interval Distance

0
Center

Interval Distance

2 0 2
Center

Interval Distance

&

oA

2 0 2
Center




F Comparison of Guided Dandelion Plots with guiding polygon (when
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Figure E1: Guided dandelion plot for 9 different range correlations change from -1 to 1

with the exact same center correlation p.. = 0.8. The solid circle points correspond to the
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variable X; and the hollow triangle points correspond to the variable Y.
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G Comparison of the rectangle plots (when center correlation is -1

and range correlation varies as -1,-0.9,-0.5,0.5,0.9,1)

Rectangle Plot Rectangle Plot Rectangle Plot
o | [ ] [ ] o
-~ ‘9 -
1B ‘
|‘ \ ‘ —|
m—nin =, IHipa=====y
°1  Bf : o1 S ]
i 1 o L
> 1] > pE J: >
I o E$ 1T L
. i } o H | o RTINS
i |
lf]), L‘?7 I u'I.)'
-5 0 5 10 -5 0 5 10 -5 0 5 10
X X X
Rectangle Plot Rectangle Plot Rectangle Plot
=3 e o |
EE i
= — EE e e |
© S 0 - B [T} I l ‘
L 1 s
= iimm i ‘ =
> > > I
t | == =it
I i o (=R ugLiLL T
1 T : =
T I
T ==l i
I ‘ i © |
\ 9 '
1 \ '
-5 0 5 10 -5 0 5 10 -5 0 5 10
X X X

Figure G.1: Rectangle plots with p.. = -1 and p,, = -1,-0.9,-0.5,0.5,0.9,1
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H Comparison of the segment plots (when center correlation is -1

and range correlation varies as -1,-0.9,-0.5,0.5,0.9,1)
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Figure H.1: Segment plots with p.,. = -1 and p,, = -1,-0.9,-0.5,0.5,0.9,1. The solid cir-
cle points correspond to the variable X; and the hollow triangle points correspond to the

variable Y.
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I Comparison of the guided dandelion plots (when center correla-

tion is -1 and range correlation varies as -1,-0.9,-0.5,0.5,0.9,1)
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Figure I.1: Guided Dandelion plots with p.. = -1 and p,, = -1,-0.9,-0.5,0.5,0.9,1. The
solid circle points correspond to the variable X; and the hollow triangle points correspond

to the variable Y.
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J Outlier Example

Here we provide two examples for outlier detection. Figure J.1 displays a rectangle plot, a segment
plot and a dandelion plot for a dataset with one extreme value in X;. In the segment plot, there is a
solid circle point that has a longer projection on the vertical axis. This implies that there is an outlier

in X,. Meanwhile, it is difficult to detect the extreme value in the rectangle plot.

In the second example, we consider the case where a highly positive linear relationship exists
between X, and Y, and one pair of intervals departs from the relationship. Figure [J.2|displays the
rectangle plot, segment plot and dandelion plot. From Figure the rectangle plot cannot clearly
detect such pair of intervals. In the segment plot, because the values of the intervals are not extreme,
no obvious outliers can be detected. In the dandelion plot, one point has extremely long length of

projection on the vertical axis. This point represents the outlier as circled in the plot.
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Figure J.1: Scenario where there is an extreme value in X,. The circled point in the segment

plot and dandelion plot indicates the outlier.
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Rectangle Plot Interval Distance Relative Interval Distance
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Figure J.2: From the left to the right are the rectangle plot, segment plot and dandelion plot

respectively. This is corresponding to the example where X, and Y; has 0.8 correlation and

there is one pair of intervals departing from the relationship.
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