Multimolecular characteristics of cell-death related hub genes in human cancers: a comprehensive pan-cancer analysis
Supplementary data
1. Supplementary materials and methods
1.1 Functional Enrichment Analysis of Candidate genes Related to Primary Cell Death Pathways
We used the STRING (https://cn.string-db.org/) [1] database to conduct the protein-protein interaction (PPI) analysis, and the interaction was visualized by Cytoscape [2]. The densely connected clusters in the candidate genes interaction network were identified using the plug-in MCODE cluster app of Cytoscape with the default settings (30 genes were identified). Combining the eight common genes and the genes in the MCODE cluster, five hub genes (JUN, NFKB1, CASP3, PARP1, and TP53) of cell death-related pathways were identified for further study. Moreover, we used the R package of “cluster Profiler” to perform the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Oncology (GO) enrichment analysis (the latter contains cellular components (CC), molecular functions (MF), and biological processes (BP)) to investigate the pathways and functional roles of the candidate genes. Besides, the network analysis of the candidate genes was also applied using the GeneMANIA (https://www.genecards.org/) [3] database.

1.2 Expression Analysis of the Five Hub Genes in Various Human Tumors from TISIDB and HPA Databases

We used the TISIDB database to identify the relationship between the five genes’ expression and the development of cancers [4]. After imputing gene names on the website of TISIDB, in the “clinical” section, we get the associations (Spearman correlation test was applied) between five genes’ expression and clinical stage across 25 human tumors. Additionally, the distribution of the five gene expression in various molecular subtypes of cancers was analyzed using the “Subtype” section of the TISIDB database. To further demonstrate that five genes were indeed involved in specific cancer progression, we obtained the RNAseq data and relevant clinical data of cancers from the TCGA database, and the R package of “ggplot2” was utilized to identify the cancer progression marker genes. After that, the interaction between the five genes and the cancer progression-related marker genes was explored using the STRING database and Cytoscape software. Moreover, the Human Protein Atlas (HPA) [5] online tool was used to get the immunohistochemical patterns of the five hub genes in various human cancers.

1.3 Survival Analysis of the Five Hub Genes in Various Human Tumors from Kaplan-Meier Plotter, TCGA, GSCALite, and PrognoScan Databases
We used the Kaplan-Meier Plotter online tool [5] to pool the datasets from GEO, EGA, and TCGA databases for OS analysis of 19 human cancers. Moreover, we used the GSCALite (http://bioinfo.life.hust.edu.cn/web/GSCALite/) [6] database to perform the expression survival analysis among 33 cancer types. The Cox Proportional-Hazards model for every gene was calculated, and cancer types with Kaplan-Meier log-rank test P-value less than 0.05 were performed. The PrognoScan (http://dna00.bio.kyutech.ac.jp/PrognoScan/) [7] database was utilized to explore the prognostic values of the five hub genes across different human cancers in different survival statuses, including relapse-free survival (RFS), distant metastasis-free survival (DMFS), disease-specific survival (DSS), DFS, and OS. Only cancer types with statistical significance (P<0.05) were recorded, and the results were presented as forest plots. Using R software’s “survival” package, we also conducted a Cox regression analysis with data from the TCGA database to investigate the independent prognostic role of the five hub genes in specific cancers. Clinical characteristics such as pathologic stages (T/N/M), gender, age, and tumor site were included. The parameters with P < 0.1 in univariate analysis were included for multivariate analysis. Moreover, the prognostic nomograms and calibration curves were generated, and the index of concordance (C-index) for each nomogram was obtained based on the significant parameters from the univariate analysis using “survival” and “rms” packages of R software. Of notice, using the same way, the prognostic role of several famous key genes in other cell death pathways, such as CASP8 (apoptosis), RIPK1, RIPK3, and MLKL (necroptosis), GPX4, SLC7A11 (ferroptosis), CASP1, GSDMD (pyroptosis), BECN1, and ATG5 (autophagy) in various TCGA cancers were also explored.
1.4 Genetic Alteration and Methylation Analysis from the GSCALite Databases
Using the GSCALite database, we also analyzed the single nucleotide variation (SNV) frequency and variant types of the five genes in different tumors. The SNV frequency of each gene in various cancers was calculated. Besides, the statistics of homozygous and heterozygous copy number variation (CNV) of each gene in each cancer were obtained from the “Copy Number Variation” module of GSCALite. Moreover, the percentage of homozygous/heterozygous CNV about each gene in specific cancer was retrieved. Since the transcriptional levels of genes could also be regulated by epigenetic factors, such as methylation [8], we also used the GSCALite online tool to perform a methylation analysis for the five hub genes among various cancers under the “Methylation” module. A student T-test was applied to examine the methylation difference between tumor and paired normal samples. Since the paired tumor vs. normal data were available in only 14 cancers, such differential methylation analysis was applied based on the above 14 cancers. The association between the methylation and paired expression levels of each gene in different cancers was also explored. FDR was used to adjust the P-value for the above analysis, and P<0.05 was deemed significant.
1.5. Drug and Pathway Analysis of the Five Hub Genes from GSCALite and TISIDB Databases
The global and heatmap percentage of the five hub genes in ten famous cancer-related pathways, including TSC/mTOR, PI3K/AKT, DNA Damage Response, Cell Cycle, Apoptosis, RAS/MAPK, EMT, Hormone ER, Hormone AR, and RTK were obtained from the GSCALite database. The association between gene expression and drug sensitivity for each gene was investigated using the “Drug Sensitivity” module of GSCALite based on the information from GDSC IC50 drug data. We also used the TISIDB database to obtain the network of drugs targeting the five genes and other targets for these drugs based on the data from the DrugBank database.
1.6 Immune Analysis of the Five Hub Genes from Sangerbox and TISIDB Databases
We used Sangerbox (http://vip.sangerbox.com/home.html) online tool to evaluate the association between gene expression and microsatellite instability (MSI), ESTIMATE immune score, expression of immune checkpoint genes, and neoantigen counts across diverse human cancers. Moreover, the TISIDB database was utilized to examine the correlation between the expression of five hub genes and the abundance of 28 tumor-infiltrating lymphocytes (TILs), three kinds of immunomodulators (immunoinhibitor, immunostimulator, and MHC molecule) in various tumors. 
2. Supplementary Results
2.1. Functional Enrichment Analysis of Cell Death-Related Genes
The functional and pathway enrichment analyses of GO and KEGG were conducted among the candidate genes to identify these genes’ biological classification and functions. As shown in Figure 1e, 1f, and Table S1, the candidate genes were most significantly associated with the response to the stimuli, inflammation, and apoptosis pathways. 
We also used the GeneMANIA database to explore the pathways and functions further that the five hub genes may participate in, and the molecular regulatory networks were generated. As shown in Figure 1g, the five hub genes may be involved in the following functions: cellular response to chemical stress, cellular response to oxidative, positive regulation of transcription by RNA polymerase II, Fc receptor signaling pathway, response to oxidative stress, response to cadmium ion, and extrinsic apoptotic signaling pathway. 
2.2. Expression of the Five Hub Genes in Diverse Human Cancers 
The protein expression of the five hub genes in human cancers was assessed using the HPA database. As shown in Figure S3a, the verity nuclear immunoreactivity of differing fractions and intensity in most cancers cells was observed for JUN. Several liver cancers, testicular cancers, and malignant lymphomas showed negative JUN protein expression. In comparison, protein expression of NFKB1 in most cancer cells was negative. The NFKB1 protein was moderately expressed in lymphomas and a few cases of colorectal, breast, and prostate cancers (Figure S3b). For the protein expression of CASP3, weak to moderate cytoplasmic and nuclear positivity was found in several cancer tissues (Figure S3c). Besides, moderate to strong nuclear immunoreactivity of PARP1 protein expression was found in most cancer tissues (Figure S3d). Concerning TP53, strong nuclear staining of protein expression was observed in several cases of pancreatic, gastric, ovarian, urothelial, malignant gliomas, and colorectal cancers. A few cases of breast cancers, testicular, malignant melanoma, and squamous cell carcinomas showed moderate to strong nuclear positivity of TP53 protein expression. (Figure S3e). The above analysis suggests that CASP3, PARP1, and TP53 may play an oncogenic role in most cancers.
2.3. Prognostic role of the five genes based on data from multiple databases

As shown in Figure 2a, JUN expression was associated with worse OS in five cancers and better OS in two cancers. Also, the expression of NFKB1 was correlated with worse OS in four cancers and better OS in three cancers. Of interest, the mRNA expression of PARP1 and CASP3 were only associated with the poor OS in three and two cancers, respectively. Besides, TP53 expression was correlated with the worse OS in three cancers and better OS in one cancer. The relationship between gene expression of the DFS of different cancers was analyzed using the GEPIA2 database. As presented in Figure 2b, JUN expression was associated with poor DFS in one cancer and better DFS in one cancer, respectively. NFKB1 expression was associated with better DFS in one cancer. CASP3 expression was associated with worse DFS in five cancers. PARP1 expression was associated with poor DFS in two cancers and better DFS in one cancer. Meanwhile, we found that TP53 expression was correlated with better DFS in one cancer (Prostate adenocarcinoma). To further illuminate the prognostic role of the five genes in human cancers, we also utilized the Kaplan-Meier plotter to evaluate their prognostic values in diverse cancers based on data from TCGA, EGA, and GEO. As shown in Figure 2d, the genes’ expression was associated with poor OS in five cancers for JUN, three cancers for NFKB1, three cancers for CASP3, four cancers for PARP1, and one cancer for TP53. While the better OS in two cancers, five cancers, five cancers, one cancer, and five cancers were correlated with JUN, NFKB1, CASP3, PARP1, and TP53 expression, respectively. The survival curves with the log-rank P-values and HR values were presented in Figure S4. Also, the GSCALite database was used to investigate whether the five genes affect the survival in cancers or not. As presented in Figure 2e, the high JUN expression was related to the worse OS in three cancers and better OS in two cancers. The high NFKB1 expression was associated with worse OS in three cancers and better OS in one cancer. The high CASP3 expression was correlated with the better OS in two cancers and poor OS in three cancers. The high expression of PARP1 was associated with worse OS in seven cancers, and the high TP53 expression was correlated with the poor OS in two cancers as well as the better OS in three cancers. Besides, in analyzing the prognostic values of the five hub genes in cancers, the PrognoScan database was also applied. As presented in Figure S5, the five hub genes have the same prognostic values in several cancers, such as breast and brain cancers.

Cox regression analysis (including univariate and multivariate analysis) was applied to examine the potential independent prognostic values of the five genes in predicting the prognosis of 33 human cancers (clinical parameters of each cancer were also included). As presented in Table S2, the five genes have prognostic values in 21 of the 33 human cancers. Combining the above results from multiple databases, we found that the expression of five hub genes had the opposite prognostic values in some cancers, which may be due to the different methods of data collection in diverse databases and the differences in biological characteristics of different cancers. Since genes do not function separately in cancers, the co-expression patterns of the five genes in LGG and ACC were analyzed using the cBioPortal database and R software. The results are presented in Figure S6. In LGG, we found a low to moderate significant correlation among the expression of JUN, NFKB1, CASP3, PARP1, and TP53. In ACC, significant correlations between JUN, TP53, and PARP1 were also observed. Which suggested the crosstalk between the five genes may play a vital role in the development and progression of different cancers. In addition, the correlation of each cell death-related gene and their most correlated genes in LGG and ACC were also presented in Figure S6. The Spearman’s correlation coefficients and P-values were supplied in Table S4-S5.

2.4. Association between Expression of the Five Genes and the Clinicopathological Parameters in Diverse Human Cancers
As shown in Figure S7, the significant association between the expression of JUN, NFKB1, CASP3, PARP1, and TP53 and the progression of cancers were found in three cancers, six cancers, four cancers, three cancers, and five cancers, respectively. Generally, we found that the expression of NFKB1, CASP3, PARP1, and TP53 was associated with the pathological stages of KIRC, which suggested these genes may play an important role in the development of KIRC. 
We also identified the top 100 cancer progression marker genes of LGG and ACC using data from the TCGA database (Table S6), and close interactions between these genes and the five hub genes were found (Figure S8a and S8b). In addition, as shown in Figure S8c, the five genes’ higher expression was related to the development of LGG, while the higher expression of PARP1 was associated with a higher pathologic stage of ACC (Figure S8d). Moreover, as shown in Figure S9, significantly different expressions of the five genes were observed in various molecular subtypes of LGG, while NFKB1, CASP3, and PARP1 were differently expressed among various ACC molecular subtypes. The above evidence suggested that the five genes were indeed involved in the cancer progression of LGG and ACC.
2.5. Cell Death-Related Hub Genes are Genetically, Epigenetically, and Transcriptionally Associated with Diverse Human Cancers 
The impact of CNV on the expression of the five genes was also analyzed using the GSCALite online tool. The distribution of Heterozygous/Homozygous CNV of the five hub genes in 33 TCGA tumors was presented in Figure S11b. The global profile that shows the constitute of Heterozygous/Homozygous CNV of five hub genes in each cancer based on the CNV types was shown in Figure S11c. We divided the cases into homozygous and heterozygous CNV groups. As presented in Figure S11e, Heterozygous deletion/amplification was crucially associated with the transcriptional mutations of the five genes in most cancers. Besides, the homozygous amplification of PARP1 was correlated with its overexpression in six cancers (BRCA, Cholangiocarcinoma (CHOL), LIHC, LUAD, Ovarian serous cystadenocarcinoma (OV), and UCS), while the homozygous amplification of JUN was correlated with its upregulation in SARC. In addition, we found that the homozygous deletion of TP53 and CASP3 was associated with their downregulation in PAAD, SARC, and DLBC. The above results suggest that the heterozygous CNV might be the basis of the five gene transcriptional changes. The association between paired transcription levels of the five genes and CNV percent samples was explored to verify our hypothesis. As shown in Figure S11d, positive correlations between mRNA expression of the five genes and CNVs across diverse tumors were observed. These results suggest that the CNV may also regulate the transcriptional levels of the five genes in various cancers.
We also analyzed the association between the five genes’ expression and methylation levels in different cancers. As shown in Figure S11f, the aberrant methylation of the five genes was found in diverse cancers, especially in KIRC, LUSC, and BRCA. The relationship between the paired mRNA expression and methylation of the five genes across cancers was then explored. As shown in Figure S11g, PARP1, JUN, CASP3, and NFKB1’s methylation level was negatively correlated with their transcription levels in most cancers with statistical significance. While positively correlations between the methylation of TP53 and its expression level in several cancers were also noticed (Figure S11g).  
2.6. Drug and Pathway Analysis of the Five Hub Genes in Multiple Cancers
The association between genes and the ten famous cancer-related pathways was analyzed to further explore the underlying multimolecular mechanisms of the five genes involved in human tumors. As shown in Figure S12a, the five cell death-related hub genes were associated with various activation/inhabitation pathways, such as DNA Damage Response, Cell Cycle, and Apoptosis. Moreover, Spearman’s correlation between drug sensitivity and gene expression was explored using data from GDSC. Generally, we found that the high expression of CASP3, PARP1, TP53, and NFKB1 were associated with the decreased sensitivity of tumor cells to more than 20 anticancer drugs, which were involved in the DNA damage repair inhibition, cell cycle inhibition, and so on (Figure S12b). By contrast, the high expression of JUN could increase the sensitivity of tumors to these drugs. In addition, using the TISIDB online tool, we identified a series of small molecular compounds that target the five genes, suggesting that those drugs may be essentially involved in regulating the activities of the five genes in human cancers (Figure S12c-g). Drugs that target the five genes and other targets for these drugs are presented in Table S7. 
2.7. Association between gene markers of immune cells and the Expression of the Five Genes across Human Cancers
We further applied a more profound exploration to investigate the association between the five genes’ expression and the 45 immune markers of 18 immune cells. An extensive association between the expression of JUN, NFKB1, CASP3, PARP1, and the most gene markers across multiple cancers was observed (Figure 3f, Table S13-16). Relatively fewer associations were observed between TP53 expression and the immune gene markers in most cancers; however, massive correlations were also noticed between TP53 expression and 40 immune markers in HNSC, 34 immune markers in KIRC, 31 immune markers in LGG, 32 immune markers in LIHC, and 34 immune markers in THYM (Table S17). 
2.8. Association between MSI, Immune Score, Immune Checkpoints, Neoantigen Counts, TILs, Three Immunomodulators, and the Expression of the Five Genes across Human Cancers
As presented in Figure S13, the significant correlations between MSI and the five genes’ expression were found in four cancers for JUN, nine cancers for NFKB1, five cancers for CASP3, nine cancers for PARP1, and eight cancers for TP53. We then analyzed the relationship between the expression of the five genes and the immune score of each tumor using the ESTIMATE algorithm, and the top three cancers with the most significant correlations were presented in Figure S14. Specifically, JUN expression was positively correlated with immune scores in LGG and BRCA. NFK1 expression was positively correlated with immune scores in OV, LGG, and LUAD. CASP3 expression was positively correlated with immune scores in KIRC, LGG, and COAD. PARP1 expression was negatively correlated with immune scores in Glioblastoma multiforme (GBM), UCEC, and LUSC. TP53 expression was positively and negatively correlated with immune scores in Testicular Germ Cell Tumors (TGCT) and UCEC, respectively. 
Moreover, the relationships between the five genes and 47 immune checkpoint genes’ expressions were also analyzed. As shown in Figure S15, extensive correlations were observed between the expression of NFKB1 (Figure S15b), CASP3 (Figure S15c), PARP1 (Figure S15d), and the expression of immune checkpoint genes in multiple cancers. While the massive significant correlations between immune checkpoints and JUN expression were only found in ACC and LGG (Figure S15a), such widespread correlations were observed in HNSC and LIHC for TP53 (Figure S15e). We also explored Figure S16 presented the association between the expression of the five genes and the number of neoantigens in diverse cancers. Briefly, significant associations between gene expression and the number of neoantigens were noticed in three cancers for JUN (BRCA, STAD, and THCA), two cancers for NFKB1 (BRCA and THCA), three cancers for CASP3 (GBM, STAD, and UCEC), four cancers for PARP1 (STAD, HNSC, LGG, and LUAD), and three cancers for TP53 (LGG, THCA, and HNSC) (P<0.05 for all). Since one of the significant focuses of immunotherapy is targeting the neoantigen, the five hub genes thus have the potential to predict the candidate neoantigens and benefit the cancer immunotherapy.
Using the TISIDB database, we also investigated the association between the expression of the five genes and immune-related signatures of 28 TILs, 21 immunoinhibitors, 21 MHC molecules, and 39 immunostimulators in LGG and ACC. Specifically, in LGG, JUN expression was significantly correlated with 28 TILs, 16 immunoinhibitors, 21 MHC molecules, and 26 immunostimulators (Figure S17a, Figure S18, Table S18). NFKB1 expression was associated with 27 TILs, 18 immunoinhibitors, 21 MHC molecules, and 25 immunostimulators (Figure S17b, Figure S18, Table S18). CASP3 expression was correlated with 23 TILs, 17 immunoinhibitors, 21 MHC molecules, and 23 immunostimulators (Figure S17c, Figure S18, Table S18). PARP1 expression correlated with 14 TILs, seven immunoinhibitors, four MHC molecules, and 15 immunostimulators (Figure S17d, Figure S18, Table S18). TP53 expression was associated with 20 TILs, 12 immunoinhibitors, six MHC molecules, and 17 immunostimulators (Figure S17d, Figure S18, Table S18). 
As for ACC, JUN expression was significantly correlated with 22 TILs, 11 immunoinhibitors, ten MHC molecules, and 12 immunostimulators (Figure S17a, Figure S18, Table S18); NFKB1 expression was associated with eight TILs, nine immunoinhibitors, 12 MHC molecules, and nine immunostimulators (Figure S17b, Figure S18, Table S18); CASP3 expression was correlated with seven TILs, eight immunoinhibitors, three MHC molecules, and nine immunostimulators (Figure S17c, Figure S18, Table S18); PARP1 expression correlated with five TILs, one immunoinhibitors, three MHC molecules, and seven immunostimulators (Figure S17d, Figure S18, Table S18); TP53 expression was associated with four TILs, two immunoinhibitors, one MHC molecules, and four immunostimulators (Figure S17d, Figure S18, Table S18). In addition, we found that the expression of the five genes was also significantly associated with most of the TILs in a variety of other cancers, such as KIRC, Stomach adenocarcinoma (STAD), and Skin Cutaneous Melanoma (SKCM) (Figure S17). Based on the above evidence, we hypothesize that JUN, NFKB1, CASP3, PARP1, and TP53 may also participate in the tumor-specific immune response by regulating the TILs and immunomodulators and have the potential value for immunotherapy.

2.9. Role of several famous key genes in other cell death pathways in various human cancers
As shown in Figure S18, CASP8, RIPK1, RIPK3, MLKL, GPX4, SLC7A11, CASP1, GSDMD, BECN1, and ATG5 were overexpressed in 20, 14, seven, 11, 23, 24, 14, 15, 20, and 19 cancers, respectively, and less expressed in 10, 11, 14, 15, three, five, 11, 13, six, and five cancers, respectively. With respect to the prognostic role of these genes in 30 TCGA human cancers, we found CASP8, RIPK1, RIPK3, MLKL, GPX4, SLC7A11, CASP1, GSDMD, BECN1, and ATG5 have protective values in four, one, one, three, two, three, one, three, five, and five cancers, respectively, and have detrimental values in six, three, three, seven, seven, 13, eight, five, two, and five cancers, respectively (Figure S20a, b). To further evaluate whether these genes could be potential biomarkers in the prognosis of LGG and ACC, we then performed a ROC analysis based on the cox regression results, and the top three genes with the highest AUC values were selected (Figure S20c). Based on selected genes and relevant clinical parameters, the prognostic nomograms and calibration curves were generated. As presented in Figure S20d, e, the combination of GSDMD, CASP8, RIPK1, and clinical parameters can be used to predict the one-year, three-year, and five-year survival probability of LGG with the c-index of 0.806 (0.784-0.829), while the combination of RIPK1, SLC7A11, GSDMD, and clinical parameters could predict the survival of ACC with the c-index of 0.844 (0.817-0.872). The calibration curves suggested that the constructed nomograms have great clinical applications (Figure S20f). Of notice, we found both the major cell death-related hub genes and the famous key genes in other cell death pathways can predict the survival of LGG and ACC, we further explored their expression relationship in LGG and ACC. As presented in Figure S21, we observed multiple co-expression between the five major cell death-related hub genes and other famous key genes in other cell death pathways. 
3. Supplementary Figure and Table Legends
Figure S1. Study design of the current study. CNA: Copy number alteration; SNV: Single nucleotide variation; CNV: Copy number variation. PPI: Protein-protein interaction; KEGG: Kyoto Encyclopedia of Genes and Genomes; GO: Gene Oncology; MF: molecular functions; CC: cellular components; BP: biological processes; MSI: Microsatellite instability; TILs: tumor-infiltrating lymphocytes; LGG: Brain Lower Grade Glioma; ACC: Adrenocortical carcinoma 
Figure S2. Expression levels of the five hub genes in different types of human cancers. (a-e) Comparisons of the five hub genes in the paired samples of different human cancers from TCGA database. *P < 0.05, **P < 0.01, ***P < 0.001. 
Figure S3. Abnormal expression of the five genes in human cancers. The expression level distribution of JUN (a), NFKB1 (b), CASP3 (c), PARP1 (d), and TP53 (e) protein in different cancer tissues is shown in the left panel, while the right panel shows the representative immunohistochemical staining results of each gene protein in different cancer tissues. 
Figure S4. Correlation between the expression of the five gens expression and Overall Survival in cancers using the Kaplan-Meier plotter. (a) NFKB1 expression and the OS in various cancers (b) CASP3 expression and the OS in various cancers (c) JUN expression and the OS in various cancers (d) TP53 expression and the OS in various cancers (e) PARP1 expression and the OS in various cancers.
Figure S5. Forest plot showing the prognostic results of the five hub genes generated using the PrognoScan database. HR=HazardRatio,95%CI=95% confidence interval.
Figure S6. Correlation heatmaps of the five hub genes and their most correlated genes in LGG (a), and ACC (b). The top half of each panel represents the correlation heatmap of different expressed genes in the specific cancer types. Red and blue cells indicate co-occurrence and mutual exclusivity, respectively. The bottom half of each panel represents correlation heatmap of the five hub genes expression and their top 20 correlated genes. *** p<0.001. (c) Correlation of different expressed JUN, NFKB1, CASP3, PARP1 and TP53 in LGG and ACC. Only correlations with statistical significance were presented (p<0.05).
Figure S7. Correlation between the expression of five genes and the clinical parameters. The blue or red box means that the gene is associated with higher (or lower) stage, while the green box means there is no significant association between gene expression and the stage of specific cancer. For cancers with statistical significance, the stage plots were generated. 
Figure S8. Role of the five hub genes in the development of LGG and ACC. Interaction of the cancer progression marker genes and the five hub genes in LGG (a) and ACC (b). Correlation between the expressions of the five genes and WHO grade in LGG (c) as well as pathologic stage in ACC (d).
Figure S9. Differential expression analysis of the five hub genes in various subtypes across LGG (a) and ACC (b) via TISIDB. 
Figure S10. Pan-cancerous genetic changes of the five hub genes. Genomic aberration 
landscape of the five hub genes in cancer (cBioPortal). (a)Waterfall maps of gene mutations and copy number changes in five hub genes. Each row represents a gene, and each column represents a sample. (b) The alteration frequency with mutation type of the five hub genes in cancers. (c)The landscape of the five hub genes mutations in cancer. 
Figure S11. Mutation and methylation characteristics and their associations with expression. (a) Oncoplot of the Single Nucleotide Variation (SNV) of the five hub genes in the specific cancers. (b) SNV frequency of five hub genes in different cancers. The deeper of color, the higher of mutate frequency. (c) Global profile that shows the constitute of Heterozygous/Homozygous Copy Number Variation (CNV) of five hub genes in each cancer. Hete Amp: heterozygous amplification; Hete Del: heterozygous deletion; Homo Amp: homozygous amplification; Homo Del: homozygous deletion; None: no CNV. (d) The association between paired mRNA expression and CNV percent samples, based on Person’s product moment correlation coefficient. (e) CNV of the five hub genes include homozygous amplification and heterozygous amplification. Only genes with > 5% CNV in cancers will show corresponding point on the figure. Homo: homozygous, Hete: heterozygous. (f) Differential methylation of the five genes in human cancers. (g) Correlation between r methylation and expression of the five genes in different cancers. Red points represent positive correlation and blue points represent negative correlation, and the deeper of color, the higher the correlation. The size of the point represents statistical significance, the bigger of size, the more significantly.
Figure S12. The role of the five hub genes in cancer signaling pathways and drug responses. (a) The five hub genes are associated with the activation and inhibition of 10 cancer pathways. Solid line means activation, dashed line means inhibition. Color of line represent different cancer types. (b) Association of five genes with targeted drugs across different cancer signal transduction pathways. Purple indicated that gene expression was negatively correlated with drug sensitivity, while red indicated a positive correlation. The size of the node corresponds to the value of-log (FDR). The positive correlation means that the gene high expression is resistant to the drug, vise verse. (c-g) A network of drugs that may act on the five genes, as well as other targets for these drugs.
Figure S13. The radar graphs of correlation of JUN (a), NFKB1 (b), CASP3 (c), PARP1 (d), and TP53 (e) with Microsatellite instability (MSI).
Figure S14. Correlation between the five genes expression and immune score in various cancers (three cancer types with the most significant correlations were presented). (a) Expression of JUN and immune score of LGG, BRCA, and UCEC. (b) Expression of NFKB1 and immune score of OV, LGG, and LUAD. (c) Expression of PARP1 and immune score of KIRC, LGG, and COAD. (d) Expression of CASP3 and immune score of GBM, UCEC, and LUSC. (e) Expression of TP53 and immune score of TGCT, HNSC, and UCEC.
Figure S15. Correlation heatmap of JUN (a), NFKB1 (b), CASP3 (c), PARP1 (d), and TP53 (e) expression and expression of immune checkpoint genes. *P < 0.05, **P < 0.01, ***P < 0.001.
Figure S16. Correlation between the five genes expression and the number of neoantigen in various cancer samples. (a) Expression of JUN and the number of neoantigen in BRCA, STAD, and THCA. (b) Expression of NFKB1 and the number of neoantigen in BRCA and THCA. (c) Expression of PARP1 and the number of neoantigen in STAD, HNSC, LUAD, and LGG. (d) Expression of CASP3 and the number of neoantigen in GBM, STAD, and UCEC. (e) Expression of TP53 and the number of neoantigen in LGG, THCA, and HNSC.
Figure S17. Correlation heatmap of JUN (a), NFKB1 (b), CASP3 (c), PARP1 (d), and TP53 (e) expression and 28 tumor-infiltrating lymphocytes (TILs). *P < 0.05, **P < 0.01, ***P < 0.001.
Figure S18. Correlation heatmap of the five genes’ expression and immunomodulators. (a) Correlation heatmap of gene expression and 21 immunoinhibitors. (b) Correlation heatmap of gene expression and 21 MHC molecules. (c) Correlation heatmap of gene expression and 39 immunostimulator.

Figure S19. Expression levels of several famous key genes in other cell death pathways in various human cancers. (a-j) Comparisons of the key genes in the paired samples of different human cancers from TCGA database. *P < 0.05, **P < 0.01, ***P < 0.001. 
Figure S20. Prognostic values of several famous key genes in other cell death pathways in various human cancers. (a, b) Forest plot showing the prognostic results of the key genes in other cell death pathways in various human cancers. 95%CI=95% confidence interval. (c) ROC analysis of the key genes in LGG and ACC. (d, e) Prognostic nomograms of the key genes in other cell death pathways in LGG and ACC. (f) Calibration curves of the key genes in other cell death pathways in LGG and ACC.
Table S1. Significantly enriched GO terms and KEGG pathways of candidate genes.

Table S2. Univariate and Multivariate COX regression for clinical characteristics and cell death-related hub genes expression in various tumors.
Table S3. The association between the five hub genes expression and survival of human cancers in different databases.
Table S4. Co-expression of cell death-related gene and top 20 most correlated genes in LGG.
Table S5. Co-expression of cell death-related gene and top 20 most correlated genes in ACC.
Table S6. Progression marker genes of LGG and ACC.
Table S7. Drugs targeting five hub genes collected from DrugBank database.
Table S8. Correlation between JUN expression and typical infiltrating immune cells in 32 TCGA tumors (TIMER database).
Table S9. Correlation between NFKB1 expression and typical infiltrating immune cells in 32 TCGA tumors (TIMER database).
Table S10. Correlation between CASP3 expression and typical infiltrating immune cells in 32 TCGA tumors (TIMER database).
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