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In this supplement, we give the technical proofs for Proposition 1 and Theorems 1-3. We

also provide a detailed estimation procedure for model (2) based on the ADMM algorithm

in a way similar to that for model (1).

A.1 Proof of Proposition 1

In this section we show the results in Proposition 1. By the definition of η(m+1), we have

L(µ(m+1),β(m+1),η(m+1),υ(m)) ≤L(µ(m+1),β(m+1),η,υ(m))

for any η. Define

f (m+1) = inf
∆µ(m+1)−η=0

{1

2

∥∥∥y − µ(m+1)−Xβ(m+1)
∥∥∥2 +

∑
i<j

pγ(|ηij|, λ)}

= inf
∆µ(m+1)−η=0

L(µ(m+1),β(m+1),η,υ(m)).

Then

L(µ(m+1),β(m+1),η(m+1),υ(m)) ≤f (m+1).
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Let t be an integer. Since υ(m+t−1) = υ(m) + ϑ
∑t−1

i=1(∆µ(m+i)−η(m+i)), we have

L(µ(m+t),β(m+t),η(m+t),υ(m+t−1))

=
1

2

∥∥∥y − µ(m+t)−Xβ(m+t)
∥∥∥2 + υ(m+t−1)T(∆µ(m+t)−η(m+t))

+
ϑ

2
||∆µ(m+t)−η(m+t)||2 +

∑
i<j

pγ(|η(m+t)
ij |, λ)

=
1

2

∥∥∥y − µ(m+t)−Xβ(m+t)
∥∥∥2 + υ(m)T(∆µ(m+t)−η(m+t))

+ϑ
∑t−1

i=1
(∆µ(m+i)−η(m+i))T(∆µ(m+t)−η(m+t))

+
ϑ

2
||∆µ(m+t)−η(m+t)||2 +

∑
i<j

pγ(|η(m+t)
ij |, λ)

≤ f (m+t).

Since the objective function L(µ,β,η,υ) is differentiable with respect to (µ,β) and is convex

with respect to η, by applying the results in Theorem 4.1 of Tseng (1991), the sequence

(µ(m),β(m),η(m)) has a limit point, denoted by (µ∗,β∗,η∗). Then we have

f ∗ = lim
m→∞

f (m+1) = lim
m→∞

f (m+t) = inf
∆µ∗−η=0

{1

2
‖y − µ∗ −Xβ∗‖2 +

∑
i<j

pγ(|ηij|, λ)},

and for all t ≥ 0

lim
m→∞

L(µ(m+t),β(m+t),η(m+t),υ(m+t−1))

=
1

2
‖y − µ∗ −Xβ∗‖2 +

∑
i<j

pγ(|η∗ij|, λ) + lim
m→∞

υ(m)T(∆µ∗ − η∗) + (t− 1

2
)ϑ||∆µ∗ − η∗||2

≤ f ∗.

Hence limm→∞ ||r(m)||2 = r∗=||∆µ∗ − η∗||2 = 0.
Since (µ(m+1),β(m+1)) minimize L(µ,β,η(m),υ(m)) by definition, we have that

∂L(µ(m+1),β(m+1),η(m),υ(m))/∂µ = 0,

and moreover,

∂L(µ(m+1),β(m+1),η(m),υ(m))/∂µ

= µ(m+1)+Xβ(m+1)−y + ∆Tυ(m) + ∆Tϑ(∆µ(m+1) − η(m))

= µ(m+1)+Xβ(m+1)−y + ∆T(υ(m) + ϑ(∆µ(m+1) − η(m)))

= µ(m+1)+Xβ(m+1)−y + ∆Tυ(m+1) + ϑ∆T(η(m+1) − η(m)).
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The last step follows from υ(m+1) = υ(m) + ϑ(∆µ(m+1)−η(m+1)). Therefore,

s(m+1) = ϑ∆T(η(m+1) − η(m)) = −(µ(m+1)+Xβ(m+1)−y + ∆Tυ(m+1)).

Since ||∆µ∗−η∗||2 = 0,

lim
m→∞

∂L(µ(m+1),β(m+1),η(m),υ(m))/∂µ

= lim
m→∞

µ(m+1)+Xβ(m+1)−y + ∆Tυ(m+1)

= µ∗+Xβ∗ − y + ∆Tυ∗ = 0.

Therefore, limm→∞ s(m+1) = 0.

A.2 Proof of Theorem 1

In this section we show the results in Theorem 1. Since for every µ ∈MG, it can be written

as µ = Zα, and hence α = D−1ZTµ. Then ((µ̂or)T, (β̂
or

)T)T = ((Zα̂or)T, (β̂
or

)T)T, where(
α̂or

β̂
or

)
= arg min

α∈RK ,β∈Rp

1

2
||y − Zα−Xβ||2 = [(Z,X)T(Z,X)]−1(Z,X)Ty.

Then (
α̂or −α0

β̂
or
− β0

)
= [(Z,X)T(Z,X)]−1(Z,X)Tε,

where ε = (ε1, . . . , εn)T and α0 = (α0
1, . . . , α

0
K)T. Hence∥∥∥∥( α̂or −α0

β̂
or
− β0

)∥∥∥∥
∞
≤
∥∥∥[(Z,X)T(Z,X)]−1

∥∥∥
∞

∥∥∥(Z,X)Tε
∥∥∥
∞
. (A.1)

By Condition (C1), we have
∥∥∥[(Z,X)T(Z,X)]−1

∥∥∥ ≤ C−11 |Gmin|−1 and thus∥∥∥[(Z,X)T(Z,X)]−1
∥∥∥
∞
≤
√
K + pC−11 |Gmin|−1 . (A.2)

Moreover

P (
∥∥∥(Z,X)Tε

∥∥∥
∞
> C

√
n log n) ≤ P (

∥∥ZTε
∥∥
∞ > C

√
n log n) + P (

∥∥XTε
∥∥
∞ > C

√
n log n),

for some constant 0 < C <∞. By Condition (C3) and union bound,

P
(∥∥ZTε

∥∥
∞ > C

√
n log n

)
≤

∑K

k=1
P (|

∑
i∈Gk

εi| > C
√
n log n) ≤

∑K

k=1
P (|

∑
i∈Gk

εi| >
√
|Gk|C

√
log n)

≤ 2K exp(−c1C2 log n) = 2Kn−c1C
2

,
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and by Conditions (C1) and (C3) and union bound,

P
(∥∥XTε

∥∥
∞ > C

√
n log n

)
≤

∑p

j=1
P
(
|XT

j ε| >
√
nC
√

log n
)

≤ 2p exp(−c1C2 log n) = 2pn−c1C
2

.

By the above results, we have

P (
∥∥∥(Z,X)Tε

∥∥∥
∞
> C

√
n log n) ≤ 2(K + p)n−c1C

2

. (A.3)

Therefore, by (A.1), (A.2) and (A.3), we have with probability at least 1− 2(K + p)n−c1C
2
,∥∥∥∥( α̂or −α0

β̂
or
− β0

)∥∥∥∥
∞
≤ CC−11

√
K + p |Gmin|−1

√
n log n,

and hence ‖µ̂or − µ0‖∞ = ‖α̂or −α0‖∞ ≤ CC−11

√
K + p |Gmin|−1

√
n log n. The result (8)

in Theorem 1 is proved by letting C = c
−1/2
1 , and result (10) follows from Central Limit

Theorem.

A.3 Proof of Theorem 2

In this section we show the results in Theorem 2. Define

Ln(µ,β) =
1

2
||y − µ−Xβ||2, Pn(µ) = λ

∑
i<j

ρ(|µi − µj|),

LGn(α,β) =
1

2
||y − Zα−Xβ||2, P Gn (α) = λ

∑
k<k′

|Gk||Gk′|ρ(|αk − αk′ |),

and let
Qn(µ,β) = Ln(µ,β) + Pn(µ), QGn(α,β) = LGn(α,β) + P Gn (α).

Let T :MG → RK be the mapping such that T (µ) is the K× 1 vector whose kth coordinate
equals to the common value of µi for i ∈ Gk. Let T ∗ : Rn → RK be the mapping such that
T ∗(µ) = {|Gk|−1

∑
i∈Gk µi}

K
k=1. Clearly, when µ ∈MG, T (µ) =T ∗(µ).

By calculation, for every µ ∈MG, we have Pn(µ) = P Gn (T (µ)) and for every α ∈RK , we
have Pn(T−1(α)) = P Gn (α). Hence

Qn(µ,β) = QGn(T (µ),β), QGn(α,β) = Qn(T−1(α),β). (A.4)

Consider the neighborhood of (µ0,β0):

Θ= {µ ∈Rn,β∈Rp:
∥∥((µ− µ0)T, (β − β0)T)T

∥∥
∞ ≤ φn}.
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By the result in Theorem 1, there is an event E1 such that on the event E1,∥∥∥((µ̂or − µ0)T, (β̂
or
− β0)T)T

∥∥∥
∞
≤ φn,

and P (EC
1 ) ≤ 2(K + p)n−1. Hence ((µ̂or)T, (β̂

or
)T)T ∈ Θ on the event E1. For any µ ∈Rn,

let µ∗ = T−1(T ∗(µ)). We show that (µ̂or, β̂
or

) is a strictly local minimizer of the objective
function (3) with probability approaching 1 through the following two steps.

(i). On the event E1, Qn(µ∗,β) > Qn(µ̂or, β̂
or

) for any ((µ)T, (β)T)T ∈ Θ and

((µ∗)T, (β)T)T 6= ((µ̂or)T, (β̂
or

)T)T.
(ii). There is an event E2 such that P (EC

2 ) ≤ 2n−1. On E1∩E2, there is a neighborhood

of ((µ̂or)T, (β̂
or

)T)T, denoted by Θn, such that Qn(µ,β) ≥ Qn(µ∗,β) for any ((µ)T, (β)T)T ∈
Θn ∩Θ for sufficiently large n.

Therefore, by the results in (i) and (ii), we have Qn(µ,β) > Qn(µ̂or, β̂
or

) for any

((µ)T, (β)T)T ∈ Θn ∩ Θ and ((µ)T, (β)T)T 6= ((µ̂or)T, (β̂
or

)T)T, so that ((µ̂or)T, (β̂
or

)T)T

is a strict local minimizer of Qn(µ,β) given in (3) on the event E1 ∩E2 with P (E1 ∩E2) ≥
1− 2(K + p+ 1)n−1 for sufficiently large n.

In the following we prove the result in (i). We first show P Gn (T ∗(µ)) = Cn for any µ ∈Θ,
where Cn is a constant which does not depend on µ. Let T ∗(µ) = α = (α1, . . . , αK)T. It
suffices to show that |αk − αk′| > aλ for all k and k′. Then by Condition (C2), ρ(|αk − αk′|)
is a constant, and as a result P Gn (T ∗(µ)) is a constant. Since

|αk − αk′| ≥ |α0
k − α0

k′| − 2||α−α0||∞,

and

||α−α0||∞ = sup
k
|
∑

i∈Gk
µi/|Gk| − α0

k| = sup
k
|
∑

i∈Gk
(µi − µ0

i )/|Gk||

≤ sup
k

sup
i∈Gk
|µi − µ0

i | = ||µ− µ0||∞, (A.5)

then for all k and k′

|αk − αk′| ≥ |α0
k − α0

k′ | − 2||µ− µ0||∞ ≥ bn − 2φn > aλ,

where the last inequality follows from the assumption that bn > aλ � φn. Therefore, we
have P Gn (T ∗(µ)) = Cn, and hence QGn(T ∗(µ),β) = LGn(T ∗(µ),β) +Cn for all (µT,βT)T ∈ Θ.

Since ((α̂or)T, (β̂
or

)T)T is the unique global minimizer of LGn(α,β), then LGn(T ∗(µ),β) >

LGn(α̂or, β̂
or

) for all (T ∗(µ)T,βT)T 6= ((α̂or)T, (β̂
or

)T)T and thusQGn(T ∗(µ),β) > QGn(α̂or, β̂
or

)

for all T ∗(µ) 6= α̂or. By (A.4), we have QGn(α̂or, β̂
or

) = Qn(µ̂or, β̂
or

) and QGn(T ∗(µ),β) =

Qn(T−1(T ∗(µ)),β) = Qn(µ∗,β). Therefore, Qn(µ∗,β) > Qn(µ̂or, β̂
or

) for all µ∗ 6= µ̂or, and
the result in (i) is proved.

Next we prove the result in (ii). For a positive sequence tn, let Θn = {µ : ||µ−µ̂or|| ≤ tn}.
For (µT,βT)T ∈ Θn ∩Θ, by Taylor’s expansion, we have

Qn(µ,β)−Qn(µ∗,β) = Γ1 + Γ2,
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where

Γ1 = −(y − (In,X)((µm)T,βT)T)T(µ− µ∗),

Γ2 =
n∑
i=1

∂Pn(µm)

∂µi
(µi − µ∗i ),

in which µm = ςµ + (1− ς)µ∗ for some ς ∈ (0, 1). Moreover,

Γ2 = λ
∑

{j>i}
ρ(µmi − µmj )(µi − µ∗i ) + λ

∑
{j<i}

ρ(µmi − µmj )(µi − µ∗i )

= λ
∑

{j>i}
ρ(µmi − µmj )(µi − µ∗i ) + λ

∑
{i<j}

ρ(µmj − µmi )(µj − µ∗j)

= λ
∑

{j>i}
ρ(µmi − µmj )(µi − µ∗i )− λ

∑
{i<j}

ρ(µmi − µmj )(µj − µ∗j)

= λ
∑

{j>i}
ρ(µmi − µmj ){(µi − µ∗i )− (µj − µ∗j)}. (A.6)

When i, j ∈ Gk, µ∗i = µ∗j , and µmi − µmj has the same sign as µi − µj. Hence

Γ2 = λ
∑K

k=1

∑
{i,j∈Gk,i<j}

ρ′(|µmi − µmj |)|µi − µj|

+λ
∑

k<k′

∑
{i∈Gk,j′∈Gk′}

ρ(µmi − µmj ){(µi − µ∗i )− (µj − µ∗j).

As shown in (A.5),
||µ∗−µ0||∞ = ||α−α0||∞ ≤ ||µ− µ0||∞.

Since µm = ςµ + (1− ς)µ∗,

||µm−µ0||∞ ≤ ||µ− µ0||∞ ≤ φn, (A.7)

and then for k 6= k′, i ∈ Gk, j ∈ Gk′ ,

|µmi − µmj | ≥ min
i∈Gk,j∈Gk′

|µ0
i − µ0

j | − 2||µm − µ0||∞

≥ bn − 2||µ− µ0||∞ ≥ bn − 2φn > aλ,

and thus ρ(µmi − µmj ) = 0. Therefore,

Γ2 = λ
∑K

k=1

∑
{i,j∈Gk,i<j}

ρ′(|µmi − µmj |)|µi − µj|.

Furthermore, by the same reasoning as (A.5), we have

||µ∗−µ̂or||∞ ≤ ||µ−µ̂or||∞.

Then

|µmi − µmj | ≤ 2||µm − µ∗||∞ ≤ 2||µ− µ∗||∞
≤ 2(||µ− µ̂or||∞ + ||µ∗ − µ̂or||∞)

≤ 4||µ− µ̂or||∞ ≤ 4tn.
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Hence ρ′(|µmi − µmj |) ≥ ρ′(4tn) by concavity of ρ(·). As a result,

Γ2 ≥ λ
∑K

k=1

∑
{i,j∈Gk,i<j}

ρ′(4tn)|µi − µj|. (A.8)

Let
w = (w1, . . . , wn)T = y − (In,X)((µm)T,βT)T.

Then

Γ1 = −wT(µ− µ∗) = −
∑K

k=1

∑
{i,j∈Gk}

wi(µi − µj)
|Gk|

= −
∑K

k=1

∑
{i,j∈Gk}

wi(µi − µj)
2|Gk|

−
∑K

k=1

∑
{i,j∈Gk}

wi(µi − µj)
2|Gk|

= −
∑K

k=1

∑
{i,j∈Gk}

(wj − wi)(µj − µi)
2|Gk|

= −
∑K

k=1

∑
{i,j∈Gk,i<j}

(wj − wi)(µj − µi)
|Gk|

. (A.9)

Since
w = ε + X(β0 − β) + µ0−µm,

then
max
i,j
|wj − wi| ≤ 2||w||∞ ≤ 2||ε||∞ + 2||X||∞||β

0 − β||∞ + 2||µ0−µm||∞.

Hence by (A.7) and Condition (C1),

max
i,j
|wj − wi| ≤ 2||ε||∞ + 2C2pφn + 2φn.

By Condition (C3),

P (||ε||∞ >

√
2c−11

√
log n) ≤

∑n

i=1
P (|εi| >

√
2c−11

√
log n) ≤ 2n−1.

Thus there is an event E2 such that P (EC
2 ) ≤ 2n−1, and on the event E2,

max
i,j
|wj − wi| ≤ 2

√
2c−11

√
log n+ 2(C2p+ 1)φn. (A.10)

Hence

|Gmin|−1 max
i,j
|wj − wi| ≤ |Gmin|−1{2

√
2c−11

√
log n+ 2(C2p+ 1)φn}.

Since |Gmin| �
√

(K + p)n log n and p = o(n), then |Gmin|−1p = o(1). Thus λ � φn �
|Gmin|−12(C2p+ 1)φn. Moreover, λ� φn � |Gmin|−1

√
log n. Hence

λ� |Gmin|−1 max
i,j
|wj − wi|. (A.11)

Let tn = o(1), then ρ′(4tn)→ 1. Therefore, by (A.8), (A.9), and (A.11),

Qn(µ,β)−Qn(µ∗,β) = Γ1 + Γ2

≥
∑K

k=1

∑
{i,j∈Gk,i<j}

[λρ′(4tn)− |Gmin|−1 max
i,j
|wj − wi|]|µi − µj| ≥ 0,

for sufficiently large n, so that the result in (ii) is proved.
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A.4 Proof of Theorem 3

In this section we show the results in Theorem 3. The proofs of (12) and (13) follow the

same arguments as the proof of Theorem 1 by letting Z = 1n and |Gmin| = n, and thus they

are omitted. Next, we will show (14). It follows similar procedures as the proof of Theorem

2 with the details given below. Let M be the subspace of Rn, defined as

M = {µ ∈Rn : µ1 = · · · = µn}.

For each µ ∈M, it can be written as µ = 1nα, where α is the common value of µ. Let
T :M→ R be the mapping such that T (µ) is the scalar that equals to the common value
of µi’s. Let T ∗ : Rn → R be the mapping such that T ∗(µ) =n−1

∑n
i=1 µi. Clearly, when

µ ∈M, T (µ) =T ∗(µ). Consider the neighborhood of (µ0,β0):

Θ= {µ ∈Rn,β∈Rp:
∥∥((µ− µ0)T, (β − β0)T)T

∥∥
∞ ≤ φn},

where φn = c
−1/2
1 C−11

√
1 + p

√
n−1 log n. By the result in (12), there is an event E1 such that

on the even E1, ∥∥∥((µ̂or − µ0)T, (β̂
or
− β0)T)T

∥∥∥
∞
≤ φn,

and P (EC
1 ) ≤ 2(1 + p)n−1. Hence ((µ̂or)T, (β̂

or
)T)T ∈ Θ on the event E1. For any µ ∈Rn,

let µ∗ = T−1(T ∗(µ)). We show that (µ̂or, β̂
or

) is a strictly local minimizer of the objective

function (3) with probability approaching 1 through the following two steps.

(i). On the event E1, Qn(µ∗,β) > Qn(µ̂or, β̂
or

) for any (µT,βT)T ∈ Θ and ((µ∗)T,βT)T 6=

((µ̂or)T, (β̂
or

)T)T.

(ii). There is an event E2 such that P (EC
2 ) ≤ 2n−1. On E1∩E2, there is a neighborhood

of ((µ̂or)T, (β̂
or

)T)T, denoted by Θn, such that Qn(µ,β) ≥ Qn(µ∗,β) for any (µT,βT)T ∈

Θn ∩Θ for sufficiently large n.

Therefore, by the results in (i) and (ii), we have Qn(µ,β) > Qn(µ̂or, β̂
or

) for any

(µT,βT)T ∈ Θn ∩Θ and (µT,βT)T 6= ((µ̂or)T, (β̂
or

)T)T, so that ((µ̂or)T, (β̂
or

)T)T is a strict

local minimizer of Qn(µ,β) on the event E1 ∩ E2 with P (E1 ∩ E2) ≥ 1 − 2(p + 2)n−1 for

sufficiently large n.

By the definition of ((µ̂or)T, (β̂
or

)T)T, we have 1
2

∑n
i=1(yi − µ∗ − xT

i β)2 > 1
2

∑n
i=1(yi −

µ̂or−xT
i β̂

or
)2 for any (µT,βT)T ∈ Θ and ((µ∗)T,βT)T 6= ((µ̂or)T, (β̂

or
)T)T. Moreover, since
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pγ(|µ̂ori −µ̂orj |, λ) = pγ(|µ∗i−µ∗j |, λ) = 0 for 1 ≤ i, j ≤ n, we have Qn(µ∗,β) =1
2

∑n
i=1(yi−µ∗−

xT
i β)2 and Qn(µ̂or,β̂

or
) =1

2

∑n
i=1(yi − µ̂or − xT

i β̂
or

)2. Therefore, Qn(µ∗,β) > Qn(µ̂or, β̂
or

).

Next we prove the result in (ii). For a positive sequence tn, let Θn = {µ : ||µ−µ̂or|| ≤ tn}.

For (µT,βT)T ∈ Θn ∩Θ, by Taylor’s expansion, we have

Qn(µ,β)−Qn(µ∗,β) = Γ1 + Γ2,

where

Γ1 = −(y − (In,X)((µm)T,βT)T)T(µ− µ∗),

Γ2 =
n∑
i=1

∂Pn(µm)

∂µi
(µi − µ∗i ).

in which µm = ςµ + (1− ς)µ∗ for some ς ∈ (0, 1). Moreover, by (A.6), we have

Γ2 = λ
∑

i<j
ρ(µmi − µmj ){(µi − µ∗i )− (µj − µ∗j)}

= λ
∑

i<j
ρ′(|µmi − µmj |)|µi − µj|,

where the second equality holds due to the fact that µ∗i = µ∗j and µmi −µmj has the same sign

as µi − µj. Let T ∗(µ) =α. Following the same reasoning as the proof for (A.5), we have

||µ∗−µ̂or||∞ = |α− α̂or| ≤ ||µ−µ̂or||∞.

Then

|µmi − µmj | ≤ 2||µm − µ∗||∞ ≤ 2||µ− µ∗||∞

≤ 2(||µ− µ̂or||∞ + ||µ∗ − µ̂or||∞)

≤ 4||µ− µ̂or||∞ ≤ 4tn.

Hence ρ′(|µmi − µmj |) ≥ ρ′(4tn) by concavity of ρ(·). As a result,

Γ2 ≥ λ
∑

i<j
ρ′(4tn)|µi − µj|. (A.12)

Then, by the same reasoning as the proof for (A.9), we have

Γ1 = −wT(µ− µ∗) = −n−1
∑

i<j
(wj − wi)(µj − µi), (A.13)
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where w = (w1, . . . , wn)T = y − (In,X)((µm)T,βT)T. By the same reasoning as the proof

for (A.10), we have that there is an event E2 such that P (EC
2 ) ≤ 2n−1, and on the event E2,

max
i,j
|wj − wi| ≤ 2

√
2c−11

√
log n+ 2(C2p+ 1)φn.

Hence

n−1 max
i,j
|wj − wi| ≤ n−1{2

√
2c−11

√
log n+ 2(C2p+ 1)φn}.

Since n−1p = o(1), then λ � φn � n−12(C2p + 1)φn. Moreover, λ � φn � n−1
√

log n.

Hence

λ� n−1 max
i,j
|wj − wi|. (A.14)

Let tn = o(1), then ρ′(4tn)→ 1. Therefore, by (A.12), (A.13), and (A.14),

Qn(µ,β)−Qn(µ∗,β) = Γ1 + Γ2

≥
∑

i<j
[λρ′(4tn)− n−1 max

i,j
|wj − wi|]|µi − µj| ≥ 0,

for sufficiently large n, so that the result in (ii) is proved.

A.5 Estimation procedure for model (2)

We let x̃i = (1,xT
i )T and β∗ = (µ,βT)T. The model (2) can be written as yi = zT

i θi +

x̃T
i β
∗+εi, i = 1, . . . , n. Similar to the assumption for model (1), we assume that observations

can be divided into K different subgroups with K < n. Let G = (G1, . . . ,GK) be a partition

of {1, . . . , n}, and we assume θi = αk for all i ∈ Gk, where αk is the common value for the

θi’s from group Gk. Then the estimates of θ = (θT
1 , . . . ,θ

T
n )T and β∗ can be obtained by

minimizing

Qn(θ,β∗;λ) =
1

2

∑n

i=1
(yi − zT

i θi − x̃T
i β
∗)2 +

∑
1≤i<j≤n

p(||θi − θj||, λ), (A.15)

where p(·, λ) is a concave penalty function with a tuning parameter λ, such as MCP or

SCAD as described in Section 2. Then for a given λ > 0, define

(θ̂(λ), β̂
∗
(λ)) = argminQn(θ,β∗;λ).
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The penalty shrinks some of ||θi−θj|| to zero. Based on this, we can partition the treatment

effects into subgroups. Specifically, let λ̂ be the value of the tuning parameter selected based

on a data-driven procedure such as the BIC. For simplicity, write (θ̂, β̂
∗
) ≡ (θ̂(λ), β̂

∗
(λ)).

Let {α̂1, . . . , α̂K̂} be the distinct values of θ̂. Let Ĝk = {i : θ̂i = α̂k, 1 ≤ i ≤ n}, 1 ≤ k ≤ K̂.

Then {Ĝ1, . . . , ĜK̂} constitutes a partition of {1, . . . , n}. Then we apply our proposed ADMM

algorithm to obtain the estimates of θ and β∗ described as follows.

We reparametrize by introducing a new set of parameters δij = θi − θj, and hence

minimization of (A.15) is equivalent to the constraint optimization problem:

S(θ,β∗, δ)=
1

2

∑n

i=1
(yi − zT

i θi − x̃T
i β
∗)2 +

∑
i<j

pγ(||δij||, λ),

subject to θi − θj − δij = 0,

where δ = {δT
ij, i < j}T. By the augmented Lagrangian method (ALM), the estimates of

the parameters can be obtained by minimizing

L(θ,β∗, δ,υ) = S(θ,β∗, δ) +
∑

i<j
〈υij,θi − θj − δij〉+

ϑ

2

∑
i<j
||θi − θj − δij||2,

where the dual variables υ = {υT
ij, i < j}T are Lagrange multipliers and ϑ is the penalty

parameter. We then can obtain the estimators of (θ,β∗, δ,υ) through iterations by the

ADMM.

For given (θ,β∗,υ), the minimizer of L(θ,β∗, δ,υ) with respect to δij is unique and has

a closed-form expression for the L1, MCP and SCAD penalties, respectively. Specifically, for

given (θ,β∗,υ), the minimization problem is the same as minimizing

ϑ

2

∑
i<j
||ζij − δij||2 +

∑
i<j

pγ(||δij||, λ)

with respect to δij, where ζij = θi− θj +ϑ−1υij. Hence, the closed-form solution for the L1

penalty is

δ̂ij = S(ζij, λ/ϑ), (A.16)

where S(z, t) = (1− t/||z||)+z is the groupwise soft thresholding rule, and (x)+ = x if x > 0

and 0, otherwise. For the MCP penalty with γ > 1/ϑ, it is

δ̂ij =

{
S(ζij ,λ/ϑ)

1−1/(γϑ) if ||ζij|| ≤ γλ

ζij if ||ζij|| > γλ.
(A.17)
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For the SCAD penalty with γ > 1/ϑ+ 1, it is

δ̂ij =


ST(ζij, λ/ϑ) if ||ζij|| ≤ λ+ λ/ϑ

ST(ζij ,γλ/((γ−1)ϑ))
1−1/((γ−1)ϑ) if λ+ λ/ϑ < ||ζij|| ≤ γλ

ζij if ||ζij|| > γλ.

(A.18)

ADMM algorithm for (A.15). We now describe the computational algorithm based

on the ADMM for minimizing (A.15). It consists of iteratively updating θ,β∗, δ and υ. The

main ingredients of the algorithm are as follows.

First, for a given (δ,υ), to obtain an update of θ and β∗, we set the derivatives

∂L(θ,β∗, δ,υ)/∂θ and ∂L(θ,β∗, δ,υ)/∂β∗ to zero, where

L(θ,β∗, δ,υ) =
1

2

∑n

i=1
(yi − zT

i θi − x̃T
i β
∗)2 +

ϑ

2

∑
i<j
||θi − θj − δij + ϑ−1υij||2 + C

=
1

2
||Zθ + X̃β∗ − y||2 +

ϑ

2
||Aβ − δ + ϑ−1υ||2 + C.

Here C is a constant independent of θ and β∗, y = (y1, . . . , yn)T, Z =diag(zT
1 , . . . , z

T
n ) and

X̃= (x̃1, . . . , x̃n)T. Moreover, ei is the n× 1 vector whose ith element is 1 and the remaining

ones are 0, ∆= {(ei−ej), i < j}T and A =∆⊗ Ip, where Id denotes the d×d identity matrix

and ⊗ denotes the Kronecker product.

Thus for given δ(m) and υ(m) at the mth step, the updates θ(m+1) and β∗(m+1), which are

the minimizers of L(θ,β∗,δ(m),υ(m)), are

θ(m+1) = (ZT(In −QX̃)Z + ϑATA)−1[ZT(In −QX̃)y + ϑAT(δ(m) − ϑ−1υ(m))],

β∗(m+1) = (X̃TX̃)−1X̃T(y − Zθ(m+1)),

where QX̃ = X̃(X̃TX̃)−1X̃T.

Second, the update of δij at the (m + 1)th iteration is obtained by the formula given in

(A.16), (A.17) and (A.18), respectively, by the Lasso, MCP and SCAD penalties with ζij

replaced by ζ
(m+1)
ij = β

(m+1)
i − β

(m+1)
j + ϑ−1υ

(m+1)
ij .

Finally, the estimate of υij is updated as

υ
(m+1)
ij = υ

(m)
ij + ϑ(β

(m+1)
i − β

(m+1)
j − δ

(m+1)
ij ).
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We iteratively update the estimates of θ,β∗, δ and υ until the stopping rule is met. We

track the progress of the ADMM based on the primal residual r(m+1) = Aθ(m+1)−δ(m+1).

We stop the algorithm when r(m+1) is close to zero such that
∥∥r(m+1)

∥∥ < ε for some small

value ε.
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