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In this supplement, we give the technical proofs for Proposition [I] and Theorems [TH3] We
also provide a detailed estimation procedure for model based on the ADMM algorithm
in a way similar to that for model .

A.1 Proof of Proposition
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Since the objective function L(u, 3,1, v) is differentiable with respect to (u, 8) and is convex

with respect to m, by applying the results in Theorem 4.1 of [Tseng| (1991), the sequence
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) has a limit point, denoted by (u*, 3%, n"). Then we have
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Since (p(m+1), ﬂ(m+1)) minimize L(u, 3, ™, v™) by definition, we have that
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The last step follows from v™) = (™ 4+ Y(Apm+) —pnm+D)  Therefore,
st — YAT(pm+D) — )y = (D) X g+ _y 4 AT(m+D),
Since ||Ap*—n*||? = 0,
lim 8L(u(m+1), @(mﬂ)’ n(m)’ ’U(m))/au
— W{;;O”(m+1)+xﬁ(m+1)_y+ATU(mH)

m—r0o0

= p+X8 —y+ATv =0.
Therefore, lim,, o, s = 0.

A.2 Proof of Theorem (1

In this section we show the results in Theorem [I} Since for every pu € Mg, it can be written
as = Za, and hence o = D™ 'Z" . Then ((#™)", (8 )N)T = ((Za™)", (B )T)T, where

( giﬁ ) —arg min %Hy —Za— X8| =[(2,X)"(Z,X)] (2, X)"y.

acRK BeRp
Then I
( %W:go ) = [(Z,X)"(Z,X)]"(Z,X) e,
where € = (€1, ¢,)" and @” = (af,...., a%)". Hence
H( %Zijgfj )Hm < |z x"@x)"|_||[@x"|_. (A.1)

By Condition (C1), we have H[(Z,X)T(Z,X)]_1 < O7Y |G| and thus

iz, x)"(z, %)

‘ < VK 4 pC Y |Goin| ™" (A.2)
Moreover

P(H(Z,X)TEHOO > Cy/nlogn) < P(HZTEHOO > Cy/nlogn) + P(HXTGHOO > Cy/nlogn),

for some constant 0 < C' < oo. By Condition (C3) and union bound,

P <HZT6||C>Q > C’\/nlogn)
K K
< Y PUD el > CVnlogn) <D0 P el > VIGCViogn)

< 2K exp(—c;C?%logn) = 2Kn <,
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and by Conditions (C1) and (C3) and union bound,

P (|X"e], > Cv/nlogn)
< Y P(XJel > vnCy/iogn)

< 2pexp(—c;C%logn) = an’qC2
By the above results, we have
P(H(Z,X)TGH > Cy/nlogn) < 2(K + p)n~¢", (A.3)

Therefore, by (A.1)), (A.2) and (A.3), we have with probability at least 1 — 2(K + p)n_clc2,

(523 )] =oorcrmo s

1Ol = la” — o, < COT'/EK 4 p|Guin| v/nlogn. The result (8)

in Theorem [1] is proved by letting C' = cfl/ ?. and result follows from Central Limit
Theorem.

|’\OT‘

and hence |

A.3 Proof of Theorem 2

In this section we show the results in Theorem [2l Define
1
Lo(p. ) = Slly == XBI Pali) = A ) pllmi = ps)).
i<j

Li(e,B) = —||y Zao— XB|P, P (@) = A Y |Gl |Gulp(law — aw ),
k<E

and let

Let T : Mg — R¥ be the mapping such that T'(p) is the K x 1 vector whose k*® coordinate
equals to the common value of y; for i € G,. Let T* : R* — RX be the mapping such that

T*(p) = {IG| ™" g, Hities- Clearly, when p Mg, T(p) =T*(p).
By calculation, for every pu € Mg, we have P,(u) = PY(T(u)) and for every a € RX | we
have P, (T~ (a)) = P9(cx). Hence
Qn(, B) = QJ(T(w), B), Q5 (v, B) = Qu(T (), B). (A4)
Consider the neighborhood of (u°, 3°):
O={p €R", BeRP: ||((n — p°)", (B - B°))"|| . < ¢u}-
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By the result in Theorem [I} there is an event E; such that on the event Ej,

(@ = w0y, @ - 8| < o,
and P(EY) < 2(K + p)n~!. Hence ((B™)*, (BOT)T)T € © on the event E;. For any pu €R",
let p* = T=Y(T*(p)). We show that (i, 8" ) is a strictly local minimizer of the objective
function with probability approaching 1 through the following two steps.

(i). On the event Ey, Q,(u*,8) > Qu (i, 8" ) for any ()", (8)")T € © and
()" (B))" # ()", (B )"

(ii). There is an event Fy such that P(ES) < 2n~t. On E; N E,, there is a neighborhood
of ()T, (8" )T)T, denoted by ©,,, such that Qy(ps, ) > Qu(p*, B) for any ()T, (8)T)" €
0, N © for sufficiently large n.

Therefore, by the results in (i) and (i), we have Q,(u,B) > Qu(i”,8 ) for any

-~or

()", (B)")" € ©, MO and ()", (B)")T # (B")",(B")")T, so that ((B)",(B")")"
is a strict local minimizer of @, (s, 3) given in on the event Fy N Ey with P(E; N Ey) >
1—2(K +p+1)n~! for sufficiently large n.

In the following we prove the result in (i). We first show P9(T*(u)) = C,, for any p €0,
where C,, is a constant which does not depend on . Let T*(u) = o = (ay, ..., ax)". Tt
suffices to show that |y — ay/| > aX for all £ and k’. Then by Condition (C2), p(|ay — aur|)
is a constant, and as a result PY(T*(u)) is a constant. Since

o — | > |oy — ] = 2f|a — |,

and
la—a’ll = Sup|z 13/ |G| —akl—suplz — 11)/|Gx|
< supsup |p; - 1] = 11— 1o, (A.5)
1€Gg

then for all k¥ and &’
lag — apr| > |04k — ozk,| 2||p — p HOO > b, — 20, > al,

where the last inequality follows from the assumption that b, > aX > ¢,. Therefore, we
have PY(T*(u)) = C,, and hence Q9(T*(u), B) = LY(T*(u), B) + C,, for all (u™, B")T

Since ((@°)T, (8" )T)T is the unique global minimizer of LI(c, B), then LI(T*(p),B3) >
L{(@”,B") forall (T*(w)", 81" # (@), (8)" T and thus Q7(T*(p), B) > Q7 (@™, B)
for all 7*(p) # &”. By (A4), we have Q§(@”.8") = Qu(A”,8 ) and QF(T* (), B) =
Qu(T~HT*(1)), B) = Qu(p*, B). Therefore, Q, (1", B) > Qu (A, B" ) for all p* # i, and

the result in (i) is proved.
Next we prove the result in (ii). For a positive sequence t,,, let ©,, = {p : ||u—p”"|| < t,}.
For (u™,8")T € ©,, N O, by Taylor’s expansion, we have

Qn(“,ﬁ) - Qn(“’*w@) =T+ 1Ty,
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where

o= —(y— (L, X) (™" 85 (1 —pb),
T, = Z%(ui—u?),

in which p™ = qu + (1 — ¢)p* for some ¢ € (0,1). Moreover,

r, = po — i) FAY (= ) (e — )
{j<i}

)

=) Ay P = ) (s = 1)

(s = 1) = A D PO = 1) (1 = 5)

i =g (s = ) = (i = 15) 3 (A.6)

When i, j € Gy, p; = p}, and " — pf* has the same sign as p; — p1;. Hence

K
Y™ — Dy — 0
A Y AU = Dl = g
- Zk<k’ Z{z‘egk,j'egk,} Pl = n s = 17) = (g — 113).
As shown in (A.5)),
=] = | — @°l|oe < ||t — 11°]|co-
Since /J,m =Gu + (1 _ g)u*7
1™ =12 < ||t — 1|0 < s (A7)

and then for k # k', i € Gy, j € G,
m— " > min O — 10 = 2| ™ — 1]
i — il = edmin, i — 5| = 2|[p™ = w7

and thus p(pf" — p7') = 0. Therefore,

K
_ ’ B
F2 B )\Zkzl Z{i,j69k7i<j} P <|'uz MJ |)|Mz |

Furthermore, by the same reasoning as ((A.5]), we have

“~or “~or

|-

=B o < |lp—p

Then
2™ — oo <2/ — p*]|

<
< 2/l = B oo + " = 27 |0)
< 4||I"_AOT||00§4tn'

|:u7, _/“L] |
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Hence p'(|p* — pi'|) > p'(4t,) by concavity of p(-). As a result,
> .
P /\Zk 1Z{zgegk ieqy P At s = ], (A-8)

Let
W = (wl, ce ,wn>T =Yy - (Im X)((:u’m)THBT)T'
Then
— 1)
I = —w'( =
! Zk 1 Z{MGGk} |gk;|
K w; ,ul :“J)
- Zk 1 Z{z ]Egk} 2|gk Zk 1 Z{Uegk} 2|gk|
. ZK 3 wj — w;) (15 — i)
k=1 {z'jegk} 2|Qk\
K - wz)(MJ B :U’Z)
= — ) A9
Zk 1 Z{uegk Z<J} |G| (A.9)
Since
w=e+X(8" - B)+p'—pm,
then

max [uw; — wil < 2|l < 2lello + 201X [18” = Bll.c + 2ll1’—1"
Hence by and Condition (C1),
max \w; — w;| < 2||€]| + 2Copdy, + 2¢,,.
By Condition (C3),
P(llell. > y/2¢; Viogn) < 37" Plled > /26" Viogn) < 2n”!
Thus there is an event E, such that P(ES) < 2n~!, and on the event Fj,
ma [u; — wi| <2 2¢7 1/ logn + 2(Cap + 1)y (A.10)

Hence

|Grnin| max |w; = w;| < |Guin| {24/ 267V 1ogn + 2(Cop + 1)}

Since |Gmin| > /(K +p)nlogn and p = o(n), then |Guin|'p = o(1). Thus A > ¢, >
|Gmin] “12(Cop + 1)@, Moreover, A > ¢, > |Guin| '+/Iogn. Hence

A > |G| max [w; — wy). (A.11)
27‘7
Let t, = o(1), then p'(4t,) — 1. Therefore, by (A.8), (A.9)), and (A.11]),
Qn(u ﬂ) —Qu(p". B) =T1 41

> s ] >
Zk 1 Z{”egk Z<]} ) |gmm| HI%X |w] w%m:ul :u]| = Oa

for sufficiently large n, so that the result in (ii) is proved.

AT



A.4 Proof of Theorem [3

In this section we show the results in Theorem The proofs of and follow the
same arguments as the proof of Theorem [1| by letting Z = 1,, and |Gpin| = n, and thus they
are omitted. Next, we will show . It follows similar procedures as the proof of Theorem
with the details given below. Let M be the subspace of R", defined as

M={peR" == i}

For each p € M, it can be written as u = 1,a, where a is the common value of u. Let
T : M — R be the mapping such that T'(p) is the scalar that equals to the common value
of u;’s. Let T* : R" — R be the mapping such that T*(u) =n~"'>_"" , ;. Clearly, when
pu €M, T(u) =T*(u). Consider the neighborhood of (u®, B%):

O={p eR",BeR:||((n— )", (B—8")")"|| . < ¢n},

where ¢,, = 01—1/20;1\/1 + py/n~tlogn. By the result in 1) there is an event E such that

on the even Fjy,

-~or

(@ = w0y, (3

and P(EY) < 2(1+p)n~t. Hence ()T, (8 )T)T € © on the event E;. For any p €R",

-8 < on.

o0

let pu* = TY(T*(p)). We show that (u”, BOT) is a strictly local minimizer of the objective

function with probability approaching 1 through the following two steps.
(i) On the event By, Qu(p*, B) > Qu(i™,B") for any (u™,8")T € © and ((u*)",8")" #

-~or

(B, (87 )"
(ii). There is an event E, such that P(ES) < 2n~t. On E; N E,, there is a neighborhood

or

of ()T, (B”)T)T, denoted by ©,, such that Qu(p. B) > Qu(u*, B) for any (uT,8")T €
0, N O for sufficiently large n.

Therefore, by the results in (i) and (i), we have @Q,(u,B8) > Qn(ﬁw,,@or) for any

or

(1", 8")" € ©,n 0 and (uT, )" # (B™),(B”)™)T, so that ()T, (B”)")T is a strict
local minimizer of Q,(u,3) on the event E; N Ey with P(E; N Ey) > 1 —2(p+ 2)n~! for

sufficiently large n.

By the definition of ()", (8")")", we have § 27 (y; — pu* — xFB)* > L300 (y; —

i —xTB")? for any (u”, 87)T € © and ((u*)™, 87T £ (17", (8" )T)T. Moreover, since

(2
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Py (187 =051, A) = py (I =151, A) = 0for 1 < i, j <, we have Qu(p*, 8) =5 30, (i —p* —
xI'8)” and Q. (5" .B") = 52 (i — ™ —xB8")*. Therefore, Q. (1", B) > Qu(B”, B ).
Next we prove the result in (ii). For a positive sequence t,,, let ©,, = {p : ||u—p”"|| < t,}.

For (u”,B")T € ©,, N O, by Taylor’s expansion, we have

Qn(l-l'7/6) - Qn(#’*wg) = F1 + P2a

where
I, = —( —(I X)((u’")T,BT)TF(u—u*%

Iy = Z 3#% — 11).

=1

in which p™ = ¢ + (1 — ¢)p* for some ¢ € (0,1). Moreover, by (A.6), we have
Pyo= Al = i) s = ) = (g — 1)}
= A e = Dl = gl

where the second equality holds due to the fact that 7 = p} and p;" — p* has the same sign
as p; — pt;. Let T*(p) =a. Following the same reasoning as the proof for (A.5), we have

-~or

" =1 oo = o = @] < [l=1" |-

Then

" — ' < 2™ = e <2/ — 1]
< 2([lp = 87 |oo + [ = B [|o0)

< 4||F" - I/EOTHOO < 4.
Hence p'(|u* — pi'|) > p'(4t,) by concavity of p(-). As a result,
D> AY o)l (A12)
Then, by the same reasoning as the proof for (A.9)), we have
P=—wip—p)=—n"")  (u pi = i), (A.13)
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where w = (wy,...,w,)"T =y — (L, X)((u™)", B5)T. By the same reasoning as the proof
for (A.10]), we have that there is an event E, such that P(ES) < 2n~!, and on the event Es,

max |w; — w;| < 24/2¢;/logn + 2(Cop + 1),
irj

Hence
n~ ' max |w; — w;| < n7H{24/2¢7 'V logn + 2(Cap + 1)}
Z?]

Since n~!p = o(1), then A > ¢, > n~12(Cop + 1)¢,. Moreover, X > ¢, > n~1y/logn.
Hence

A > max |w; — wyl. (A.14)
Z?]
Let t, = o(1), then p/(4t,) — 1. Therefore, by (A.12), (A.13]), and (A.14]),

Qn(#’aﬂ) - Qn(ﬂ'*wﬂ) - F1 + FQ
> 37 () =0t max foy —will s — | 2 0,

for sufficiently large n, so that the result in (ii) is proved.

A.5 Estimation procedure for model (2]

We let %; = (1,x7)" and 8* = (u, 37)". The model can be written as y; = z0; +
XX B3*+¢;,i=1,...,n. Similar to the assumption for model , we assume that observations
can be divided into K different subgroups with K < n. Let G = (G,,...,Gk) be a partition
of {1,...,n}, and we assume 6; = oy, for all i € Gi, where a, is the common value for the
;s from group G,. Then the estimates of @ = (67,...,0})" and B* can be obtained by
minimizing

1

Q.50 = 53 (-0 KT+ pllle-6lLN, (A15)

where p(-,\) is a concave penalty function with a tuning parameter A, such as MCP or

SCAD as described in Section [2 Then for a given A > 0, define

A~k

(B()), B (V) = argmin Q,, (6, B ).

A10



The penalty shrinks some of ||@; — 8| to zero. Based on this, we can partition the treatment
effects into subgroups. Specifically, let X be the value of the tuning parameter selected based
on a data-driven procedure such as the BIC. For simplicity, write (5, B*) = (5()\), ,@*()\))
Let {a1,...,az} be the distinct values of 0. Let Q\k ={i: @ =a1<i<n},1<k< K.
Then {Q\l, . QAIA(} constitutes a partition of {1,...,n}. Then we apply our proposed ADMM
algorithm to obtain the estimates of @ and 3" described as follows.

We reparametrize by introducing a new set of parameters d;; = 6, — 8;, and hence

minimization of (A.15) is equivalent to the constraint optimization problem:

1 n T ~T g+\2
— > A0 = KB+ Y pa(ll6sll ),

S(0,8",9) 5
subject to 8, —0; — d,; = 0,

where § = {8, < j}T. By the augmented Lagrangian method (ALM), the estimates of

17
the parameters can be obtained by minimizing
* * 19 2
L(07/8 767U> - 5(07/8 76> + Zi<j <Uij79i - Gj - 6zj> + §Zi<j Hez - Oj - 61]” )

T

it < j}T are Lagrange multipliers and 4 is the penalty

where the dual variables v = {v
parameter. We then can obtain the estimators of (8,3,d,v) through iterations by the
ADMM.

For given (6, 3", v), the minimizer of L(0, 3", d,v) with respect to d;; is unique and has
a closed-form expression for the Ly, MCP and SCAD penalties, respectively. Specifically, for

given (0, 8", v), the minimization problem is the same as minimizing

DN [[FIE N SR AIPY
with respect to d;;, where Cij =0,—-0;+ 19*1’017. Hence, the closed-form solution for the L;
penalty is
gij = S(Cij? )\/19)7 (A'16>
where S(z,t) = (1 —t/||z||)+2 is the groupwise soft thresholding rule, and (z); =z if x >0
and 0, otherwise. For the MCP penalty with v > 1/9, it is

R Sy AT
3, = { 1-1/(v9) if ||Giyl| < A (A.17)

Cij if HCUH > YA

A1l



For the SCAD penalty with v > 1/9 + 1, it is

O N [T Y
Cz‘j if HCUH > YA

ADMM algorithm for (A.15). We now describe the computational algorithm based
on the ADMM for minimizing ({A.15)). It consists of iteratively updating 8, 3", § and v. The
main ingredients of the algorithm are as follows.

First, for a given (§,v), to obtain an update of @ and B*, we set the derivatives

0L(68,3",8,v)/06 and OL(0,3",5,v)/03" to zero, where

* 1 n > * 19 —
LO.86.0) = 5> (i—a0—XB) +5) (10 —6;—8;+0 vyl +C

1 - )
— 5||Z(9+Xﬁ* — |+ §||Aﬂ—6+19‘1v||2+0.

Here C is a constant independent of @ and B8*, y = (y1,...,yn)", Z :diag(le, ...,z}) and

r T n

X= (X1,...,%,)T. Moreover, e; is the n x 1 vector whose i** element is 1 and the remaining
ones are 0, A= {(e; —e;),7 < j}* and A =A®1I,, where I; denotes the d x d identity matrix
and ® denotes the Kronecker product.

Thus for given 8™ and v™ at the m™ step, the updates 8™+ and B*™*Y which are

the minimizers of L(8,8*,6'™, v(™), are

' = (ZT(1, — Qg)Z +9ATA) ' ZT (1, — Qg)y + AT (8™ — 9w,

ﬁ*(erl) _ (iTi)—lXT(y_Ze(erl)),

where Qg = X(XTX) X"
Second, the update of 8;; at the (m + 1)™ iteration is obtained by the formula given in

(A.16)), (A.17) and (A.18), respectively, by the Lasso, MCP and SCAD penalties with (;;

replaced by CE;”H) — B gmEh) 4 g—1g,(mAD),

i 7 ]
Finally, the estimate of v;; is updated as
ot Ug;n) n 19(16.1('m+1) B ﬁgm—f—l) B 5(7,”“)),

ij j

A2



We iteratively update the estimates of 8, 3%, d and v until the stopping rule is met. We
track the progress of the ADMM based on the primal residual r(™+1) = AQMHD _gim+1),
We stop the algorithm when r™*Y is close to zero such that Hr(m“)H < € for some small

value e.
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